1
|
Otzen DE, Peña-Díaz S, Widmann J, Daugberg AOH, Zhang Z, Jiang Y, Mittal C, Dueholm MKD, Louros N, Wang H, Javed I. Interactions between pathological and functional amyloid: A match made in Heaven or Hell? Mol Aspects Med 2025; 103:101351. [PMID: 40024004 DOI: 10.1016/j.mam.2025.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
The amyloid state of proteins occurs in many different contexts in Nature and in modern society, ranging from the pathological kind (neurodegenerative diseases and amyloidosis) via man-made forms (food processing and - to a much smaller extent - protein biologics) to functional versions (bacterial biofilm, peptide hormones and signal transmission). These classes all come together in the human body which endogenously produces amyloidogenic protein able to form pathological human amyloid (PaHA), hosts a microbiome which continuously makes functional bacterial amyloid (FuBA) and ingests food which can contain amyloid. This can have grave consequences, given that PaHA can spread throughout the body in a "hand-me-down" fashion from cell to cell through small amyloid fragments, which can kick-start growth of new amyloid wherever they encounter monomeric amyloid precursors. Amyloid proteins can also self- and cross-seed across dissimilar peptide sequences. While it is very unlikely that ingested amyloid plays a role in this crosstalk, FuBA-PaHA interactions are increasingly implicated in vivo amyloid propagation. We are now in a position to understand the structural and bioinformatic basis for this cross-talk, thanks to the very recently obtained atomic-level structures of the two major FuBAs CsgA (E. coli) and FapC (Pseudomonas). While there are many reports of homology-driven heterotypic interactions between different PaHA, the human proteome does not harbor significant homology to CsgA and FapC. Yet we and others have uncovered significant cross-stimulation (and in some cases inhibition) of FuBA and PaHA both in vitro and in vivo, which we here rationalize based on structure and sequence. These interactions have important consequences for the transmission and development of neurodegenerative diseases, not least because FuBA and PaHA can come into contact via the gut-brain interface, recurrent infections with microbes and potentially even through invasive biofilm in the brain. Whether FuBA and PaHA first interact in the gut or the brain, they can both stimulate and block each other's aggregation as well as trigger inflammatory responses. The microbiome may also affect amyloidogenesis in other ways, e.g. through their own chaperones which recognize and block growth of both PaHA and FuBA as we show both experimentally and computationally. Heterotypic interactions between and within PaHA and FuBA both in vitro and in vivo are a vital part of the amyloid phenomenon and constitute a vibrant and exciting frontier for future research.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Jeremias Widmann
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders Ogechi Hostrup Daugberg
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Zhefei Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yanting Jiang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chandrika Mittal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Nikolaos Louros
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China; Jiangsu Fuyuda Food Products Co., Ltd, Qinyou Road 88, Gaoyou City, Jiangsu Province, 225600, China.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
2
|
Zhao L, Cao Y, Xin Y, Liu C, Yang J, Li Y, Tian S, Liu Z, Jia H, Liu M, Hu M, Luo L, Meng F. Targeted Raman Visualization and Mitigation of α-Synuclein Amyloidogenesis in Living Zebrafish by a Nanobody-Decorated Polydiacetylene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411419. [PMID: 39996265 DOI: 10.1002/smll.202411419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Indexed: 02/26/2025]
Abstract
α-Synuclein (α-Syn) amyloidogenesis is considered a promising diagnostic marker and therapeutic target for Parkinson's disease (PD). Simultaneously visualizing and mitigating α-Syn amyloidogenesis are essential for future PD theranostics, yet they continue to pose an insurmountable challenge. This study have herein developed a nanobody-decorated polydiacetylene to approach a straightforward solution. Grafting α-Syn61-95 segment into the third complementary determining region of a parent nanobody generates an engineered nanobody X30 that can bind with α-Syn and prevent its amyloidogenesis through homotypic interaction. It next use X30 to decorate poly(deca-4,6-diynedioic acid) (PDDA), a polydiacetylene with an ultrastrong alkyne Raman signal (2120 cm-1) in the cellular silent region, to create an α-Syn targeting Raman probe PX30. The binding affinity between X30 and α-Syn can be further boosted for over 150 times attributed to the rigidity of PDDA backbone and the multivalent effect. Therefore, PX30 not only enables real-time Raman visualization of α-Syn amyloidogenesis with a high signal-to-noise ratio in living zebrafish, but also alleviates amyloidogenesis-mediated damage to zebrafish embryos by effectively inhibiting α-Syn amyloidogenesis at low stoichiometric concentrations and scavenging pathologic reactive oxygen species.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chenxi Liu
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Jin Yang
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Yanan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Min Hu
- Hubei Institute for Drug Control, Wuhan, 430075, P. R. China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry, Materia Medica School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry, Materia Medica School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Forgham H, Matre SV, Karen Chung KH, Tahir MS, Ali SA, Kikuchi K, Kaur A, Qiao R, Kakinen A, Qamar AZ, Davis TP, Javed I. Amyloid Targeting-Gold Nanoparticles-Assisted X-ray Therapy Rescues Islet β-Cells from Amyloid Fibrils and Restores Insulin Homeostasis. ACS NANO 2025; 19:5460-5474. [PMID: 39884779 DOI: 10.1021/acsnano.4c13916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Type-2-diabetes is a metabolic disorder where misfolding and oligomerization of islet amyloid polypeptide (IAPP) around islet-β cells oligomerizes and participates in the pathology. The oligomeric stage is toxic but transitory and leads to the formation of mature amyloid fibrils. The pathological specifics of mature amyloid fibrils are poorly understood. Here, we demonstrate that IAPP amyloids make a gel-like transition, increasing the viscosity of the local microenvironment and encasing and impeding islet-β cells in their ability to sense glucose and release insulin. Using dual-targeted gold nanoparticles (AuNPs) capped with amyloid-fragments of βCasein and anti-IAPP antibodies, we show that X-ray irradiation of AuNPs when bound to IAPP amyloids results in therapeutic remodelling of IAPP amyloids, a reduction in viscosity of the solution, and restoration of glucose/insulin homeostasis. This study establishes that mature IAPP amyloids can participate in the progressive pathology of type-2-diabetes by suppressing insulin responsiveness at the single islet-cell level. It also identifies a therapeutic model of reversal using AuNPs-mediated X-ray therapy, and this approach can be rationally expanded to other amyloid pathologies, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stetson Van Matre
- Department of Chemistry & Biochemistry, University of Central Arkansas, Conway, Arkansas 72034, United States
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Muhammad Sajid Tahir
- Department of Energy, Environment and Climate Action (DEECA), Agriculture Victoria Research, Bundoora, VIC 3083, Australia
| | - Syed Aoun Ali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Parkville, VIC 3052, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Parkville, VIC 3052, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ahmad Zaman Qamar
- Department of Chemistry & Biochemistry, University of Central Arkansas, Conway, Arkansas 72034, United States
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Pharmaceutical Innovation, School of Pharmacy and Medical Sciences, UniSA Clinical and Health Sciences, The University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Wu S, Peng J, Lee SLJ, Niu X, Jiang Y, Lin S. Let the two sides of the same coin meet-Environmental health and safety-oriented development of functional nanomaterials for environmental remediations. ECO-ENVIRONMENT & HEALTH 2024; 3:494-504. [PMID: 39605967 PMCID: PMC11599990 DOI: 10.1016/j.eehl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
Nanotechnology and engineered nanomaterials have been at the forefront of technological breakthroughs of the 21st century. With the challenges of increasingly complex and emergent environmental pollution, nanotechnology offers exciting complementary approaches to achieve high efficiencies with low or green energy input. However, unknown and unintended hazardous effects and health risks associated with nanotechnology hinder its full-scale implementation. Therefore, the development of safer nanomaterials lies in the critical balance between the applications and implications of nanomaterials. To facilitate constructive dialogue between the two sides (i.e., applications and implications) of the same coin, this review sets forth to summarize the current progress of the environmental applications of nanomaterials and establish the structure-property-functionality relationship. A systematic analysis of the structure-property-toxicity relationship is also provided to advocate the Safe and Sustainable-by-Design strategy for nanomaterials. Lastly, the review also discusses the future of artificial intelligence-assisted environmental health and safety-oriented development of nanomaterials.
