1
|
Boztepe T, Karp F, Cabrera S, Aleman J, Lamas DG, Huck-Iriart C, Islan GA, León IE. An oral delivery approach for riboflavin-targeted platinum(II)-loaded lipid nanoparticles into alginate-gelatin matrices against 2D and 3D colorectal carcinoma models. J Inorg Biochem 2025; 269:112900. [PMID: 40158497 DOI: 10.1016/j.jinorgbio.2025.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
This study investigated the use of riboflavin-targeted Nanostructured Lipid Carriers (R-NLCs) to deliver a platinum-based anticancer drug [PtCl(8-O-quinolinate)(dmso)] (8-QO-Pt) to colorectal cancer cells. Three different R-8-QO-Pt-NLC formulations were prepared via hot-homogenization by ultrasonication method. The physicochemical characterizations of NLCs were analyzed by small- and wide-angle X-ray scattering (SAXS/WAXS) and fourier transformed infrared spectroscopy (FTIR). The cytotoxic effects and IC50 values of R-8-QO-Pt-NLC formulations were compared with those of the free 8-QO-Pt. Cellular uptake and apoptosis were evaluated towards HCT 116 cells in monolayer (2D). The liquid overlay technique was used to generate 3D multicellular tumor spheroids, MCTS. The anticancer and antimetastatic activities of the free 8-QO-Pt and R-8-QO-Pt-NLCs were determined in MCTS. The results revealed that R-8-QO-Pt-NLC exhibited greater cytotoxicity and lower IC50 values than free 8-QO-Pt in both 2D and 3D cell cultures. Furthermore, results showed that the volumes of the spheroids were reduced in response to increasing concentrations of R-8-QO-Pt-NLC, showing higher inhibition of cell migration in colorectal cancer spheroids at concentrations of 10.0, 15.0, and 25.0 μM than free 8-QO-Pt. To provide protection against gastric acid conditions, an additional drug delivery system based on alginate (Alg) and gelatin (Gel) beads for R-8-QO-Pt-NLC oral administration was developed. While free and R-NLC encapsulated 8-QO-Pt were practically inactivated at pH 1.2 and 37 °C, it was revealed that the Alg-Gel beads retain 5.7 times the initial activity of the R-8-QO-Pt-NLC. The findings of this research indicate that R-8-QO-Pt-NLC embedded in Alg-Gel beads are promising hydrogels for targeted colorectal delivery systems.
Collapse
Affiliation(s)
- Tugce Boztepe
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
| | - Federico Karp
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
| | - Silvia Cabrera
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Aleman
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego G Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, (1650) San Martín, Buenos Aires, Argentina
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, (1650) San Martín, Buenos Aires, Argentina; ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Germán A Islan
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina; Children's Hospital, University Medical Center of the Johannes-Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd., 120 N° 1465, La Plata 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina.
| |
Collapse
|
2
|
Sonzini S, England RM, Kapustin AN, Moss JI, Sutton D, Smith A, Sharma S, Siouve E, Mazza M, Ravn P, Puri S, Ashford M. HER2-targeted star polymer conjugates for improved tumor distribution and efficacy. J Control Release 2025; 382:113654. [PMID: 40122243 DOI: 10.1016/j.jconrel.2025.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Actively targeted nanoparticle systems have the potential to improve delivery to tumors over untargeted systems however the design rules to achieve this have not been fully elucidated. A HER2-targeted polymer drug delivery system composed of a 32-arm star polymer (SD) conjugated with the TOP1 inhibitor molecule SN-38, with a trastuzumab antigen binding fragment (HER2-Fab), has been used to target cancer cells overexpressing this receptor. The HER2-Fab was attached to the SD at two different densities (average of 1 or 3 Fabs per star polymer) and compared to the native star polymer without Fab. In vitro experimentation showed that both the targeted star polymers (HER2-SDs) had better binding and uptake in HER2-positive cell lines (SK-BR3 and HEK293) compared to the non-targeted SD. In vivo biodistribution studies showed enhanced accumulation of HER2-targeted SDs in tumors, but not normal tissues, particularly at the later (96 h post-dose) timepoint. The HER2-SDs demonstrated increased localization with tumor cells rather than in stromal regions, greater penetration into the tumor core and a more homogenous distribution in the tumor section than the untargeted SD. The targeted star polymer conjugated to SN-38 was tested for anti-tumor activity in a HER2-positive gastric cancer xenograft in mice and showed significantly greater efficacy compared to untargeted SDs.
Collapse
Affiliation(s)
- Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Alexander N Kapustin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jennifer I Moss
- OTD Small Molecules, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Soumya Sharma
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Elise Siouve
- Biologic Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Peter Ravn
- Biologic Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Sanya Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| |
Collapse
|
3
|
Rosales-Barrios C, González-Sánchez ZI, Zuliani A, Jiménez-Vacas JM, Luque RM, Pozo D, Khiar N. PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors. J Control Release 2025; 379:890-905. [PMID: 39864631 DOI: 10.1016/j.jconrel.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells. These PDA-based micelles feature a well-defined structure with a hydrophobic PDA core and a surface functionalized with PEG, and for active targeting, ACUPA. Our micelles demonstrated excellent encapsulation capacity, significantly improving DTX solubility in water, a crucial factor for clinical drug use. In vitro studies confirmed the safety and cytotoxic profiles of both systems, with ACUPA-functionalized micelles showing notable internalization into PSMA-positive LNCaP cells, mediated through the PSMA-ACUPA interaction. In vivo imaging revealed preferential accumulation of ACUPA-functionalized nanomicelles in LNCaP xenograft tumors, suggesting enhanced retention via specific ACUPA-PSMA interactions and active uptake by LNCaP cells. Notably, Balb/c-Foxn1nu/nu early in vivo studies showed a marked reduction in tumor volume and tumor expression levels of proliferation, cell cycle progression, cell survival and anti-apoptotic markers with DTX-loaded micelles functionalized with ACUPA compared to those without ACUPA. Overall, our studies collect initial evidence regarding the feasibility of supramolecular self-assembly of ACUPA-PDA-based nanomicelles for PSMA-targeted drug chemotherapy delivery developments.
Collapse
Affiliation(s)
- Cristian Rosales-Barrios
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain
| | - Zaira I González-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad Pablo de Olavide-Universidad de Sevilla, Av. Americo Vespucio 24, Seville 41092, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology University of Seville, Av. Sánchez Pizjuan s/n, 41009 Seville, Spain; Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Hwy. Duarte km 1.5, Santiago de los Caballeros, 822, Dominican Republic
| | - Alessio Zuliani
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University Hospital Reina Sofía (HURS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av. Menéndez Pidal s/n, Córdoba 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus Rabanales, 14004 Córdoba, Spain
| | - Raul M Luque
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), University Hospital Reina Sofía (HURS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av. Menéndez Pidal s/n, Córdoba 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus Rabanales, 14004 Córdoba, Spain
| | - David Pozo
- Department of Integrative Pathophysiology and Therapies, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad Pablo de Olavide-Universidad de Sevilla, Av. Americo Vespucio 24, Seville 41092, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology University of Seville, Av. Sánchez Pizjuan s/n, 41009 Seville, Spain
| | - Noureddine Khiar
- Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain.
