1
|
Ju Y, Kent SJ. Balancing stealth and targeting to improve nanomedicine efficacy. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01926-z. [PMID: 40360705 DOI: 10.1038/s41565-025-01926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Affiliation(s)
- Yi Ju
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia.
- School of Science, RMIT University, Melbourne, Victoria, Australia.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen John Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Maksymova L, Pilger YA, Nuhn L, Van Ginderachter JA. Nanobodies targeting the tumor microenvironment and their formulation as nanomedicines. Mol Cancer 2025; 24:65. [PMID: 40033293 PMCID: PMC11877942 DOI: 10.1186/s12943-025-02270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Among the emerging strategies for cancer theranostics, nanomedicines offer significant promise in advancing both patients' diagnosis and treatment. In combination with nanobodies, nanomedicines can potentially enhance the precision and efficiency of drug or imaging agent delivery, addressing key limitations of current approaches, such as off-target toxicities. The development of nanomedicines will be further accelerated by the creation of smart nanoparticles, and their integration with immunotherapy. Obviously, the success of nano-immunotherapy will depend on a comprehensive understanding of the tumor microenvironment, including the complex interplay of mechanisms that drive cancer-mediated immunosuppression and immune escape. Hence, effective therapeutic targeting of the tumor microenvironment requires modulation of immune cell function, overcoming resistance mechanisms associated with stromal components or the extracellular matrix, and/or direct elimination of cancer cells. Identifying key molecules involved in cancer progression and drug resistance is, therefore, essential for developing effective therapies and diagnostic tools that can predict patient responses to treatment and monitor therapeutic outcomes. Current nanomedicines are being designed with careful consideration of factors such as the choice of carrier (e.g., biocompatibility, controlled cargo release) and targeting moiety. The unique properties of nanobodies make them an effective engineering tool to target biological molecules with high affinity and specificity. In this review, we focus on the latest applications of nanobodies for targeting various components of the tumor microenvironment for diagnostic and therapeutic purposes. We also explore the main types of nanoparticles used as a carrier for cancer immunotherapies, as well as the strategies for formulating nanoparticle-nanobody conjugates. Finally, we highlight how nanobody-nanoparticle formulations can enhance current nanomedicines.
Collapse
Affiliation(s)
- Liudmyla Maksymova
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Pleinlaan 2, Brussels, B-1050, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Yannick A Pilger
- Chair of Macromolecular Chemistry, Institute of Functional Materials and Biofabrication, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Lutz Nuhn
- Chair of Macromolecular Chemistry, Institute of Functional Materials and Biofabrication, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg, 97070, Germany.
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Pleinlaan 2, Brussels, B-1050, Belgium.
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.
| |
Collapse
|
3
|
Yuen D, Feeney OM, Noi L, Shengule S, McLeod VM, Reitano P, Tsegay S, Hufton R, Houston ZH, Fletcher NL, Humphries J, Thurecht KJ, Cullinane C, Owen DJ, Porter CJH, Johnston APR. Nanobody-Mediated Cellular Uptake Maximizes the Potency of Polylysine Dendrimers While Preserving Solid Tumor Penetration. ACS NANO 2025; 19:6044-6057. [PMID: 39910852 DOI: 10.1021/acsnano.4c10851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Dendrimers are branched macromolecular structures that are useful nanocarriers for small-molecule drugs, such as cancer therapeutics. Their small size permits penetration into solid tumors, coupled with functionalization with a low-fouling PEG coating that minimizes transient cellular interactions and enhances plasma circulation time. While PEGylated dendrimers show significant promise as anticancer therapeutics, there is potential to increase tumor cell specificity and drive uptake of drugs into cells by conjugating cell-targeting ligands onto the dendrimers. To achieve this, we used an expanded genetic code and bio-orthogonal click chemistry to functionalize monomethyl auristatin E (MMAE)-loaded PEGylated dendrimers with a single tumor cell-targeting nanobody per dendrimer. The uniform addition of a single nanobody ligand facilitated greater intracellular uptake of the drug payload into HER2-positive target cells, while preserving the desirable circulatory characteristics of dendrimers. While the nanobody-dendrimer conjugates show similar levels of tumor infiltration over 24 h compared to unmodified dendrimers, the targeted dendrimers had significantly greater inhibition of tumor growth and long-term retention in the tumors. Our results highlight that biodistribution studies alone are poor predictors of therapeutic performance. The controlled conjugation strategy presented here preserves the size advantage and tissue penetration of dendrimers while maximizing targeted cellular uptake and potency in difficult-to-access solid tumor tissue.