Collapse
Affiliation(s)
- Shuangyu Wu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jian Peng
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaoqing Niu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yue Jiang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Liang X, Andrikopoulos N, Tang H, Wang Y, Ding F, Ke PC. Nanoplastic Stimulates the Amyloidogenesis of Parkinson's Alpha-Synuclein NACore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308753. [PMID: 37988678 PMCID: PMC10994764 DOI: 10.1002/smll.202308753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Environmental plastic wastes are potential health hazards due to their prevalence as well as their versatility in initiating physical, chemical, and biological interactions and transformations. Indeed, recent research has implicated the adverse effects of micro- and nano-plastics, including their neurotoxicity, yet how plastic particulates may impact the aggregation pathway and toxicity of amyloid proteins pertinent to the pathologies of neurological diseases remains unknown. Here, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) is employed to reveal the polymorphic oligomerization of NACore, a surrogate of alpha-synuclein that is associated with the pathogenesis of Parkinson's disease. These data indicate that the production rate and population of the NACore oligomers are modulated by their exposure to a polystyrene nanoplastic, and these cellular assays further reveal an elevated NACore toxicity in microglial cells elicited by the nanoplastic. These simulations confirm that the nanoplastic-NACore association is promoted by their hydrophobic interactions. These findings are corroborated by an impairment in zebrafish hatching, survival, and development in vivo upon their embryonic exposure to the nanoplastic. Together, this study has uncovered the dynamics and mechanism of amyloidogenesis elevated by a nanoplastic trigger, shedding a new light on the neurological burden of plastic pollution.
Collapse
Affiliation(s)
- Xiufang Liang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Yue Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
6
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
7
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Zhao L, Wang S, Hu Q, Jia H, Xin Y, Luo L, Meng F. Conformation-reconstructed multivalent antibody mimic for amplified mitigation of human islet amyloid polypeptide amyloidogenesis. NANOSCALE 2022; 14:2802-2815. [PMID: 35133388 DOI: 10.1039/d1nr08090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (IAPP) into β-sheet-enriched amyloid fibrils is linked to type 2 diabetes. Antibodies are potent inhibitors of IAPP amyloidogenesis, but their preparation is usually complicated and expensive. Here we have created a multivalent antibody mimic SPEPS@Au through conformational engineering of the complementary-determining regions (CDRs) of antibodies on gold nanoparticles (AuNPs). By immobilizing both terminals of an IAPP-recognizing CDR loop (PEP) on the surface of AuNPs, the active conformation of PEP can simply recur on the gold-based antibody mimic, significantly enhancing the binding affinity between PEP and IAPP. SPEPS@Au mitigated amyloidogenesis of IAPP at low sub-stoichiometric concentrations, even after IAPP started aggregating, and dramatically reduced the amyloidogenesis-induced toxicity and ROS production both in vitro and in vivo. The conformation-reconstructed multivalent antibody mimic not only renders a facile strategy to approach potent amyloidogenesis inhibitors, but also provides new perspectives to exploit NP-based substitutes for antibodies in various applications.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Tang H, Li Y, Kakinen A, Andrikopoulos N, Sun Y, Kwak E, Davis TP, Ding F, Ke PC. Graphene quantum dots obstruct the membrane axis of Alzheimer's amyloid beta. Phys Chem Chem Phys 2021; 24:86-97. [PMID: 34878460 PMCID: PMC8771921 DOI: 10.1039/d1cp04246g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a primary form of dementia with debilitating consequences, but no effective cure is available. While the pathophysiology of AD remains multifactorial, the aggregation of amyloid beta (Aβ) mediated by the cell membrane is known to be the cause for the neurodegeneration associated with AD. Here we examined the effects of graphene quantum dots (GQDs) on the obstruction of the membrane axis of Aβ in its three representative forms of monomers (Aβ-m), oligomers (Aβ-o), and amyloid fibrils (Aβ-f). Specifically, we determined the membrane fluidity of neuroblastoma SH-SY5Y cells perturbed by the Aβ species, especially by the most toxic Aβ-o, and demonstrated their recovery by GQDs using confocal fluorescence microscopy. Our computational data through discrete molecular dynamics simulations further revealed energetically favorable association of the Aβ species with the GQDs in overcoming peptide-peptide aggregation. Overall, this study positively implicated GQDs as an effective agent in breaking down the membrane axis of Aβ, thereby circumventing adverse downstream events and offering a potential therapeutic solution for AD.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Eunbi Kwak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
10
|
Randhawa S, Abidi SMS, Dar AI, Acharya A. The curious cases of nanoparticle induced amyloidosis during protein corona formation and anti-amyloidogenic nanomaterials: Paradox or prejudice? Int J Biol Macromol 2021; 193:1009-1020. [PMID: 34728302 DOI: 10.1016/j.ijbiomac.2021.10.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Protein corona (PC) formation remains a major hurdle in the successful delivery of nanomedicines to the target sites. Interacting proteins have been reported to undergo structural changes on the nanoparticle (NP) surface which invariably impacts their biological activities. Such structural changes are the result of opening of more binding sites of proteins to adsorb on the NP surface. The process of conversion of α-helix proteins to their β-sheet enriched counterpart is termed as amyloidosis and in case of PC formation, NPs apparently play the crucial role of being the nucleation centres where this process takes place. Conversely, increasing numbers of artificial nano-chaperones are being used to treat the protein misfolding disorders. Anti-amyloidogenic nanomaterials (NM) have been gaining utmost importance in inhibiting Aβ42 (hallmark peptide for Alzheimer's disease) and Hen egg white lysozyme (HEWL, model protein for systemic amyloidosis) aggregation. Interestingly, in this process, NPs inhibit protein β-sheet enrichment. These two seemingly opposite roles of NPs, propelling confirmatory change onto the smorgasbord of adsorbed native proteins and the ability of NPs in inhibiting amyloidosis creates a paradox, which has not been discussed earlier. Here, we highlight the key points from both the facets of the NP behaviour with respect to their physicochemical properties and the nature of proteins they adsorb onto them to unravel the mystery. BRIEF: Protein corona formation remains a major hurdle in achieving the desired efficacy of nanomedicine. Proteins when interact with nanoparticle (NP) surface, undergo both structural and biological changes. Again, NPs are known to exhibit anti-amyloidogenic behaviour where these play the crucial role of preventing any change in their native structure. Such seemingly different roles of NPs need sincere inquisition.