| |
Collapse
|
4
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
5
|
Marwaha D, Singh N, Gautam S, Rai N, Tiwari P, Bakshi AK, Kumar A, Agarwal N, Sharma M, Shukla RP, Mishra PR. Pemetrexed-loaded supramolecular acetal-functionalized pH-responsive nanocarriers selectively induce apoptosis through biotin receptors to enhance antitumor efficacy. Colloids Surf B Biointerfaces 2024; 245:114247. [PMID: 39368420 DOI: 10.1016/j.colsurfb.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
A novel pH-responsive crystalsomes has been developed using acetal-functionalized pillar[5]arenes (AP[5]) and methyl viologen (MV) through host-guest interactions. The successful synthesis of AP[5] was confirmed via 1H-NMR spectroscopy, while the formation of the host-guest complex between AP[5] and MV was also verified using ¹H-NMR. The supramolecular assemblies formed at a 1:1 molar ratio of AP[5] to MV exhibited remarkable colloidal stability, a negative surface charge, and a high association constant.An acetal-functionalized pillara[5]arenes (AP[5]) crystalsomes were fabricated to reduce the toxicity of pemetrexed (PMX) in off-target sites and deliver the therapeutic doses to the active sites. Extensive characterization of the crystalsomes was performed, revealing their morphology and crystalline structure through SEM and TEM imaging. WAXS analysis confirmed the crystalline nature of the assemblies, and SAED patterns indicated that the crystalsome shell consisted of lamellae resembling single crystals with polymer chains oriented parallel to the interface. To enhnace the targeting capabilities, the surface of the crystalsomes was modified with biotin by conjugating viologen with biotin (MV-BT), aiming to target biotin receptors overexpressed on tumor cells. These biotin -modified crystalsomes (PMX-BT@CLs) were designed to be acid-labile facilitating the release of encapsulated drugs upon cellular internalization, as confirmed by confocal laser scanning microscopy (CLSM). In vivo, studies demonstrated that the PMX-loaded crystalsomes remained in circulation for extended period, showing improved pharmacokinetics. The area under the curve (AUC) of PMX-BT@CLs was approxiately 3.9 times higher than that of the free drug. Additionally, the relative tumor volume was found to be about 3.5 times lower in the group treated with biotin-modified crystalsomes compared to those treated with free PMX. The mean survival time was also significantly enhanced in the PMX-BT@CLs group. This study underscores the potential of using host-guest motifs in drug delivery app;ications, demonstrating the PMX can effectively targted to tumor sites with minimal off-target toxicity.
Collapse
Affiliation(s)
- Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, UP 201002, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ankit Kumar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Neha Agarwal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
6
|
Ma J, Fang L, Sun Z, Li M, Fan T, Xiang G, Ma X. Folate-PEG-PROTAC Micelles for Enhancing Tumor-Specific Targeting Proteolysis In Vivo. Adv Healthc Mater 2024; 13:e2400109. [PMID: 38676445 DOI: 10.1002/adhm.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) technology is rapidly developed as a novel and selective medicinal strategy for the degradation of cellular proteins in cancer therapy. However, the applications of PROTACs as heterobifunctional molecules are largely limited by high molecular weight, low bioavailability, poor permeability, insufficient targeting, and low efficacy in vivo. Herein, self-assembling micelles of FA-PEG-PROTAC are designed for cancer cell selective targeting and reductive-response proteolysis in tumor-bearing mice. FA-PEG-PROTAC is prepared by conjugating folic acid (FA)-PEG with EGFR-targeting PROTAC via a disulfide bond. The FA-PEG-PROTAC micelles, formed by self-assembling, are demonstrated to significantly improve tumor targeting efficacy and exhibit excellent anti-tumor efficacy in the mouse xenograft model compared to the traditional PROTACs. The strategy of applying self-assembled FA-PEG-PROTAC micelles in tumor therapy can not only improve targeted proteolysis efficiency but also broaden applications in the development of PROTAC-based drugs.
Collapse
Affiliation(s)
- Junhui Ma
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Fang
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengjun Sun
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meijing Li
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Fan
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangya Xiang
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pharmacy, Tongren Polytechnic College, Tongren, 554300, China
- Institute of the Higher Education Edible and Medicinal Fungi Engineering Research Center, Tongren, 554300, China
| | - Xiang Ma
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pharmacy, Tongren Polytechnic College, Tongren, 554300, China
| |
Collapse
|
7
|
Darguzyte M, Rama E, Rix A, Baier J, Hermann J, Rezvantalab S, Khedri M, Jankowski J, Kiessling F. Riboflavin-targeted polymers improve tolerance of paclitaxel while maintaining therapeutic efficacy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102751. [PMID: 38705222 DOI: 10.1016/j.nano.2024.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne, 50931 Cologne, Germany; Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), University of Cologne, 50931 Cologne, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Jasmin Baier
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Juliane Hermann
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN), 19839-63113 Tehran, Iran
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Lammers T. Nanomedicine Tumor Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312169. [PMID: 38361435 DOI: 10.1002/adma.202312169] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Nanomedicines are extensively explored for cancer therapy. By delivering drug molecules more efficiently to pathological sites and by attenuating their accumulation in healthy organs and tissues, nanomedicine formulations aim to improve the balance between drug efficacy and toxicity. More than 20 cancer nanomedicines are approved for clinical use, and hundreds of formulations are in (pre)clinical development. Over the years, several key pitfalls have been identified as bottlenecks in nanomedicine tumor targeting and translation. These go beyond materials- and production-related issues, and particularly also encompass biological barriers and pathophysiological heterogeneity. In this manuscript, the author describes the most important principles, progress, and products in nanomedicine tumor targeting, delineates key current problems and challenges, and discusses the most promising future prospects to create clinical impact.
Collapse
Affiliation(s)
- Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Center for Biohyhrid Medical Systems, University Hospital RWTH Aachen, Forckenbeckstrasse 55, 52074, Aachen, Germany
| |
Collapse
|
9
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
11
|
Boztepe T, Scioli-Montoto S, Gambaro RC, Ruiz ME, Cabrera S, Alemán J, Islan GA, Castro GR, León IE. Design, Synthesis, Characterization, and Evaluation of the Anti-HT-29 Colorectal Cell Line Activity of Novel 8-Oxyquinolinate-Platinum(II)-Loaded Nanostructured Lipid Carriers Targeted with Riboflavin. Pharmaceutics 2023; 15:pharmaceutics15031021. [PMID: 36986881 PMCID: PMC10056074 DOI: 10.3390/pharmaceutics15031021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal cancer is occasionally called colon or rectal cancer, depending on where cancer begins to form, and is the second leading cause of cancer death among both men and women. The platinum-based [PtCl(8-O-quinolinate)(dmso)] (8-QO-Pt) compound has demonstrated encouraging anticancer activity. Three different systems of 8-QO-Pt-encapsulated nanostructured lipid carriers (NLCs) with riboflavin (RFV) were investigated. NLCs of myristyl myristate were synthesized by ultrasonication in the presence of RFV. RFV-decorated nanoparticles displayed a spherical shape and a narrow size dispersion in the range of 144-175 nm mean particle diameter. The 8-QO-Pt-loaded formulations of NLC/RFV with more than 70% encapsulation efficiency showed sustained in vitro release for 24 h. Cytotoxicity, cell uptake, and apoptosis were evaluated in the HT-29 human colorectal adenocarcinoma cell line. The results revealed that 8-QO-Pt-loaded formulations of NLC/RFV showed higher cytotoxicity than the free 8-QO-Pt compound at 5.0 µM. All three systems exhibited different levels of cellular internalization. Moreover, the hemotoxicity assay showed the safety profile of the formulations (less than 3.7%). Taken together, RFV-targeted NLC systems for drug delivery have been investigated for the first time in our study and the results are promising for the future of chemotherapy in colon cancer treatment.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata B1900, Argentina
| | - Sebastián Scioli-Montoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Argentina
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Rocio C Gambaro
- Instituto de Genética Veterinaria (IGEVET, UNLP-CONICET La Plata), Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - María Esperanza Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Argentina
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Silvia Cabrera
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Germán A Islan
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata B1900, Argentina
| | - Guillermo R Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario S2000, Argentina
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| |
Collapse
|
12
|
Bonelli J, Velasco-de Andrés M, Isidro N, Bayó C, Chumillas S, Carrillo-Serradell L, Casadó-Llombart S, Mok C, Benítez-Ribas D, Lozano F, Rocas J, Marchán V. Novel Tumor-Targeted Self-Nanostructured and Compartmentalized Water-in-Oil-in-Water Polyurethane-Polyurea Nanocapsules for Cancer Theragnosis. Pharmaceutics 2022; 15:pharmaceutics15010058. [PMID: 36678687 PMCID: PMC9862617 DOI: 10.3390/pharmaceutics15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Encapsulation of water-soluble bioactive compounds for enabling specific accumulation in tumor locations, while avoiding premature clearance and/or degradation in the bloodstream, is one of the main hallmarks in nanomedicine, especially that of NIR fluorescent probes for cancer theragnosis. The herein reported technology furnishes water-dispersible double-walled polyurethane-polyurea hybrid nanocapsules (NCs) loaded with indocyanine green (ICG-NCs), using a versatile and highly efficient one-pot and industrially scalable synthetic process based on the use of two different prepolymers to set up the NCs walls. Flow cytometry and confocal microscopy confirmed that both ICG-loaded NCs internalized in monocyte-derived dendritic cells (moDCs). The in vivo analysis of xenograft A375 mouse melanoma model revealed that amphoteric functionalization of NCs' surface promotes the selective accumulation of ICG-NCs in tumor tissues, making them promising agents for a less-invasive theragnosis of cancer.