Collapse
Affiliation(s)
- Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Leo Noi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | - Sammi Tsegay
- Starpharma Ltd., Abbotsford, Victoria 3067, Australia
| | | | - Zachary H Houston
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - James Humphries
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - David J Owen
- Starpharma Ltd., Abbotsford, Victoria 3067, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Ma C, Liu G, Yin J, Sun J, Luo D, Yang D, Pang S, Hou W, Hemu X, Ye B, Bi X. Repurposing Copper(II)/THPTA as A Bioorthogonal Catalyst for Thiazolidine Bond Cleavage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408180. [PMID: 39297310 PMCID: PMC11558081 DOI: 10.1002/advs.202408180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/07/2024] [Indexed: 11/14/2024]
Abstract
Metal-mediated chemical transformations are promising approaches to manipulate and regulate proteins in fundamental biological research and therapeutic development. Nevertheless, unlike bond-forming reactions, the exploration of selective bond cleavage reactions catalyzed by metals that are fully compatible with proteins and living systems remains relatively limited. Here, it is reported that Copper(II)/tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), commonly used in copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, can be repurposed as a new bioorthogonal catalyst for thiazolidine (Thz) bond cleavage. This process liberates an α-oxo-aldehyde group under physiological conditions, without requiring additional additives. To showcase the utility of this method, this simple catalyst system is coupled with genetic code expansion technology to achieve on-demand activation of genetically encoded Thz-caged α-oxo-aldehydes, enabling further functionalization of proteins. For the first time, this cell-compatible Thz uncaging reaction allows for the site-specific installation of α-oxo-aldehydes at the internal positions of proteins in phage and bacterial surface display systems, expanding the chemical space of proteins. Overall, this study expands the toolkit of bioorthogonal catalysts and paves the way for metal-promoted chemical reactions in living systems, potentially benefiting various applications in the future.
Collapse
Affiliation(s)
- Chengyun Ma
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Guoqing Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., LtdHangzhou310013China
| | - Jianan Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Disheng Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Dechun Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Shuo Pang
- School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Wei Hou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Xinya Hemu
- School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Bangce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|
5
|
Zhang Y, Chen Z, Wang X, Yan R, Bao H, Chu X, Guo L, Wang X, Li Y, Mu Y, He Q, Zhang L, Zhang C, Zhou D, Ji D. Site-specific tethering nanobodies on recombinant adeno-associated virus vectors for retargeted gene therapy. Acta Biomater 2024; 187:304-315. [PMID: 39025389 DOI: 10.1016/j.actbio.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) have been extensively studied for decades as carriers for delivering therapeutic genes. However, designing rAAV vectors with selective tropism for specific cell types and tissues has remained challenging. Here, we introduce a strategy for redirecting rAAV by attaching nanobodies with desired tropism at specific sites, effectively replacing the original tropism. To demonstrate this concept, we initially modified the genetic code of rAAV2 to introduce an azido-containing unnatural amino acid at a precise site within the capsid protein. Following a screening process, we identified a critical site (N587+1) where the introduction of unnatural amino acid eliminated the natural tropism of rAAV2. Subsequently, we successfully redirected rAAV2 by conjugating various nanobodies at the N587+1 site, using click and SpyTag-Spycatcher chemistries to form nanobody-AAV conjugates (NACs). By investigating the relationship between NACs quantity and effect and optimizing the linker between rAAV2 and the nanobody using a cathepsin B-susceptible valine-citrulline (VC) dipeptide, we significantly improved gene delivery efficiency both in vitro and in vivo. This enhancement can be attributed to the facilitated endosomal escape of rAAV2. Our method offers an exciting avenue for the rational modification of rAAV2 as a retargeting vehicle, providing a convenient platform for precisely engineering various rAAV2 vectors for both basic research and therapeutic applications. STATEMENT OF SIGNIFICANCE: AAVs hold great promise in the treatment of genetic diseases, but their clinical use has been limited by off-target transduction and efficiency. Here, we report a strategy to construct NACs by conjugating a nanobody or scFv to an rAAV capsid site, specifically via biorthogonal click chemistry and a spy-spycatcher reaction. We explored the structure-effect and quantity-effect relationships of NACs and then optimized the transduction efficiency by introducing a valine-citrulline peptide linker. This approach provides a biocompatible method for rational modification of rAAV as a retargeting platform without structural disruption of the virus or alteration of the binding capacity of the nanobody, with potential utility across a broad spectrum of applications in targeted imaging and gene delivery.