Collapse
Affiliation(s)
- Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Kalsoom U, Alazmi M, Farrukh HSUB, Chung KHK, Alshammari N, Kakinen A, Chotana GA, Javed I, Davis TP, Saleem RSZ. Structure Dependent Differential Modulation of Aβ Fibrillization by Selenadiazole-Based Inhibitors. ACS Chem Neurosci 2021; 12:3806-3817. [PMID: 34595924 DOI: 10.1021/acschemneuro.1c00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Misfolding and fibrillar aggregation of Aβ is a characteristic hallmark of Alzheimer's disease and primarily participates in neurodegenerative pathologies. There has been no breakthrough made in the therapeutic regime of Alzheimer's disease while the pharmacological interventions against Aβ are designed to sequester and clear Aβ burden from the neurological tissues. Based on the physiological relevance of Aβ, therapeutic approaches are required to inhibit and stabilize Aβ fibrillization, instead of cleaning it from the neurological system. In this context, we have designed a selenadiazole-based library of compounds against the fibrillization paradigm of Aβ. Compounds that completely inhibited the Aβ fibrillization appeared to stabilize Aβ at the monomeric stage as indicated by ThT assay, CD spectrophotometry, and TEM imaging. Partial inhibitors elongated the nucleation phase and allowed limited fibrillization of Aβ into smaller fragments with slightly higher β-sheets contents, while noninhibitors did not interfere in Aβ aggregation and resulted in mature fibrils with fibrillization kinetics similar to Aβ control. Molecular docking revealed the different binding positions of the compounds for three classes. Complete inhibitors alleviated Aβ toxicity to SH-SY5Y neuroblastoma cells and permeated across the blood-brain barrier in zebrafish larvae. The amino acid residues from Aβ peptide that interacted with the compounds from all three classes were overlapping and majorly lying in the amyloidogenic regions. However, compounds that stabilize Aβ monomers displayed higher association constants (Ka) and lower dissociation constants (Kd) in comparison to partial and noninhibitors, as corroborated by ITC. These results support further structure activity-based preclinical development of these selenadiazole compounds for potential anti-Alzheimer's therapy.
Collapse
Affiliation(s)
- Umme Kalsoom
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Meshari Alazmi
- Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81411, Saudi Arabia
| | - Hafiz Syed Usama Bin Farrukh
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Ha’il, P.O. Box 2440, Ha’il 81411, Saudi Arabia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| |
Collapse
|
12
|
Xin Y, Wang S, Liu H, Ke H, Tian S, Cao Y, Huang Y, Shang Y, Jia H, Su L, Yang X, Meng F, Luo L. Hierarchical Vitalization of Oligotyrosine in Mitigating Islet Amyloid Polypeptide Amyloidogenesis through Multivalent Macromolecules with Conformation-Restrained Nanobody Ligands. ACS NANO 2021; 15:13319-13328. [PMID: 34293858 DOI: 10.1021/acsnano.1c03083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of inhibitors that can effectively mitigate the amyloidogenesis of human islet amyloid polypeptide (hIAPP), which is linked to type II diabetes, remains a great challenge. Oligotyrosines are intriguing candidates in that they can block the hIAPP aggregation through multiplex phenol-hIAPP interactions. However, oligotyrosines containing too many tyrosine units (larger than three) may fail to inhibit amyloidogenesis due to their increased hydrophobicity and strong self-aggregation propensity. In this work, we developed a strategy to hierarchically vitalize oligotyrosines in mitigating hIAPP amyloidogenesis. Tetratyrosine YYYY (4Y) was grafted into the third complementary-determining region (CDR3) of a parent nanobody to construct a sequence-programmed nanobody N4Y, in which the conformation of the grafted 4Y fragment was constrained for a significantly enhanced binding affinity with hIAPP. We next conjugated N4Y to a polymer to approach a secondary vitalization of 4Y through a multivalent effect. The in vitro and in vivo experiments validated that the resulting PDN4Y could completely inhibit the hIAPP amyloidogenesis at low stoichiometric concentrations and effectively suppress the generation of toxic reactive oxygen species and alleviate amyloidogenesis-mediated damage to INS-1 cells and zebrafish (Danio rerio) embryos. The hierarchical vitalization of 4Y via a synergistic conformation restraint and multivalent effect represents a strategic prototype of boosting the efficacy of peptide-based amyloidogenesis inhibitors, especially those with a high hydrophobicity and strong aggregation tendency, which holds great promise for future translational studies.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huichuan Ke
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanda Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunhu Shang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Su
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Andrikopoulos N, Song Z, Wan X, Douek AM, Javed I, Fu C, Xing Y, Xin F, Li Y, Kakinen A, Koppel K, Qiao R, Whittaker AK, Kaslin J, Davis TP, Song Y, Ding F, Ke PC. Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:6484-6500. [PMID: 34887621 PMCID: PMC8651233 DOI: 10.1021/acs.chemmater.1c01947] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid aggregation is a ubiquitous form of protein misfolding underlying the pathologies of Alzheimer's disease (AD), Parkinson's disease (PD) and type 2 diabetes (T2D), three primary forms of human amyloid diseases. While much has been learned about the origin, diagnosis and management of these neurological and metabolic disorders, no cure is currently available due in part to the dynamic and heterogeneous nature of the toxic oligomers induced by amyloid aggregation. Here we synthesized beta casein-coated iron oxide nanoparticles (βCas IONPs) via a BPA-P(OEGA-b-DBM) block copolymer linker. Using a thioflavin T kinetic assay, transmission electron microscopy, Fourier transform infrared spectroscopy, discrete molecular dynamics simulations and cell viability assays, we examined the Janus characteristics and the inhibition potential of βCas IONPs against the aggregation of amyloid beta (Aβ), alpha synuclein (αS) and human islet amyloid polypeptide (IAPP) which are implicated in the pathologies of AD, PD and T2D. Incubation of zebrafish embryos with the amyloid proteins largely inhibited hatching and elicited reactive oxygen species, which were effectively rescued by the inhibitor. Furthermore, Aβ-induced damage to mouse brain was mitigated in vivo with the inhibitor. This study revealed the potential of Janus nanoparticles as a new nanomedicine against a diverse range of amyloid diseases.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Fangyun Xin
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Yuhuan Li
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Kairi Koppel
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Pu Chun Ke
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| |
Collapse
|
14
|
Bondarenko O, Mortimer M, Kahru A, Feliu N, Javed I, Kakinen A, Lin S, Xia T, Song Y, Davis TP, Lynch I, Parak WJ, Leong DT, Ke PC, Chen C, Zhao Y. Nanotoxicology and Nanomedicine: The Yin and Yang of Nano-Bio Interactions for the New Decade. NANO TODAY 2021; 39:101184. [PMID: 36937379 PMCID: PMC10018814 DOI: 10.1016/j.nantod.2021.101184] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotoxicology and nanomedicine are two sub-disciplines of nanotechnology focusing on the phenomena, mechanisms, and engineering at the nano-bio interface. For the better part of the past three decades, these two disciplines have been largely developing independently of each other. Yet recent breakthroughs in microbiome research and the current COVID-19 pandemic demonstrate that holistic approaches are crucial for solving grand challenges in global health. Here we show the Yin and Yang relationship between the two fields by highlighting their shared goals of making safer nanomaterials, improved cellular and organism models, as well as advanced methodologies. We focus on the transferable knowledge between the two fields as nanotoxicological research is moving from pristine to functional nanomaterials, while inorganic nanomaterials - the main subjects of nanotoxicology - have become an emerging source for the development of nanomedicines. We call for a close partnership between the two fields in the new decade, to harness the full potential of nanotechnology for benefiting human health and environmental safety.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Neus Feliu