Collapse
Affiliation(s)
- Joaquín Bonelli
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Neus Isidro
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Cristina Bayó
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Sergi Chumillas
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Laura Carrillo-Serradell
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Cheryl Mok
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Daniel Benítez-Ribas
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona (UB), Villarroel 170, E-08036 Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
13
|
Yang X, Ma L, Shao H, Zhou Z, Ling X, Yao M, Luo G, Scoditti S, Sicilia E, Mazzone G, Gao M, Tang BZ. Riboflavin-Promoted In Situ Photoactivation of Dihydroalkaloid Prodrugs for Cancer Therapy. J Med Chem 2022; 65:15738-15748. [PMID: 36410876 DOI: 10.1021/acs.jmedchem.2c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cancer therapies usually suffer from poor targeting ability and serious side effects. Photoactivatable cancer therapy has the significant advantage of a high spatiotemporal resolution, but most photoactivatable prodrugs require decoration with stoichiometric photocleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a photoactivation strategy with biogenic riboflavin as the photosensitizer to promote the in situ transformation of noncytotoxic dihydroalkaloid prodrugs dihydrochelerythrine (DHCHE), dihydrosanguinarine (DHSAN), and dihydronitidine (DHNIT) into anticancer alkaloid drugs chelerythrine (CHE), sanguinarine (SAN), and nitidine (NIT), respectively, which can efficiently kill cancer cells and inhibit in vivo tumor growth. Meanwhile, the photoactivatable transformation can be in situ monitored by green-to-red fluorescence conversion, which will contribute to easy controlling of the therapeutic dose. The proposed photoactivatable transformation mechanism was also explored by density functional theory (DFT) calculations. We believe this riboflavin-promoted and imaging-guided photoactivation strategy is promising for precise cancer therapy.
Collapse
Affiliation(s)
- Xin Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Hongwei Shao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Zikai Zhou
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Xia Ling
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Mengyu Yao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Guowen Luo
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang, Shenzhen, Guangdong 518172, China
| |
Collapse
|
14
|
Mechanism of selective induction of apoptosis of HCT116 tumor cells in circulating blood by riboflavin photochemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112588. [DOI: 10.1016/j.jphotobiol.2022.112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
15
|
Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179943. [PMID: 36077338 PMCID: PMC9456420 DOI: 10.3390/ijms23179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the great advancements made in cancer treatment, there are still many unsatisfied aspects, such as the wide palette of side effects and the drug resistance. There is an obvious increasing scientific attention towards nature and what it can offer the human race. Natural products can be used to treat many diseases, of which some plant products are currently used to treat cancer. Plants produce secondary metabolites for their signaling mechanisms and natural defense. A variety of plant-derived products have shown promising anticancer properties in vitro and in vivo. Rather than recreating the natural production environment, ongoing studies are currently setting various strategies to significantly manipulate the quantity of anticancer molecules in plants. This review focuses on the recently studied secondary metabolite agents that have shown promising anticancer activity, outlining their potential mechanisms of action and pathways.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Elena Victoria Manea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Oana Stefana Popescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-334-30-25
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| |
Collapse
|
16
|
Li J, Valkenburgh JV, Fang J, Zhang D, Chen Y, Chen Q, Jia G, Chen AZ, Zhang X, Chen K. Development of a novel radiofluorinated riboflavin probe for riboflavin receptor-targeting PET imaging. Pharmacol Res 2022; 183:106395. [PMID: 35970328 DOI: 10.1016/j.phrs.2022.106395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Riboflavin receptor 3 (RFVT3) is a key protein in energetic metabolism reprogramming and is overexpressed in multiple cancers involved in malignant proliferation, angiogenesis, chemotherapy resistance, and immunosuppression. To enable non-invasive real-time quantification of RFVT3 in tumors, we sought to develop a suitable PET probe that would allow specific and selective RFVT3 imaging in vivo. A novel radiofluorinated riboflavin probe (18F-RFTA) based on riboflavin was synthesized and characterized in terms of radiochemical purity, hydrophilicity, binding affinity, and stability. Positron emission tomography (PET) imaging of 18F-RFTA was performed in U87MG tumor-bearing mice. Immunohistochemistry staining was carried out to determine the expression of RFVT3 in U87MG tumors. 18F-RFTA was characterized by high radiochemical purity and RFVT3 binding affinity, and remarkable stability in vitro and in vivo. Small-animal PET imaging with 18F-RFTA revealed significantly higher uptake in RFVT3-expressing U87MG tumors than in muscle. In conclusion, we have developed the first radiofluorinated riboflavin-based PET probe that is suitable for imaging RFVT3-positive tumors. The new target/probe system can be leveraged for extensive use in the diagnosis and treatment of RFVT3 overexpressing diseases, such as oncologic, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Jianyang Fang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Deliang Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingxi Chen
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Austin Z Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA.
| |
Collapse
|
17
|
Profiling target engagement and cellular uptake of cRGD-decorated clinical-stage core-crosslinked polymeric micelles. Drug Deliv Transl Res 2022; 13:1195-1211. [PMID: 35816231 PMCID: PMC10102119 DOI: 10.1007/s13346-022-01204-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
Polymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLacn) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αvβ3 integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically. Using a panel of cell lines with different expression levels of the αvβ3 integrin receptor and exploring both static and dynamic incubation conditions, we studied the benefit of decorating CCPM with different densities of cRGD. We show that incubation time and temperature, as well as the expression levels of αvβ3 integrin by target cells, positively influence cRGD-CCPM uptake, as demonstated by immunofluorescence staining and fluorescence microscopy. We demonstrate that even very low decoration densities (i.e., 1 mol % cRGD) result in increased engagement and uptake by target cells as compared to peptide-free control CCPM, and that high cRGD decoration densities do not result in a proportional increase in internalization. In this context, it should be kept in mind that a more extensive presence of targeting ligands on the surface of nanomedicines may affect their pharmacokinetic and biodistribution profile. Thus, we suggest a relatively low cRGD decoration density as most suitable for in vivo application.