Collapse
Affiliation(s)
- Yuanjie Zhang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Zhiqian Chen
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xiaoyang Wang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Rongding Yan
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Han Bao
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xindang Chu
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Lingfeng Guo
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xinchen Wang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yuanhao Li
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Yu Mu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China.
| | - Qiuchen He
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Lihe Zhang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Chuanling Zhang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Demin Zhou
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Dezhong Ji
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| |
Collapse
|
6
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
7
|
Gao X, Cao K, Yang J, Liu L, Gao L. Recent advances in nanotechnology for programmed death ligand 1-targeted cancer theranostics. J Mater Chem B 2024; 12:3191-3208. [PMID: 38497358 DOI: 10.1039/d3tb02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Linhong Liu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
8
|
Finnegan JR, FitzGerald LI, Chen MZ, Warne NM, Yuen D, Davis TP, Johnston APR, Kempe K. Length-Dependent Cellular Internalization of Nanobody-Functionalized Poly(2-oxazoline) Nanorods. NANO LETTERS 2024; 24:89-96. [PMID: 37939013 DOI: 10.1021/acs.nanolett.3c03342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The ability to target specific tissues and to be internalized by cells is critical for successful nanoparticle-based targeted drug delivery. Here, we combined "stealthy" rod-shaped poly(2-oxazoline) (POx) nanoparticles of different lengths with a cancer marker targeting nanobody and a fluorescent cell internalization sensor via a heat-induced living crystallization-driven self-assembly (CDSA) strategy. A significant increase in association and uptake driven by nanobody-receptor interactions was observed alongside nanorod-length-dependent kinetics. Importantly, the incorporation of the internalization sensor allowed for quantitative differentiation between cell surface association and internalization of the targeted nanorods, revealing unprecedented length-dependent cellular interactions of CDSA nanorods. This study highlights the modularity and versatility of the heat-induced CDSA process and further demonstrates the potential of POx nanorods as a modular nanomedicine platform.
Collapse
Affiliation(s)
- John R Finnegan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Laura I FitzGerald
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Moore Zhe Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicole M Warne
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
9
|
Kim S, Bae Y, Park SH, Chen N, Eom S, Kang S, Park J. Compact and modular bioprobe: Integrating SpyCatcher/SpyTag recombinant proteins with zwitterionic polymer-coated quantum dots. J Colloid Interface Sci 2023; 652:184-194. [PMID: 37595436 DOI: 10.1016/j.jcis.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
The development of quantum dot (QD)-based modular bioprobe that has a compact size and enable a facile conjugation of various biofunctional groups is in high demand. To address this, we surface engineered QDs with zwitterion polymer ligands to have an inherent compact size and derivatized them sequentially with the recombinant proteins SpyCatcher/SpyTag (SC/ST) to use their protein ligation system. SC/ST spontaneously form one complex through the isopeptide bond between them. SC-conjugated QDs (QD-SC) were used as base building blocks. Then, ST-biomolecules were added for modular biofunctionalization. We synthesized compact sized (∼15 nm) QD-SC-ST-affibody (antibody-mimicking small protein for tumor detection) conjugates, which showed successful cell-receptor targeting. The target cell-receptor could be easily tuned by changing the type of ST-affibody. We also demonstrated that anti-human-chorionic-gonadotropin mouse IgG1 antibodies can be labeled on the QD surface by mixing QD-SC with the ST-MG1Nb (mouse-IgG1-specific protein). The immunoassay performance of the antibody-labeled QDs was evaluated using a pregnancy test kit, displaying equivalent detection sensitivity to a commercially available kit. This study proposed an innovative strategy for QD biofunctionalization in a modular manner, which can be expanded to a diverse range of colloidal particle derivatization.