- Fachbereich Physik und Chemie, Universität Hamburg, 22607 Hamburg, Germany
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tian Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles (UCLA), 570 Westwood Plaza, CNSI 6511, Los Angeles, CA 90095, United States
| | - Yang Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Wolfgang J. Parak
- Fachbereich Physik und Chemie, Universität Hamburg, 22607 Hamburg, Germany
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
15
|
Li Y, Tang H, Zhu H, Kakinen A, Wang D, Andrikopoulos N, Sun Y, Nandakumar A, Kwak E, Davis TP, Leong DT, Ding F, Ke PC. Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29936-29948. [PMID: 34143617 PMCID: PMC8251662 DOI: 10.1021/acsami.1c06478] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aβ). A small peptide of considerable hydrophobicity, Aβ is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aβ-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aβ, and its inhibitor. Using a lipophilic Laurdan dye and confocal fluorescence microscopy, we observed cell membrane perturbation and actin reorganization induced by Aβ oligomers but not by Aβ monomers or amyloid fibrils. We further revealed recovery of membrane fluidity by ultrasmall MoS2 quantum dots, also shown in this study as a potent inhibitor of Aβ amyloid aggregation. Using discrete molecular dynamics simulations, we uncovered the binding of MoS2 and Aβ monomers as mediated by hydrophilic interactions between the quantum dots and the peptide N-terminus. In contrast, Aβ oligomers and fibrils were surface-coated by the ultrasmall quantum dots in distinct testudo-like, reverse protein-corona formations to prevent their further association with the cell membrane and adverse effects downstream. This study offers a crucial new insight and a viable strategy for regulating the amyloid aggregation and membrane-axis of AD pathology with multifunctional nanomedicine.
Collapse
Affiliation(s)
- Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Houjuan Zhu
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Aparna Nandakumar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Eunbi Kwak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - David Tai Leong
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
16
|
Kakinen A, Javed I, Davis TP, Ke PC. In vitro and in vivo models for anti-amyloidosis nanomedicines. NANOSCALE HORIZONS 2021; 6:95-119. [PMID: 33438715 DOI: 10.1039/d0nh00548g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amyloid diseases are global epidemics characterized by the accumulative deposits of cross-beta amyloid fibrils and plaques. Despite decades of intensive research, few solutions are available for the diagnosis, treatment, and prevention of these debilitating diseases. Since the early work on the interaction of human β2-microglobulin and nanoparticles by Linse et al. in 2007, the field of amyloidosis inhibition has gradually evolved into a new frontier in nanomedicine offering numerous interdisciplinary research opportunities, especially for materials, chemistry and biophysics. In this review we summarise, for the first time, the in vitro and in vivo models employed thus far in the field of anti-amyloidosis nanomedicines. Based on this systematic summary, we bring forth the notion that, due to the complex and often overlapping physiopathologies of amyloid diseases, there is a crucial need for the appropriate use of in vitro and in vivo models for validating novel anti-amyloidosis nanomedicines, and there is a crucial need for the development of new animal models that reflect the behavioural, symptomatic and cross-talk hallmarks of amyloid diseases such as Alzheimer's (AD), Parkinson's (PD) diseases and type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
17
|
Bardhan M, Dolui S, Chaudhuri S, Paul U, Bhattacharjee G, Ghosal M, Maiti NC, Mukhopadhyay D, Senapati D. Impact of porous nanomaterials on inhibiting protein aggregation behaviour. RSC Adv 2021; 11:3354-3362. [PMID: 35424305 PMCID: PMC8693984 DOI: 10.1039/d0ra10927d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Aggregation of intrinsically disordered as well as the ordered proteins under certain premises or physiological conditions leads to pathological disorder. Here we have presented a detailed investigation on the effect of a porous metallic (Au) and a non-metallic (Si) nanomaterial on the formation of ordered (fiber-like/amyloid) and disordered (amorphous) aggregates of proteins. Porous nanogold (PNG) was found to reduce the amyloid aggregation of insulin but does not have much impact on the lag phase in the aggregation kinetics, whereas porous nano-silica (PNS) was found both to decrease the amount of aggregation as well as prolong the lag phase of amyloid fiber formation from insulin. On the other hand, both the porous nanoparticles are found to decrease the extent of amorphous aggregation (with slight improvement for PNS) of pathogenic huntingtin (Htt) protein in Huntington's disease cell model. This is a noted direct observation in controlling and understanding protein aggregation diseases which may help us to formulate nanotherapeutic drugs for future clinical applications. Aggregation of intrinsically disordered as well as the ordered proteins under certain premises or physiological conditions leads to pathological disorder.![]()
Collapse
Affiliation(s)
- Munmun Bardhan
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | - Sandip Dolui
- Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Siddhi Chaudhuri
- Biophysics and Structural Genomics Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | - Uttam Paul
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | | | - Manorama Ghosal
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | - Nakul C. Maiti
- Biophysics and Structural Genomics Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | - Dulal Senapati
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| |
Collapse
|
18
|
Li Y, Tang H, Andrikopoulos N, Javed I, Cecchetto L, Nandakumar A, Kakinen A, Davis TP, Ding F, Ke PC. The membrane axis of Alzheimer's nanomedicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000040. [PMID: 33748816 PMCID: PMC7971452 DOI: 10.1002/anbr.202000040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major neurological disorder impairing its carrier's cognitive function, memory and lifespan. While the development of AD nanomedicine is still nascent, the field is evolving into a new scientific frontier driven by the diverse physicochemical properties and theranostic potential of nanomaterials and nanocomposites. Characteristic to the AD pathology is the deposition of amyloid plaques and tangles of amyloid beta (Aβ) and tau, whose aggregation kinetics may be curbed by nanoparticle inhibitors via sequence-specific targeting or nonspecific interactions with the amyloidogenic proteins. As literature implicates cell membrane as a culprit in AD pathogenesis, here we summarize the membrane axis of AD nanomedicine and present a new rationale that the field development may greatly benefit from harnessing our existing knowledge of Aβ-membrane interaction, nanoparticle-membrane interaction and Aβ-nanoparticle interaction.