Collapse
|
18
|
Schmitt S, Huppertsberg A, Klefenz A, Kaps L, Mailänder V, Schuppan D, Butt HJ, Nuhn L, Koynov K. Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules 2022; 23:1065-1074. [PMID: 35061359 PMCID: PMC8924869 DOI: 10.1021/acs.biomac.1c01407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The use of nanoparticles as carriers to deliver pharmacologically active compounds to specific parts of the body via the bloodstream is a promising therapeutic approach for the effective treatment of various diseases. To reach their target sites, nanocarriers (NCs) need to circulate in the bloodstream for prolonged periods without aggregation, degradation, or cargo loss. However, it is very difficult to identify and monitor small-sized NCs and their cargo in the dense and highly complex blood environment. Here, we present a new fluorescence correlation spectroscopy-based method that allows the precise characterization of fluorescently labeled NCs in samples of less than 50 μL of whole blood. The NC size, concentration, and loading efficiency can be measured to evaluate circulation times, stability, or premature drug release. We apply the new method to follow the fate of pH-degradable fluorescent cargo-loaded nanogels in the blood of live mice for periods of up to 72 h.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anne Huppertsberg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Adrian Klefenz
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
| | - Leonard Kaps
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
- Department
of Internal Medicine I, University Medical Center, Johannes Gutenberg-University, 55122 Mainz, Germany
| | - Volker Mailänder
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University, 55122 Mainz, Germany
| | - Detlef Schuppan
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
- Division
of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02115 Boston, Massachusetts, United States
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
19
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Kiessling F. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732909220307125520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Schmitt S, Nuhn L, Barz M, Butt HJ, Koynov K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromol Rapid Commun 2022; 43:e2100892. [PMID: 35174569 DOI: 10.1002/marc.202100892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This Feature Article highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Matthias Barz
- Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
22
|
Wu D, Yang K, Zhang Z, Feng Y, Rao L, Chen X, Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem Soc Rev 2022; 51:1336-1376. [PMID: 35050284 DOI: 10.1039/d1cs00451d] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry is a powerful tool to site-specifically activate drugs in living systems. Bioorthogonal reactions between a pair of biologically reactive groups can rapidly and specifically take place in a mild physiological milieu without perturbing inherent biochemical processes. Attributed to their high selectivity and efficiency, bioorthogonal reactions can significantly decrease background signals in bioimaging. Compared with metal-catalyzed bioorthogonal click reactions, metal-free click reactions are more biocompatible without the metal catalyst-induced cytotoxicity. Although a great number of bioorthogonal chemistry-based strategies have been reported for cancer theranostics, a comprehensive review is scarce to highlight the advantages of these strategies. In this review, recent progress in cancer theranostics guided by metal-free bioorthogonal click chemistry will be depicted in detail. The elaborate design as well as the advantages of bioorthogonal chemistry in tumor theranostics are summarized and future prospects in this emerging field are emphasized.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Yunxuan Feng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
23
|
Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022; 11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Indexed: 11/10/2022]
Abstract
Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment. According to the process of nanosystems entering the body, they can be classified into three categories. The first segment is to enhance the accumulation and permeation of nanosystems to tumor cells through extracellular microenvironment stimulation. The second segment is to improve cellular internalization from extracellular to intracellular via active targeting. The third segment is to enhance the intracellular retention of therapeutics by subcellular localization. The major factors in the delivery can be utilized to develop multifunctional nanosystems for strengthening the tumor therapy. Ultimately, the key challenges and prospective in the emerging research frontier are thoroughly outlined. This review is expected to provide inspiring ideas, promising strategies and potential pathways for developing advanced anticancer nanosystems in clinical practice.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Toukh 13736 Egypt
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
| |
Collapse
|
24
|
Jerca FA, Jerca VV, Hoogenboom R. In Vitro Assessment of the Hydrolytic Stability of Poly(2-isopropenyl-2-oxazoline). Biomacromolecules 2021; 22:5020-5032. [PMID: 34753285 DOI: 10.1021/acs.biomac.1c00994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PiPOx) is emerging as a promising, versatile polymer platform to design functional materials and particularly biomaterials that rely on the hydrophilic character of the 2-oxazoline side units. To be able to assess the applicability of PiPOx in a biomedical context, it is essential to understand its stability and degradation behavior in physiological conditions. In the present work, the hydrolytic stability of PiPOx was systematically investigated as a function of pH during incubation in various buffers. PiPOx was found to be stable in deionized water (pH 6.9), to have good stability in basic conditions (pH 8 and 9), to be satisfactorily stable in neutral conditions (pH 7.4), and to have moderate to low stability in acidic conditions (decreases drastically from pH 6 to pH 1.2). At pH 4, PiPOx formed a crosslinked network in a timeframe of hours, while at pH 1.2, PiPOx was transformed to a water-soluble poly(N-(2-hydroxyethyl)methacrylamide) type of structure over the course of 2 weeks. In vitro stability assays were performed in phosphate-buffered saline (pH 7.4), simulated body fluid (SBF) (pH 7.4), simulated saliva (pH 6.4), simulated intestinal fluid (pH 6.8), and plasma (pH 7.4) revealing that PiPOx is stable in these SBFs up to 1 week of incubation. When incubated in simulated gastric fluid (pH 1.2), PiPOx exhibited a similar degradation behavior to that observed in the buffer at pH 1.2, rendering a water-soluble structure. The presented results on the stability of PiPOx will be important for future use of PiPOx for the development of drug-delivery systems and biomedical applications, such as hydrogels.
Collapse
Affiliation(s)
- Florica Adriana Jerca
- Centre of Organic Chemistry "Costin D. Nenitzescu", Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania
| | - Valentin Victor Jerca
- Centre of Organic Chemistry "Costin D. Nenitzescu", Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
25
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
26
|
Rezvantalab S, Maleki R, Drude NI, Khedri M, Jans A, Keshavarz Moraveji M, Darguzyte M, Ghasemy E, Tayebi L, Kiessling F. Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties. ACS OMEGA 2021; 6:23117-23128. [PMID: 34549113 PMCID: PMC8444197 DOI: 10.1021/acsomega.1c02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random" model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface" mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department
of Chemical Engineering, Urmia University
of Technology, 57166-93188 Urmia, Iran
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Reza Maleki
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
| | - Natascha Ingrid Drude
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
- Department
of Experimental Neurology, Charité
−Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mohammad Khedri
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Alexander Jans
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Milita Darguzyte
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Ebrahim Ghasemy
- Centre
Énergie Matériaux Télécommunications, Institut national de la recherché, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| |
Collapse
|
27
|
Doan‐Nguyen TP, Jiang S, Koynov K, Landfester K, Crespy D. Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thao P. Doan‐Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
| | - Shuai Jiang
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
- Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong 21210 Thailand
| |
Collapse
|
28
|
Doan-Nguyen TP, Jiang S, Koynov K, Landfester K, Crespy D. Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angew Chem Int Ed Engl 2021; 60:18094-18102. [PMID: 34056797 DOI: 10.1002/anie.202103444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Indexed: 11/10/2022]
Abstract
We describe here a method to synthesize ultrasmall nanocapsules with a diameter of 6 nm, exhibiting a well-defined core-shell morphology. Remarkably, the nanocapules are synthesized in a miniemulsion process without the need of large amounts of surfactant as commonly used in the microemulsion process. Ultrasmall nanocapsules with an oil core and a silica shell are formed by the concurrent processes of a sol-gel reaction and Ostwald ripening. Using solvents with different water solubilities and alkoxysilanes with different reactivities, we demonstrate that sizes of obtained nanocapsules depend on the ripening rate and alkoxysilane conversion rate. The method can be also used for encapsulating natural oils such as peppermint oil and limonene. This work shows that the Ostwald ripening phenomenon can be employed beneficially for the preparation of very small colloids.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Shuai Jiang
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
29
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Mekseriwattana W, Phungsom A, Sawasdee K, Wongwienkham P, Kuhakarn C, Chaiyen P, Katewongsa KP. Dual Functions of Riboflavin-functionalized Poly(lactic-co-glycolic acid) Nanoparticles for Enhanced Drug Delivery Efficiency and Photodynamic Therapy in Triple-negative Breast Cancer Cells. Photochem Photobiol 2021; 97:1548-1557. [PMID: 34109623 DOI: 10.1111/php.13464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Combating triple-negative breast cancer (TNBC) is one of the greatest challenges in cancer therapy. This is primarily due to the difficulties in developing drug delivery systems that can effectively target cancer sites. In this study, we demonstrated a proof-of-principle concept using modified surfaces of poly(lactic-co-glycolic acid) nanoparticles linked with a riboflavin analogue (PLGA-CSRf) to obtain a dual-functional material. PLGA-CSRf nanoparticles were able to function as a drug delivery ligand and a photodynamic therapy agent for TNBC cells (MDA-MB-231). Biocompatibility of novel PLGA-CSRf nanoparticles was evaluated with both breast cancer and normal breast (MCF-10A) cells. In vitro studies revealed a six-fold increase in the cellular uptake of PLGA-CSRf nanoparticles in cancer cells compared with normal cells. The results demonstrate the ability of riboflavin (Rf) to enhance the delivery of PLGA nanoparticles to TNBC cells. The viability of TNBC cells was decreased following treatment with doxorubicin-encapsulated PLGA-CSRf nanoparticles in combination with UV irradiation, due to the photosensitizing property of Rf on the surface of the nanoparticles. This work demonstrated the ability of PLGA-CSRf to function both as an effective drug delivery carrier and as a therapeutic entity, with the potential to enhance photodynamic effects in the highly aggressive TNBC model.