Collapse
Affiliation(s)
- Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
19
|
Krishna KV, Saha RN, Dubey SK. Biophysical, Biochemical, and Behavioral Implications of ApoE3 Conjugated Donepezil Nanomedicine in a Aβ 1-42 Induced Alzheimer's Disease Rat Model. ACS Chem Neurosci 2020; 11:4139-4151. [PMID: 33251785 DOI: 10.1021/acschemneuro.0c00430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and is the most common type of dementia. Amyloid β (Aβ) plaques play an important role in the pathophysiology of AD. However, the existing therapeutic strategies are not effective for the management of both Aβ-induced neurotoxicity and Aβ fibrils clearance in biological conditions. Herein, we have developed lipoprotein conjugated polymeric nanoparticles that can boost the clearance rate of Aβ fibrils and mitigate Aβ-induced neurotoxicity in AD rat. These nanoparticles were designed by loading donepezil in an amphiphilic polymer with a lipoprotein (ApoE3) integrated over the surface. Polymeric nanoparticles were prepared by a nanoprecipitation method, and ApoE3 was conjugated to the polymer layer by polysorbate 80. In the present study, we intended to examine the protective effect of ApoE3 nanoparticles against Aβ-induced neurotoxicity both in vitro and in vivo to evaluate if these can reduce the Aβ fibril formation and cognitive and behavioral deficits observed in AD induced rats. In the in vitro study, neurotoxicity induced by Aβ1-42 in human neuroblastoma (SH-SY5Y) cells was found to be significantly reduced upon treatment with ApoE3 donepezil nanoparticles. The presence of the ApoE3 significantly modified the morphology of Aβ fibrils and also inhibited the formation Aβ oligomers. Moreover, in the in vivo study, following treatment, AD induced rats were tested on Morris water maze (MWM) and passive avoidance task for their cognitive ability and sacrificed for biochemical estimations. From our observations, ApoE3 donepezil nanoparticles exhibited neuroprotection in the Aβ1-42 induced model by mitigating the pathological features and cognitive impairments. Thus, we anticipate that the nanosized lipoprotein carriers will possibly offer a rational therapeutic strategy in the formulation development of AD.
Collapse
Affiliation(s)
- Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai International Academic City, P.O. Box 345055, Dubai, United Arab Emirates
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| |
Collapse
|
20
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
21
|
Chen P, Ding F, Cai R, Javed I, Yang W, Zhang Z, Li Y, Davis TP, Ke PC, Chen C. Amyloidosis Inhibition, a New Frontier of the Protein Corona. NANO TODAY 2020; 35:100937. [PMID: 32728376 PMCID: PMC7388636 DOI: 10.1016/j.nantod.2020.100937] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The protein corona has served as a central dogma and a nuisance to the applications of nanomedicine and nanobiotechnology for well over a decade. Here we introduce the emerging field of amyloidosis inhibition, which aims to understand and harness the interfacial phenomena associated with a nanoparticle interacting with pathogenic amyloid proteins. Much of this interaction correlates with our understanding of the protein corona, and yet much differs, as elaborated for the first time in this Perspective. Specifically, we examine the in vitro, in silico and in vivo features of the new class of "amyloid protein corona", and discuss how the interactions with nanoparticles may halt the self-assembly of amyloid proteins. As amyloidosis is driven off pathway by the nanoparticles, the oligomeric and protofibrillar populations are suppressed to ameliorate their cytotoxicity. Furthermore, as amyloid proteins spread via the transport of bodily fluids or cross seeding, amyloidosis is inherently associated with dynamic proteins and ligands to evoke the immune system. Accordingly, we ponder the structural and medical implications of the amyloid protein corona in the presence of their stimulated cytokines. Understanding and exploiting the amyloid protein corona may facilitate the development of new theranostics against a range of debilitating amyloid diseases.
Collapse
Affiliation(s)
- Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Rong Cai
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| |
Collapse
|
22
|
Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS NANO 2020; 14:14391-14416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent clinical and pathological evidence have implicated the gut microbiota as a nexus for modulating the homeostasis of the human body, impacting conditions from cancer and dementia to obesity and social behavior. The connections between microbiota and human diseases offer numerous opportunities in medicine, most of which have limited or no therapeutic solutions available. In light of this paradigm-setting trend in science, this review aims to provide a comprehensive and timely summary of the mechanistic pathways governing the gut microbiota and their implications for nanomedicines targeting cancer and neurodegenerative diseases. Specifically, we discuss in parallel the beneficial and pathogenic relationship of the gut microbiota along the gut-brain and gut-cancer axes, elaborate on the impact of dysbiosis and the gastrointestinal corona on the efficacy of nanomedicines, and highlight a molecular mimicry that manipulates the universal cross-β backbone of bacterial amyloid to accelerate neurological disorders. This review further offers a forward-looking section on the rational design of cancer and dementia nanomedicines exploiting the gut-brain and gut-cancer axes.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Nikolaos Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
23
|
Javed I, Zhang Z, Adamcik J, Andrikopoulos N, Li Y, Otzen DE, Lin S, Mezzenga R, Davis TP, Ding F, Ke PC. Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001299. [PMID: 32999841 PMCID: PMC7509637 DOI: 10.1002/advs.202001299] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Indexed: 05/03/2023]
Abstract
The gut-brain axis has attracted increasing attention in recent years, fueled by accumulating symptomatic, physiological, and pathological findings. In this study, the aggregation and toxicity of amyloid beta (Aβ), the pathogenic peptide associated with Alzheimer's disease (AD), seeded by FapC amyloid fragments (FapCS) of Pseudomonas aeruginosa that colonizes the gut microbiome through infections are examined. FapCS display favorable binding with Aβ and a catalytic capacity in seeding the peptide amyloidosis. Upon seeding, twisted Aβ fibrils assume a much-shortened periodicity approximating that of FapC fibrils, accompanied by a 37% sharp rise in the fibrillar diameter, compared with the control. The robust seeding capacity for Aβ by FapCS and the biofilm fragments derived from P. aeruginosa entail abnormal behavior pathology and immunohistology, as well as impaired cognitive function of zebrafish. Together, the data offer the first concrete evidence of structural integration and inheritance in peptide cross-seeding, a crucial knowledge gap in understanding the pathological correlations between different amyloid diseases. The catalytic role of infectious bacteria in promoting Aβ amyloidosis may be exploited as a potential therapeutic target, while the altered mesoscopic signatures of Aβ fibrils may serve as a prototype for molecular assembly and a biomarker for screening bacterial infections in AD.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Zhenzhen Zhang
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Jozef Adamcik
- Food & Soft MaterialsDepartment of Health Science & TechnologyETH ZurichSchmelzbergstrasse 9, LFO, E23Zurich8092Switzerland
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)University of AarhusAarhus CAarhus8000Denmark
| | - Sijie Lin
- College of Environmental Science and EngineeringBiomedical Multidisciplinary Innovation Research InstituteShanghai East HospitalShanghai Institute of Pollution Control and Ecological SecurityTongji University1239 Siping RoadShanghai200092China
| | - Raffaele Mezzenga
- Food & Soft MaterialsDepartment of Health Science & TechnologyETH ZurichSchmelzbergstrasse 9, LFO, E23Zurich8092Switzerland
| | - Thomas P. Davis
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Zhongshan HospitalFudan University111 Yixueyuan Rd, Xuhui DistrictShanghai200032China
| |
Collapse
|
24
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Andrikopoulos N, Li Y, Cecchetto L, Nandakumar A, Da Ros T, Davis TP, Velonia K, Ke PC. Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. NANOSCALE 2020; 12:14422-14440. [PMID: 32638780 DOI: 10.1039/d0nr04273k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid diseases are global epidemics with no cure currently available. In the past decade, the use of engineered nanomaterials as inhibitors or probes against the pathogenic aggregation of amyloid peptides and proteins has emerged as a new frontier in nanomedicine. In this Minireview, we summarize for the first time the pivotal role of chemical synthesis in enabling the development of this multidisciplinary field.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia.