Collapse
Affiliation(s)
- Wid Mekseriwattana
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anunyaporn Phungsom
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Komkrich Sawasdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Food Processing Technology Management, Faculty of Agro-Industry, Panyapiwat Institute of Management, Nonthaburi, Thailand
| | | | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Kanlaya Prapainop Katewongsa
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
31
|
Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. ADVANCED THERAPEUTICS 2021; 4. [DOI: 10.1002/adtp.202000285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 01/06/2025]
Abstract
AbstractPolymer therapeutics are advancing as an important class of drugs. Polymers have already demonstrated their value in extending the half‐life of proteins. They show great potential as delivery systems for improving the therapeutic index of drugs, via biophysical targeting and more recently with more precision targeting. They are also important for intracellular delivery of nucleic acid based drugs. The same frameworks that have been successfully applied to improve the small molecule drug development can be adopted. This approach together with improved pathophysiological disease knowledge and critical developability considerations, imperative given the size and complexity of polymer therapeutics, provides a structured framework that should improve their clinical translation and exploit their functionality and potential. Progress in understanding the right target, gaining the right tissue and cell exposure, ensuring the right safety, selecting the right patient population is discussed. The right commercial considerations are outlined and the need for a multi‐disciplinary approach is emphasized. Crucial developability factors together with scientific and technical advancements to enable pharmaceutical development of a quality robust product are addressed. It is argued that by applying this structured approach to their design and development, polymer therapeutics will continue to grow and develop as important next generation medicines.
Collapse
Affiliation(s)
- Marianne B. Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Richard M. England
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| |
Collapse
|
32
|
Kiessling F. Meet Our Editorial Board Member. Curr Med Chem 2021. [DOI: 10.2174/092986732809210415074108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Khedri M, Rezvantalab S, Maleki R, Rezaei N. Effect of ligand conjugation site on the micellization of Bio-Targeted PLGA-Based nanohybrids: A computational biology approach. J Biomol Struct Dyn 2020; 40:4409-4418. [PMID: 33336619 DOI: 10.1080/07391102.2020.1857840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, the effect of ligand binding position on the polymeric nanoparticles (NPs) is based on poly(lactic-co-glycolic acid) (PLGA) with two different polymer chain length at the atomistic level was presented. We explored the conjugation of riboflavin (RF) ligand from the end of the ribityl chain (N-10) to the polymer strands as well as from the amine group on the isoalloxazine head (N-3). The energy interactions for all samples revealed that the NPs containing ligands from N-10 positions have higher total attraction energies and lower stability in comparison with their peers conjugated from N-3. As NPs containing RF conjugated from N-3 exhibit the lower energy level with 20% and 10% of RF-containing composition for lower and higher. The introduction of RF from the N-10 position in any composition has increased the energy level of nanocarriers. The results of Gibb's free energy confirm the interatomic interaction energies trend where the lowest Gibbs free energy level for N-3 NPs occurs at 20 and 10% of RF-containing polymer content for PLGA10- and PLGA11- based NPs. Furthermore, with N-10 samples based on both polymers, non-targeted models form the stablest particles in each category. These findings are further confirmed with molecular docking analysis which revealed affinity energy of RF toward polymer chain from N-3 and N-10 are -981.57 kJ/mole and -298.23 kJ/mole, respectively. This in-silico study paves the new way for molecular engineering of the bio-responsive PLGA-PEG-RF micelles and can be used to nanoscale tunning of smart carriers used in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khedri
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Reza Maleki
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Darguzyte M, Holm R, Baier J, Drude N, Schultze J, Koynov K, Schwiertz D, Dadfar SM, Lammers T, Barz M, Kiessling F. Influence of Riboflavin Targeting on Tumor Accumulation and Internalization of Peptostar Based Drug Delivery Systems. Bioconjug Chem 2020; 31:2691-2696. [PMID: 33237762 DOI: 10.1021/acs.bioconjchem.0c00593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboflavin carrier protein (RCP) and riboflavin transporters (RFVTs) have been reported to be highly overexpressed in various cancer cells. Hence, targeting RCP and RFVTs using riboflavin may enhance tumor accumulation and internalization of drug delivery systems. To test this hypothesis, butyl-based 3-arm peptostar polymers were synthesized consisting of a lysine core (10 units per arm) and a sarcosine shell (100 units per arm). The end groups of the arms and the core were successfully modified with riboflavin and the Cy5.5 fluorescent dye, respectively. While in phosphate buffered saline the functionalized peptostars showed a bimodal behavior and formed supramolecular structures over time, they were stable in the serum maintaining their hydrodynamic diameter of 12 nm. Moreover, the polymers were biocompatible and the uptake of riboflavin targeted peptostars in A431 and PC3 cells was higher than in nontargeted controls and could be blocked competitively. In vivo, the polymers showed a moderate passive tumor accumulation, which was not significantly different between targeted and nontargeted peptostars. Nonetheless, at the histological level, internalization into tumor cells was strongly enhanced for the riboflavin-targeted peptostars. Based on these results, we conclude that passive accumulation is dominating the accumulation of peptostars, while tumor cell internalization is strongly promoted by riboflavin targeting.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Regina Holm
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jasmin Baier
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Schwiertz
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Seyed Mohammadali Dadfar
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Matthias Barz
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany.,Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany
| |
Collapse
|
35
|
Ding L, Lyu Z, Louis B, Tintaru A, Laurini E, Marson D, Zhang M, Shao W, Jiang Y, Bouhlel A, Balasse L, Garrigue P, Mas E, Giorgio S, Iovanna J, Huang Y, Pricl S, Guillet B, Peng L. Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003290. [PMID: 32794645 DOI: 10.1002/smll.202003290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Bioimaging has revolutionized medicine by providing accurate information for disease diagnosis and treatment. Nanotechnology-based bioimaging is expected to further improve imaging sensitivity and specificity. In this context, supramolecular nanosystems based on self-assembly of amphiphilic dendrimers for single photon emission computed tomography (SPECT) bioimaging are developed. These dendrimers bear multiple In3+ radionuclides at their terminals as SPECT reporters. By replacing the macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid cage with the smaller 1,4,7-triazacyclononane-1,4,7-triacetic acid scaffold as the In3+ chelator, the corresponding dendrimer exhibits neutral In3+ -complex terminals in place of negatively charged In3+ -complex terminals. This negative-to-neutral surface charge alteration completely reverses the zeta-potential of the nanosystems from negative to positive. As a consequence, the resulting SPECT nanoprobe generates a highly sought-after biodistribution profile accompanied by a drastically reduced uptake in liver, leading to significantly improved tumor imaging. This finding contrasts with current literature reporting that positively charged nanoparticles have preferential accumulation in the liver. As such, this study provides new perspectives for improving the biodistribution of positively charged nanosystems for biomedical applications.
Collapse
Affiliation(s)
- Ling Ding
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Zhenbin Lyu
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, 13013, France
| | - Beatrice Louis
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, 13013, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanxuan Shao
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yifan Jiang
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Ahlem Bouhlel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Laure Balasse
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Philippe Garrigue
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Eric Mas
- Aix-Marseille Université, INSERM, CNRS, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, 13288, France
| | - Suzanne Giorgio
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Juan Iovanna
- Aix-Marseille Université, INSERM, CNRS, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, 13288, France
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Benjamin Guillet
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, 13005, France
- Aix-Marseille Université, CNRS, CERIMED, Marseille, 13005, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| |
Collapse
|
36
|
Gaikwad H, Li Y, Gifford G, Groman E, Banda NK, Saba L, Scheinman R, Wang G, Simberg D. Complement Inhibitors Block Complement C3 Opsonization and Improve Targeting Selectivity of Nanoparticles in Blood. Bioconjug Chem 2020; 31:1844-1856. [PMID: 32598839 DOI: 10.1021/acs.bioconjchem.0c00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complement is one of the critical branches of innate immunity that determines the recognition of engineered nanoparticles by immune cells. Antibody-targeted iron oxide nanoparticles are a popular platform for magnetic separations, in vitro diagnostics, and molecular imaging. We used 60 nm cross-linked iron oxide nanoworms (CLIO NWs) modified with antibodies against Her2/neu and EpCAM, which are common markers of blood-borne cancer cells, to understand the role of complement in the selectivity of targeting of tumor cells in whole blood. CLIO NWs showed highly efficient targeting and magnetic isolation of tumor cells spiked in lepirudin-anticoagulated blood, but specificity was low due to high uptake by neutrophils, monocytes, and lymphocytes. Complement C3 opsonization in plasma was predominantly via the alternative pathway regardless of the presence of antibody, PEG, or fluorescent tag, but was higher for antibody-conjugated CLIO NWs. Addition of various soluble inhibitors of complement convertase (compstatin, soluble CD35, and soluble CD55) to whole human blood blocked up to 99% of the uptake of targeted CLIO NWs by leukocytes, which resulted in a more selective magnetic isolation of tumor cells. Using well-characterized nanomaterials, we demonstrate here that complement therapeutics can be used to improve targeting selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | | | | | |
Collapse
|
37
|
Kumar S, Sharma B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020; 2:82-100. [PMID: 32856016 DOI: 10.1089/bioe.2020.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arthritis is a debilitating joint disease with a high economic burden and prevalence. There are many challenges delivering therapeutics to the joint, including low bioavailability when administered systemically and low joint retention after intra-articular injection. Therefore, drug delivery systems such as nanoparticles, liposomes, dendrimers, and carrier proteins have been utilized to overcome some of these limitations. To enhance joint tissue localization and retention, there are opportunities to leverage electrostatic interactions between drug carriers and various tissues and cells. These opportunities, as they pertain to specific joint tissues, are explored in this review. Further, the impact that electrostatic interactions has on various drug delivery parameters, such as the formation of a protein corona, the uptake and cytotoxicity, and the biodistribution of the drug delivery systems, is discussed. Lastly, this review summarizes key findings from studies that have investigated the use of electrostatic interactions to increase targeting of specific joint tissues and limitations in preclinical investigations are identified. As more novel targets are discovered in treating arthritis, there will be a continued need to localize therapeutics to specific tissues for greater therapeutic outcomes and hence attention must be paid in designing the drug delivery systems.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
38
|
Rezvantalab S, Keshavarz Moraveji M, Khedri M, Maleki R. An insight into the role of riboflavin ligand in the self-assembly of poly(lactic-co-glycolic acid)-based nanoparticles - a molecular simulation and experimental approach. SOFT MATTER 2020; 16:5250-5260. [PMID: 32458880 DOI: 10.1039/d0sm00203h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticles (NPs) used for targeted delivery purposes are rapidly gaining importance in diagnostic and therapeutic fields. These agents have been studied extensively so far to reveal their optimal physicochemical properties including the effects of ligands and their density on the surface of NPs. This article was conducted through a computational approach (all-atom molecular dynamics simulations) to predict the stability of NPs based on a poly-lactic-co-glycolic acid (PLGA) hydrophobic core with a poly-ethylene glycol (PEG) hydrophilic shell and varying numbers of riboflavin (RF) molecules as ligands. Depending on the molecular weight of the polymers, the most stable composition of NPs was achieved at 20 wt% and 10 wt% PLGA-PEG-RF for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa polymers, respectively. According to the simulations, riboflavin molecules were located on the surface of the NPs, which would indicate that riboflavin-bound PLGA-PEG NPs could be efficiently utilized for active targeting purposes. To scrutinize the simulation results, NPs with riboflavin ligands were synthesized and put into in vitro experiments. Outstandingly, the empirical outcomes revealed that the hydrodynamic sizes of NPs also met minimum points at 20 and 10 wt% for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa, respectively. Moreover, similar trends in the gyration radius as a function of riboflavin content were observed in the simulation analysis and the experimental results, which would indicate that the method of molecular dynamics (MD) simulation is a reliable mathematical technique and could be applied for predicting the physicochemical properties of NPs.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 71345, Iran
| |
Collapse
|
39
|
Salaheldin TA, Bharali DJ, Mousa SA. Functionalized nano-targeted moieties in management of prostate cancer. Future Oncol 2020; 16:869-883. [PMID: 32292071 DOI: 10.2217/fon-2019-0635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multimodal properties of nanoparticles, such as simultaneously carrying drugs and/or diagnostic probes for site-specific delivery, make them excellent carriers for diagnosis and treatment of prostate cancer. Advantages are high permeability and selectivity to malignant cells to reduce systemic toxicity of chemotherapeutic drugs. Based on a review of current literature, the lack of efficient and highly specific prostate cancer cell targeting moieties is hindering successful in vivo prostate cancer-targeted drug delivery systems. Highly specific nano-targeting moieties as drug delivery vehicles might improve chemotherapeutic delivery via targeting to specific receptors expressed on the surface of prostate cancer cells. This review describes nano-targeting moieties for management of prostate cancer and its cancer stem cells. Descriptions of targeting moieties using anti-prostate-specific membrane antigen, aptamer, anti-cluster of differentiation 24/44, folic acid and other targeting strategies are highlighted. Current research results are promising and may yield development of next-generation nanoscale theragnostic targeted modalities for prostate cancer treatment.