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
26
|
Koppel K, Tang H, Javed I, Parsa M, Mortimer M, Davis TP, Lin S, Chaffee AL, Ding F, Ke PC. Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. NANOSCALE 2020; 12:12317-12328. [PMID: 32490863 PMCID: PMC7325865 DOI: 10.1039/d0nr02710c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) represent two most prevalent amyloid diseases with a significant global burden. Pathologically, T2D and AD are characterized by the presence of amyloid plaques consisting primarily of toxic human islet amyloid polypeptide (IAPP) and amyloid beta (Aβ). It has been recently revealed that the gut microbiome plays key functions in the pathological progression of neurological disorders through the production of bacterial endotoxins, such as lipopolysaccharide (LPS). In this study, we examined the catalytic effects of LPS on IAPP and Aβ amyloidoses, and further demonstrated their mitigation with zero-dimensional carbon quantum dots (CQDs). Whereas LPS displayed preferred binding with the N-terminus of IAPP and the central hydrophobic core and C-terminus of Aβ, CQDs exhibited propensities for the amyloidogenic and C-terminus regions of IAPP and the N-terminus of Aβ, accordingly. The inhibitory effect of CQDs was verified by an embryonic zebrafish model exposed to the peptides and LPS, where impaired embryonic hatching was rescued and production of reactive oxygen species in the organism was suppressed by the nanomaterial. This study revealed a robust synergy between LPS and amyloid peptides in toxicity induction, and implicated CQDs as a potential therapeutic against the pathologies of T2D and AD.
Collapse
Affiliation(s)
- Kairi Koppel
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Mehrdad Parsa
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Alan L Chaffee
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
| |
Collapse
|
27
|
Ke PC, Pilkington EH, Sun Y, Javed I, Kakinen A, Peng G, Ding F, Davis TP. Mitigation of Amyloidosis with Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901690. [PMID: 31183916 PMCID: PMC6904546 DOI: 10.1002/adma.201901690] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Indexed: 05/19/2023]
Abstract
Amyloidosis is a biophysical phenomenon of protein aggregation with biological and pathogenic implications. Among the various strategies developed to date, nanomaterials and multifunctional nanocomposites possessing certain structural and physicochemical traits are promising candidates for mitigating amyloidosis in vitro and in vivo. The mechanisms underpinning protein aggregation and toxicity are introduced, and opportunities in materials science to drive this interdisciplinary field forward are highlighted. Advancement of this emerging frontier hinges on exploitation of protein self-assembly and interactions of amyloid proteins with nanoparticles, intracellular and extracellular proteins, chaperones, membranes, organelles, and biometals.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Emily H. Pilkington
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
28
|
Huma ZE, Javed I, Zhang Z, Bilal H, Sun Y, Hussain SZ, Davis TP, Otzen DE, Landersdorfer CB, Ding F, Hussain I, Ke PC. Nanosilver Mitigates Biofilm Formation via FapC Amyloidosis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906674. [PMID: 31984626 PMCID: PMC7260094 DOI: 10.1002/smll.201906674] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/25/2019] [Indexed: 05/19/2023]
Abstract
Multidrug resistance of bacteria is a major challenge due to the wide-spread use of antibiotics. While a range of strategies have been developed in recent years, suppression of bacterial activity and virulence via their network of extracellular amyloid has rarely been explored, especially with nanomaterials. Here, silver nanoparticles and nanoclusters (AgNPs and AgNCs) capped with cationic branched polyethylenimine polymer are synthesized, and their antimicrobial potentials are determined at concentrations safe to mammalian cells. Compared with the ultrasmall AgNCs, AgNPs entail stronger binding to suppress the fibrillization of FapC, a major protein constituent of the extracellular amyloid matrix of Pseudomonas aeruginosa. Both types of nanoparticles exhibit concentration-dependent antibiofilm and antimicrobial properties against P. aeruginosa. At concentrations of 1 × 10-6 m or below, both the bactericidal activity of AgNCs and the antibiofilm capacity of AgNPs are associated with their structure-mediated bio-nano interactions but not ion release. For AgNPs, specifically, their antibiofilm potency correlates with their capacity of FapC fibrillization inhibition, but not with their bactericidal activity. This study demonstrates the antimicrobial potential of safe nanotechnology through the novel route of amyloidosis inhibition.
Collapse
Affiliation(s)
- Zil-E Huma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Hajira Bilal
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Physics, Faculty of Science, Ningbo University, Ningbo, 315211, China
| | - Syed Zajif Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000, Aarhus C, Denmark
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
29
|
Xing Y, Sun Y, Wang B, Ding F. Morphological Determinants of Carbon Nanomaterial-Induced Amyloid Peptide Self-Assembly. Front Chem 2020; 8:160. [PMID: 32211382 PMCID: PMC7076083 DOI: 10.3389/fchem.2020.00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 01/12/2023] Open
Abstract
Hybridizing carbon nanomaterials (CNMs) with amyloid fibrils—the ordered nanostructures self-assembled by amyloidogenic peptides—has found promising applications in bionanotechology. Understanding fundamental interactions of CNMs with amyloid peptides and uncovering the determinants of their self-assembly structures and dynamics are, therefore, pivotal for enriching and enabling this novel class of hybrid nanomaterials. Here, we applied atomistic molecular dynamics simulations to investigate the self-assembly of two amyloid peptides—the amyloidogenic core residues 16-22 of amyloid-β (Aβ16−22) and the non-amyloid-β core of α-synuclein (NACore68−78)—on the surface of carbon nanotubes (CNT) with different sizes and chirality. Our computational results showed that with small radial CNTs, both types of peptides could form β-sheets wrapping around the nanotube surface into a supercoiled morphology. The angle between β-strands and nanotube axes in the supercoil structure depended mainly on the peptide sequence and CNT radius, but also weakly on the CNT chirality. Large radial CNTs and the extreme case of the flat graphene nanosheet, on the other hand, could nucleate amyloid fibrils perpendicular to the surface. Our results provided new insights of hybridizing CNMs with amyloid peptides and also offered a novel approach to manipulate the morphology of CNM-induced amyloid assembly by tuning the surface curvature, peptide sequence, and molecular ratio between peptides and available CNM surface area, which may be useful in engineering nanocomposites with high-order structures.
Collapse
Affiliation(s)
- Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| |
Collapse
|
30
|
Zhou Y, Liyanage PY, Devadoss D, Rios Guevara LR, Cheng L, Graham RM, Chand HS, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood-brain barrier and inhibitors of β-amyloid. NANOSCALE 2019; 11:22387-22397. [PMID: 31730144 DOI: 10.1039/c9nr08194a] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The blood-brain barrier (BBB) is a main obstacle for drug delivery targeting the central nervous system (CNS) and treating Alzheimer's disease (AD). In order to enhance the efficiency of drug delivery without harming the BBB integrity, nanoparticle-mediated drug delivery has become a popular therapeutic strategy. Carbon dots (CDs) are one of the most promising and novel nanocarriers. In this study, amphiphilic yellow-emissive CDs (Y-CDs) were synthesized with an ultrasonication-mediated methodology using citric acid and o-phenylenediamine with a size of 3 nm that emit an excitation-independent yellow photoluminescence (PL). The content of primary amine and carboxyl groups on CDs was measured as 6.12 × 10-5 and 8.13 × 10-3 mmol mg-1, respectively, indicating the potential for small-molecule drug loading through bioconjugation. Confocal image analyses revealed that Y-CDs crossed the BBB of 5-day old wild-type zebrafish, most probably by passive diffusion due to the amphiphilicity of Y-CDs. And the amphiphilicity and BBB penetration ability didn't change when Y-CDs were coated with different hydrophilic molecules. Furthermore, Y-CDs were observed to enter cells to inhibit the overexpression of human amyloid precursor protein (APP) and β-amyloid (Aβ) which is a major factor responsible for AD pathology. Therefore, data suggest that Y-CDs have a great potential as nontoxic nanocarriers for drug delivery towards the CNS as well as a promising inhibiting agent of Aβ-related pathology of the AD.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Faridi A, Sun Y, Mortimer M, Aranha RR, Nandakumar A, Li Y, Javed I, Kakinen A, Fan Q, Purcell AW, Davis TP, Ding F, Faridi P, Ke PC. Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. NANO RESEARCH 2019; 12:2827-2834. [PMID: 31695851 PMCID: PMC6834229 DOI: 10.1007/s12274-019-2520-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 05/20/2023]
Abstract
The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.
Collapse
Affiliation(s)
- Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ritchlynn R Aranha
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Qingqing Fan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
32
|
Kakinen A, Xing Y, Arachchi NH, Javed I, Feng L, Faridi A, Douek AM, Sun Y, Kaslin J, Davis TP, Higgins MJ, Ding F, Ke PC. Single-Molecular Heteroamyloidosis of Human Islet Amyloid Polypeptide. NANO LETTERS 2019; 19:6535-6546. [PMID: 31455083 PMCID: PMC6742555 DOI: 10.1021/acs.nanolett.9b02771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human amyloids and plaques uncovered post mortem are highly heterogeneous in structure and composition, yet literature concerning the heteroaggregation of amyloid proteins is extremely scarce. This knowledge deficiency is further exacerbated by the fact that peptide delivery is a major therapeutic strategy for targeting their full-length counterparts associated with the pathologies of a range of human diseases, including dementia and type 2 diabetes (T2D). Accordingly, here we examined the coaggregation of full-length human islet amyloid polypeptide (IAPP), a peptide associated with type 2 diabetes, with its primary and secondary amyloidogenic fragments 19-29 S20G and 8-20. Single-molecular aggregation dynamics was obtained by high-speed atomic force microscopy, augmented by transmission electron microscopy, X-ray diffraction, and super-resolution stimulated emission depletion microscopy. The coaggregation significantly prolonged the pause phase of fibril elongation, increasing its dwell time by 3-fold. Surprisingly, unidirectional elongation of mature fibrils, instead of protofilaments, was observed for the coaggregation, indicating a new form of tertiary protein aggregation unknown to existing theoretical models. Further in vivo zebrafish embryonic assay indicated improved survival and hatching, as well as decreased frequency and severity of developmental abnormalities for embryos treated with the heteroaggregates of IAPP with 19-29 S20G, but not with 8-20, compared to the control, indicating the therapeutic potential of 19-29 S20G against T2D.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Nuwan Hegoda Arachchi
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Lei Feng
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J. Higgins
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
33
|
Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 2019; 10:3780. [PMID: 31439844 PMCID: PMC6706415 DOI: 10.1038/s41467-019-11762-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/04/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disorders, yet no major breakthroughs have been made in AD human trials and the disease remains a paramount challenge and a stigma in medicine. Here we eliminate the toxicity of amyloid beta (Aβ) in a facile, high-throughput zebrafish (Danio rerio) model using casein coated-gold nanoparticles (βCas AuNPs). βCas AuNPs in systemic circulation translocate across the blood brain barrier of zebrafish larvae and sequester intracerebral Aβ42 and its elicited toxicity in a nonspecific, chaperone-like manner. This is evidenced by behavioral pathology, reactive oxygen species and neuronal dysfunction biomarkers assays, complemented by brain histology and inductively coupled plasma-mass spectroscopy. We further demonstrate the capacity of βCas AuNPs in recovering the mobility and cognitive function of adult zebrafish exposed to Aβ. This potent, safe-to-use, and easy-to-apply nanomedicine may find broad use for eradicating toxic amyloid proteins implicated in a range of human diseases. Treating Alzheimer’s disease, one of the most common neurodegenerative diseases, is of wide interest. Here, the authors report on the development of casein coated gold nanoparticles which were able to cross the blood brain barrier and protect against amyloid beta toxicity in a zebrafish model.
Collapse
|
34
|
Javed I, He J, Kakinen A, Faridi A, Yang W, Davis TP, Ke PC, Chen P. Probing the Aggregation and Immune Response of Human Islet Amyloid Polypeptides with Ligand-Stabilized Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10462-10471. [PMID: 30663303 DOI: 10.1021/acsami.8b19506] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The use of nanomaterials has recently become an emerging strategy against protein amyloidosis associated with a range of metabolic and brain diseases. To facilitate research in this area, here we first demonstrated the use of hyperspectral imaging (HSI) and COMSOL simulations for reporting the aggregation of human islet amyloid polypeptides (IAPPs), a hallmark of type 2 diabetes, as well as the physical interactions between the peptide and gold nanoparticles (AuNPs) grafted with citrate and poly(ethylene glycol) (PEG400 and PEG3000). We found a distinct anticorrelation between increased IAPP aggregation and decreased spectral red shifts incurred in the AuNP plasmonic resonance. Moreover, Jurkat cells exposed to IAPP and AuNPs were characterized by quantifying their cytokine secretions with a localized surface plasmon resonance (LSPR) immunoassay, where a peak response was registered for the most toxic IAPP oligomers and most suppressed by citrate-coated AuNPs. This study demonstrated the potential of using HSI and LSPR as two new platforms for the facile examination of protein aggregation and their induced immune response associated with amyloid diseases.