Collapse
Affiliation(s)
- Taher A Salaheldin
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| |
Collapse
|
40
|
Darguzyte M, Drude N, Lammers T, Kiessling F. Riboflavin-Targeted Drug Delivery. Cancers (Basel) 2020; 12:cancers12020295. [PMID: 32012715 PMCID: PMC7072493 DOI: 10.3390/cancers12020295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
Active targeting can improve the retention of drugs and drug delivery systems in tumors, thereby enhancing their therapeutic efficacy. In this context, vitamin receptors that are overexpressed in many cancers are promising targets. In the last decade, attention and research were mainly centered on vitamin B9 (folate) targeting; however, the focus is slowly shifting towards vitamin B2 (riboflavin). Interestingly, while the riboflavin carrier protein was discovered in the 1960s, the three riboflavin transporters (RFVT 1-3) were only identified recently. It has been shown that riboflavin transporters and the riboflavin carrier protein are overexpressed in many tumor types, tumor stem cells, and the tumor neovasculature. Furthermore, a clinical study has demonstrated that tumor cells exhibit increased riboflavin metabolism as compared to normal cells. Moreover, riboflavin and its derivatives have been conjugated to ultrasmall iron oxide nanoparticles, polyethylene glycol polymers, dendrimers, and liposomes. These conjugates have shown a high affinity towards tumors in preclinical studies. This review article summarizes knowledge on RFVT expression in healthy and pathological tissues, discusses riboflavin internalization pathways, and provides an overview of RF-targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
- Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
41
|
Sarangthem V, Seo BY, Yi A, Lee YJ, Cheon SH, Kim SK, Singh TD, Lee BH, Park RW. Effects of molecular weight and structural conformation of multivalent-based elastin-like polypeptides on tumor accumulation and tissue biodistribution. Nanotheranostics 2020; 4:57-70. [PMID: 32190533 PMCID: PMC7064738 DOI: 10.7150/ntno.39804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
In order to improve clinical outcomes for novel drug delivery systems, distinct optimization of size, shape, multifunctionality, and site-specificity are of utmost importance. In this study, we designed various multivalent elastin-like polypeptide (ELP)-based tumor-targeting polymers in which multiple copies of IL-4 receptor (IL-4R)-targeting ligand (AP1 peptide) were periodically incorporated into the ELP polymer backbone to enhance the affinity and avidity towards tumor cells expressing high levels of IL-4R. Several ELPs with different molecular sizes and structures ranging from unimer to micelle-forming polymers were evaluated for their tumor accumulation as well as in vivo bio-distribution patterns. Different percentages of cell binding and uptake were detected corresponding to polymer size, number of targeting peptides, or unimer versus micelle structure. As compared to low molecular weight polypeptides, high molecular weight AP1-ELP showed superior binding activity with faster entry and efficient processing in the IL-4R-dependent endocytic pathway. In addition, in vivo studies revealed that the high molecular weight micelle-forming AP1-ELPs (A86 and A100) displayed better tumor penetration and extensive retention in tumor tissue along with reduced non-specific accumulation in vital organs, when compared to low molecular weight non-micelle forming AP1-ELPs. It is suggested that the superior binding activities shown by A86 and A100 may depend on the multiple presentation of ligands upon transition to a micelle-like structure rather than a larger molecular weight. Thus, this study has significance in elucidating the different patterns underlying unimer and micelle-forming ELP-mediated tumor targeting as well as the in vivo biodistribution.
Collapse
Affiliation(s)
- Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea.,Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Bo-Yeon Seo
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Aena Yi
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Jin Lee
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Ha Cheon
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Cheombok, Daegu, 41061, Republic of Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Lab., All India Institute of Medical Sciences, New Delhi-110029, India
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
42
|
Dasgupta A, Biancacci I, Kiessling F, Lammers T. Imaging-assisted anticancer nanotherapy. Theranostics 2020; 10:956-967. [PMID: 31938045 PMCID: PMC6956808 DOI: 10.7150/thno.38288] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer nanomedicines are submicrometer-sized formulations designed to improve the biodistribution of anticancer drugs, resulting in less off-target localization, altered toxicity profiles, improved target site accumulation and enhanced efficacy. Together, these beneficial features have resulted in the regulatory approval of about a dozen nanomedicines for the treatment of solid and hematological malignancies. In recent years, significant progress has been made in combining nanomedicines with imaging, to better understand key aspects of the tumor-targeted drug delivery process, and to address the high inter- and intra-individual heterogeneity in the Enhanced Permeability and Retention (EPR) effect. Strategies explored in this regard have included the use of traditional imaging techniques, companion diagnostics and nanotheranostics. Preclinically, integrating imaging in nanomedicine and drug delivery research has enabled the non-invasive and quantitative assessment of nanocarrier biodistribution, target site accumulation and (triggered) drug release. Clinically, imaging has been emerging as a promising tool for patient stratification, which is urgently needed to improve the translation of cancer nanomedicines. We here summarize recent progress in imaging-assisted anticancer nanotherapy and we discuss future strategies to improve the performance of cancer nanomedicines in patients.
Collapse
|
43
|
Tavernaro I, Rodrigo AM, Kandziora M, Kuntz S, Dernedde J, Trautwein C, Tacke F, Blas‐Garcia A, Bartneck M. Modulating Myeloid Immune Cell Migration Using Multivalently Presented Monosaccharide Ligands for Advanced Immunotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Isabella Tavernaro
- Institute of Inorganic and Analytical Chemistry Justus‐Liebig‐University Giessen Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Alberto Marti Rodrigo
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | - Maja Kandziora
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Sabine Kuntz
- Institute of Nutritional Sciences Justus‐Liebig‐University Giessen Wilhelmstraße 20 35392 Giessen Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | | | - Frank Tacke
- Department of Hepatology & Gastroenterology Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | - Ana Blas‐Garcia
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | | |
Collapse
|
44
|
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. NATURE NANOTECHNOLOGY 2019; 14:1007-1017. [PMID: 31695150 PMCID: PMC7227032 DOI: 10.1038/s41565-019-0567-y] [Citation(s) in RCA: 780] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/30/2019] [Indexed: 05/19/2023]
Abstract
Nanomedicines are extensively employed in cancer therapy. We here propose four strategic directions to improve nanomedicine translation and exploitation. (1) Patient stratification has become common practice in oncology drug development. Accordingly, probes and protocols for patient stratification are urgently needed in cancer nanomedicine, to identify individuals suitable for inclusion in clinical trials. (2) Rational drug selection is crucial for clinical and commercial success. Opportunistic choices based on drug availability should be replaced by investments in modular (pro)drug and nanocarrier design. (3) Combination therapies are the mainstay of clinical cancer care. Nanomedicines synergize with pharmacological and physical co-treatments, and should be increasingly integrated in multimodal combination therapy regimens. (4) Immunotherapy is revolutionizing the treatment of cancer. Nanomedicines can modulate the behaviour of myeloid and lymphoid cells, thereby empowering anticancer immunity and immunotherapy efficacy. Alone and especially together, these four directions will fuel and foster the development of successful cancer nanomedicine therapies.
Collapse
Affiliation(s)
- Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
- Cancer Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany.
- Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Wang H, Yu D, Fang J, Cao C, Liu Z, Ren J, Qu X. Renal-Clearable Porphyrinic Metal-Organic Framework Nanodots for Enhanced Photodynamic Therapy. ACS NANO 2019; 13:9206-9217. [PMID: 31408319 DOI: 10.1021/acsnano.9b03531] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanoscale porphyrinic metal-organic frameworks (NMOFs) have emerged as promising therapeutic platforms for the photodynamic therapy (PDT) of cancer in recent years. However, the relatively large sizes of current NMOFs ranging from tens to hundreds of nanometers usually lead to inefficient body clearance and unsatisfactory PDT effect, thus amplifying their long-term toxicity and restricting their further usage. To overcome these shortcomings, herein, ultrasmall porphyrinic metal-organic framework nanodots (MOF QDs) prepared from NMOFs are rationally synthesized via a facile method and used as renal-clearable nanoagents for the enhanced PDT of cancer. Compared with the precursor NMOFs, our well-prepared MOF QDs can generate 2-fold effective toxic reactive oxygen species (ROS) upon the same light irradiation and greatly decrease the inefficacy of PDT caused by the inefficient use of ROS generated from the interior of NMOFs. Meanwhile, the IC50 value of ultrasmall MOF QDs is nearly one-third that of NMOFs, and in vivo results demonstrate that our MOF QDs exhibit better PDT efficacy than NMOFs under the same treatment owing to their overcoming the limited ROS diffusion distance. Significantly, these ultrasmall MOF QDs show efficient tumor accumulation and rapid renal clearance in vivo, indicating their potential in biomedical utility. Last but not least, comprehensive investigations of long-term toxicity of these MOF QDs well demonstrate their overall safety. Therefore, this study will offer valuable insight into the development of safe and high-performance PDT nanoplatforms for further clinical translation.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , People's Republic of China
- University of Science and Technology of China , Hefei , Anhui 230029 , People's Republic of China
| | - Dongqin Yu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , People's Republic of China
- University of Science and Technology of China , Hefei , Anhui 230029 , People's Republic of China
| | - Jiao Fang
- School of Stomatology , Jilin University , Changchun , Jilin 130021 , People's Republic of China
| | - Changcui Cao
- School of Stomatology , Jilin University , Changchun , Jilin 130021 , People's Republic of China
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , People's Republic of China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , People's Republic of China
| |
Collapse
|
46
|
Holm R, Schwiertz D, Weber B, Schultze J, Kuhn J, Koynov K, Lächelt U, Barz M. Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromol Biosci 2019; 20:e1900152. [PMID: 31430057 DOI: 10.1002/mabi.201900152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Indexed: 12/23/2022]
Abstract
RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA molecule and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in size and functionality for siRNA complexation-, transport and intra cellular release. The special feature of star-like polypept(o)ides is in their uniform small size (<20 nm) and a core-shell structure, which implies a high stability and stealth-like properties and thus, they may combine long circulation times and a deep penetration of cancerous tissue. Initial toxicity and complement studies demonstrate well tolerated cationic PeptoStars with high complexation capability toward siRNA (N/P ratio up to 3:1), which can lead to potent RNAi for optimized systems. Here, the synthetic development of 3-arm and 6-arm polypept(o)idic star polymers, their modification with endosomolytic moieties, and first in vitro insights on RNA interference are reported on.