Collapse
Affiliation(s)
- Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Jiacheng He
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Wen Yang
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Pengyu Chen
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| |
Collapse
|
35
|
Synthesis and identification of novel pyridazinylpyrazolone based diazo compounds as inhibitors of human islet amyloid polypeptide aggregation. Bioorg Chem 2019; 84:339-346. [DOI: 10.1016/j.bioorg.2018.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/17/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023]
|
36
|
Zhao Y, Cai J, Liu Z, Li Y, Zheng C, Zheng Y, Chen Q, Chen H, Ma F, An Y, Xiao L, Jiang C, Shi L, Kang C, Liu Y. Nanocomposites Inhibit the Formation, Mitigate the Neurotoxicity, and Facilitate the Removal of β-Amyloid Aggregates in Alzheimer's Disease Mice. NANO LETTERS 2019; 19:674-683. [PMID: 30444372 DOI: 10.1021/acs.nanolett.8b03644] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible brain disorder. Recent studies revealed the pivotal role of β-amyloid (Aβ) in AD. However, there is no conclusive indication that the existing therapeutic strategies exerted any effect on the mitigation of Aβ-induced neurotoxicity and the elimination of Aβ aggregates simultaneously in vivo. Herein, we developed a novel nanocomposite that can eliminate toxic Aβ aggregates and mitigate Aβ-induced neurotoxicity in AD mice. This nanocomposite was designed to be a small-sized particle (14 ± 4 nm) with Aβ-binding peptides (KLVFF) integrated on the surface. The nanocomposite was prepared by wrapping a protein molecule with a cross-linked KLVFF-containing polymer layer synthesized by in situ polymerization. The presence of the nanocomposite remarkably changed the morphology of Aβ aggregates, which led to the formation of Aβ/nanocomposite coassembled nanoclusters instead of Aβ oligomers. With the reduction of the pathological Aβ oligomers, the nanocomposites attenuated the Aβ-induced neuron damages, regained endocranial microglia's capability to phagocytose Aβ, and eventually protected hippocampal neurons against apoptosis. Thus, we anticipate that the small-sized nanocomposite will potentially offer a feasible strategy in the development of novel AD treatments.
Collapse
Affiliation(s)
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute , Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | | | - Yansheng Li
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma , Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| | | | | | - Qun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute , Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | - Hongyun Chen
- National Institute for Advanced Materials, School of Material Science and Engineering , Nankai University , Tianjin , 300350 , China
| | | | | | | | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute , Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | | | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma , Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| | - Yang Liu
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma , Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| |
Collapse
|
37
|
Kakinen A, Sun Y, Javed I, Faridi A, Pilkington EH, Faridi P, Purcell AW, Zhou R, Ding F, Lin S, Chun Ke P, Davis TP. Physical and Toxicological Profiles of Human IAPP Amyloids and Plaques. Sci Bull (Beijing) 2018; 64:26-35. [PMID: 30662791 DOI: 10.1016/j.scib.2018.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although much has been learned about the fibrillization kinetics, structure and toxicity of amyloid proteins, the properties of amyloid fibrils beyond the saturation phase are often perceived as chemically and biologically inert, despite evidence suggesting otherwise. To fill this knowledge gap, we examined the physical and biological characteristics of human islet amyloid polypeptide (IAPP) fibrils that were aged up to two months. Not only did aging decrease the toxicity of IAPP fibrils, but the fibrils also sequestered fresh IAPP and suppressed their toxicity in an embryonic zebrafish model. The mechanical properties of IAPP fibrils in different aging stages were probed by atomic force microscopy and sonication, which displayed comparable stiffness but age-dependent fragmentation, followed by self-assembly of such fragments into the largest lamellar amyloid structures reported to date. The dynamic structural and toxicity profiles of amyloid fibrils and plaques suggest that they play active, long-term roles in cell degeneration and may be a therapeutic target for amyloid diseases.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia.,College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program & Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program & Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 10598, USA.,Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Sijie Lin
- College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
38
|
Faridi A, Sun Y, Okazaki Y, Peng G, Gao J, Kakinen A, Faridi P, Zhao M, Javed I, Purcell AW, Davis TP, Lin S, Oda R, Ding F, Ke PC. Mitigating Human IAPP Amyloidogenesis In Vivo with Chiral Silica Nanoribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802825. [PMID: 30369028 PMCID: PMC6263833 DOI: 10.1002/smll.201802825] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Indexed: 05/17/2023]
Abstract
Amyloid fibrils generally display chirality, a feature which has rarely been exploited in the development of therapeutics against amyloid diseases. This study reports, for the first time, the use of mesoscopic chiral silica nanoribbons against the in vivo amyloidogenesis of human islet amyloid polypeptide (IAPP), the peptide whose aggregation is implicated in type 2 diabetes. The thioflavin T assay and transmission electron microscopy show accelerated IAPP fibrillization through elimination of the nucleation phase and shortening of the elongation phase by the nanostructures. Coarse-grained simulations offer complementary molecular insights into the acceleration of amyloid aggregation through their nonspecific binding and directional seeding with the nanostructures. This accelerated IAPP fibrillization translates to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental, and behavioral assays. This study has implicated the potential of employing chiral nanotechnologies against the mesoscopic enantioselectivity of amyloid proteins and their associated diseases.
Collapse
Affiliation(s)
- Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Yutaka Okazaki
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Guotao Peng
- College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Gao
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mei Zhao
- College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Reiko Oda
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
39
|
Wang M, Sun Y, Cao X, Peng G, Javed I, Kakinen A, Davis TP, Lin S, Liu J, Ding F, Ke PC. Graphene quantum dots against human IAPP aggregation and toxicity in vivo. NANOSCALE 2018; 10:19995-20006. [PMID: 30350837 PMCID: PMC6212334 DOI: 10.1039/c8nr07180b] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The development of biocompatible nanomaterials has become a new frontier in the detection, treatment and prevention of human amyloid diseases. Here we demonstrated the use of graphene quantum dots (GQDs) as a potent inhibitor against the in vivo aggregation and toxicity of human islet amyloid polypeptide (IAPP), a hallmark of type 2 diabetes. GQDs initiated contact with IAPP through electrostatic and hydrophobic interactions as well as hydrogen bonding, which subsequently drove the peptide fibrillization off-pathway to eliminate the toxic intermediates. Such interactions, probed in vitro by a thioflavin T kinetic assay, fluorescence quenching, circular dichroism spectroscopy, a cell viability assay and in silico by discrete molecular dynamics simulations, translated to a significant recovery of embryonic zebrafish from the damage elicited by IAPP in vivo, as indicated by improved hatching as well as alleviated reactive oxygen species production, abnormality and mortality of the organism. This study points to the potential of using zero-dimensional nanomaterials for in vivo mitigation of a range of amyloidosis.
Collapse
Affiliation(s)
- Miaoyi Wang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Xueying Cao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Guotao Peng
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|