Collapse
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Schwiertz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmin Kuhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
47
|
Grodzinski P, Kircher M, Goldberg M, Gabizon A. Integrating Nanotechnology into Cancer Care. ACS NANO 2019; 13:7370-7376. [PMID: 31240914 DOI: 10.1021/acsnano.9b04266] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Research activity in medical and cancer nanotechnology has grown dramatically over the past 15 years. The field has become a cradle of multidisciplinary investigations bringing together physicists, chemists, and engineers working with clinicians and biologists to address paramount problems in cancer care and treatment. Some have argued that the explosion in the number of research papers has not been followed by sufficient clinical activity in nanomedicine. However, three new nanodrugs have now been approved by the U.S. Food and Drug Administration (FDA) in the past three years, confirming the validity of nanotechnology approaches in cancer. Excitingly, translational pipelines contain several additional intriguing candidates. In this Nano Focus article, we discuss potential barriers inhibiting further incorporation of nanomedicines into patient care, possible strategies to overcome these barriers, and promising new directions in cancer interventions based on nanotechnology. Insights presented herein are outcomes of discussions held at a recent strategic workshop hosted by the National Cancer Institute (NCI), which brought together research, clinical, and commercial leaders of the nanomedicine field.
Collapse
Affiliation(s)
- Piotr Grodzinski
- National Cancer Institute , National Institutes of Health , Rockville , Maryland 20814 , United States
| | - Moritz Kircher
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Michael Goldberg
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Alberto Gabizon
- Shaare Zedek Medical Center and Hebrew University-School of Medicine , Jerusalem , Israel
| |
Collapse
|
48
|
Wang H, Hou Y, Hu Y, Dou J, Shen Y, Wang Y, Lu H. Enzyme-Activatable Interferon–Poly(α-amino acid) Conjugates for Tumor Microenvironment Potentiation. Biomacromolecules 2019; 20:3000-3008. [DOI: 10.1021/acs.biomac.9b00560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Jiaxiang Dou
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yucai Wang
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | |
Collapse
|
49
|
Yu W, He X, Yang Z, Yang X, Xiao W, Liu R, Xie R, Qin L, Gao H. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 2019; 217:119309. [PMID: 31271855 DOI: 10.1016/j.biomaterials.2019.119309] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Recently, photodynamic therapy (PDT) emerges as a promising way to initiate immune response and being used in combination with chemotherapy. However, the antitumor effect is restricted due to the poor tumor penetration and retention, premature drug release and immunosuppressive environment of tumor sites. And as the size of nanoparticles plays a key role in drug delivery, series of hyaluronidase-responsive size-reducible biomimetic nanoparticles (mCAuNCs@HA) with different initial sizes are synthesized, and the optimal size of 150 nm is screened out because of the best blood circulation, tumor penetration and retention. Then the photosensitizer pheophorbide A and ROS-responsive paclitaxel dimer prodrug (PXTK) are co-loaded to facilitate on-demand drug release. The hydrolysis byproduct cinnamaldehyde in turn stimulates the ROS production by mitochondria, which compensates for the ROS consumed in the hydrolysis process. Anti-PD-L1 peptide (dPPA) is furthered loaded to alleviate the immunosuppressive environment of tumor and enhance the function of cytotoxic T lymphocytes activated by PDT-induced immunogenic cell death. The combination therapy activates CD4+, CD8+ T cells and NK cells and enhances secretion of cytokines (TNF-α and IL-12) with tumor inhibition rate increased to 84.2% and no metastasis is observed, providing a viable combination therapy for better anti-tumor and anti-metastasis efficacy.
Collapse
Affiliation(s)
- Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Xueqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Zhihang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Wei Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
50
|
Abumanhal-Masarweh H, da Silva D, Poley M, Zinger A, Goldman E, Krinsky N, Kleiner R, Shenbach G, Schroeder JE, Shklover J, Shainsky-Roitman J, Schroeder A. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J Control Release 2019; 307:331-341. [PMID: 31238049 DOI: 10.1016/j.jconrel.2019.06.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/09/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Lipid nanoparticles are used widely as anticancer drug and gene delivery systems. Internalizing into the target cell is a prerequisite for the proper activity of many nanoparticulate drugs. We show here, that the lipid composition of a nanoparticle affects its ability to internalize into triple-negative breast cancer cells. The lipid headgroup had the greatest effect on enhancing cellular uptake compared to other segments of the molecule. Having a receptor-targeted headgroup induced the greatest increase in cellular uptake, followed by cationic amine headgroups, both being superior to neutral (zwitterion) phosphatidylcholine or to negatively-charged headgroups. The lipid tails also affected the magnitude of cellular uptake. Longer acyl chains facilitated greater liposomal cellular uptake compared to shorter tails, 18:0 > 16:0 > 14:0. When having the same lipid tail length, unsaturated lipids were superior to saturated ones, 18:1 > 18:0. Interestingly, liposomes composed of phospholipids having 14:0 or 12:0-carbon-long-tails, such as DMPC and DLPC, decreased cell viability in a concertation dependent manner, due to a destabilizing effect these lipids had on the cancer cell membrane. Contrarily, liposomes composed of phospholipids having longer carbon tails (16:0 and 18:0), such as DPPC and HSPC, enhanced cancer cell proliferation. This effect is attributed to the integration of the exogenous liposomal lipids into the cancer-cell membrane, supporting the proliferation process. Cholesterol is a common lipid additive in nanoscale formulations, rigidifying the membrane and stabilizing its structure. Liposomes composed of DMPC (14:0) showed increased cellular uptake when enriched with cholesterol, both by endocytosis and by fusion. Contrarily, the effect of cholesterol on HSPC (18:0) liposomal uptake was minimal. Furthermore, the concentration of nanoparticles in solution affected their cellular uptake. The higher the concentration of nanoparticles the greater the absolute number of nanoparticles taken up per cell. However, the efficiency of nanoparticle uptake, i.e. the percent of nanoparticles taken up by cells, decreased as the concentration of nanoparticles increased. This study demonstrates that tuning the lipid composition and concentration of nanoscale drug delivery systems can be leveraged to modulate their cellular uptake.
Collapse
Affiliation(s)
- Hanan Abumanhal-Masarweh
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, The Norman Seiden Multidisciplinary Graduate program, Technion-Israel Institute of Technology, Haifa 3200, Israel
| | - Dana da Silva
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Evgenya Goldman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ron Kleiner
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gal Shenbach
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Josh E Schroeder
- Department of Orthopedic Surgery, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|