Collapse
Affiliation(s)
- Sunghwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yoonji Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sung Han Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ning Chen
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Jongnam Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Wrobel D, Edr A, Zemanova E, Strašák T, Semeradtova A, Maly J. The influence of amphiphilic carbosilane dendrons on lipid model membranes. Chem Phys Lipids 2023; 255:105314. [PMID: 37356611 DOI: 10.1016/j.chemphyslip.2023.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Amphiphilic dendrons represent a relatively novel class of molecules which may show many unique properties suitable for applications in a field of molecular biology and nanomedicine. They were frequently studied as platforms suitable for drug delivery systems as were, e.g. polymersomes or hybrid lipid-polymer nanoparticles. Recently, natural extracellular lipid vesicles (EVs), called exosomes (EXs), were shown to be a promising candidate in drug delivery applications. Formation of hybrid exosome-dendron nanovesicles could bring benefits in their simple conjugation with selective targeting moieties. Unfortunately, the complex architecture of biological membranes, EXs included, makes obstacles in elucidating the important parameters and mechanisms of interaction with the artificial amphiphilic structures. The aim of the presented work was to study the interaction of two types of amphiphilic carbosilane dendritic structures (denoted as DDN-1 and DDN-2) suitable for further modification with streptavidin (DDN-1) or using click-chemistry approach (DDN-2), with selected neutral and negatively charged lipid model membranes, partially mimicking the basic properties of natural EXs biomembranes. To meet the goal, a number of biophysical methods were used for determination of the degree and mechanisms of the interaction. The results showed that the strength of interactions of amphiphilic dendrons with liposomes was related with surface charge of liposomes. Several steps of interactions were disclosed. The initialization step was mainly coupled with amphiphilic dendrons - liposomes surface interaction resulting in destabilization of large self-assembled amphiphilic dendrons structures. Such destabilization was more significant with liposomes of higher negative charge. With increasing concentration of amphiphilic dendrons in a solution the interactions were taking place also in the hydrophobic part of bilayer. Further increase of nanoparticle concentration resulted in a gradual dendritic cluster formation in a lipid bilayer structure. Due to high affinity of amphiphilic dendrons to model lipid bilayers the conclusion can be drawn that they represent promising platforms also for decoration of exosomes or other kinds of natural lipid vehicles. Such organized hybrid dendron-lipid biomembranes may be advantageous for their subsequent post-functionalization with small molecules, large biomacromolecules or polymers suitable for targeted drug-delivery or theranostic applications.
Collapse
Affiliation(s)
- Dominika Wrobel
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic.
| | - Antonin Edr
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Eliska Zemanova
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| | - Tomáš Strašák
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Alena Semeradtova
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| | - Jan Maly
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| |
Collapse
|
11
|
Site-specific labeling of antibodies with quantum dots could promote to retain the antigen binding capacity of antibodies. Food Chem 2023; 413:135655. [PMID: 36796266 DOI: 10.1016/j.foodchem.2023.135655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
A major concern with antibody labeling is the decreased antigen affinity binding capacity of antibodies, owing mainly to the randomly oriented binding of the marker. Herein, a universal approach for site-specific photocrosslinking of quantum dots (QDs) to the Fc-terminal of antibodies was investigated utilizing antibody Fc-terminal affinity proteins. Results showed that the QDs only bound to the heavy chain of the antibody. Further comparative tests confirmed that the site-specific directed labeling approach maximizes the retention of the antigen-binding capacity of the natural antibody. Compared with the commonly employed random orientation labeling approach, the directional labeling approach allows the labeled antibody showed 6 times greater binding affinity to antigen. QDs-labeled monoclonal antibodies were applied to fluorescent immunochromatographic test strips for the detection of shrimp tropomyosin (TM). The established procedure has a detection limit of 0.054 μg/mL. Thus, the site-specific labeling approach significantly improves the antigen binding capacity of the labeled antibody.
Collapse
|
12
|
Vu MN, Pilkington EH, Lee WS, Tan H, Davis TP, Truong NP, Kent SJ, Wheatley AK. Engineered Ferritin Nanoparticle Vaccines Enable Rapid Screening of Antibody Functionalization to Boost Immune Responses. Adv Healthc Mater 2023; 12:e2202595. [PMID: 36786027 PMCID: PMC11469303 DOI: 10.1002/adhm.202202595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Indexed: 02/15/2023]
Abstract
Employing monoclonal antibodies to target vaccine antigens to different immune cells within lymph nodes where adaptive immunity is initiated can provide a mechanism to fine-tune the magnitude or the quality of immune responses. However, studying the effects of different targeting antibodies head-to-head is challenging due to the lack of a feasible method that allows rapid screening of multiple antibodies for their impact on immunogenicity. Here self-assembling ferritin nanoparticles are prepared that co-display vaccine antigens and the Fc-binding domain of Staphylococcal protein A, allowing rapid attachment of soluble antibodies to the nanoparticle surface. Using this tunable system, ten antibodies targeting different immune cell subsets are screened, with targeting to Clec9a associated with higher serum antibody titers after immunization. Immune cell targeting using ferritin nanoparticles with anti-Clec9a antibodies drives concentrated deposition of antigens within germinal centers, boosting germinal center formation and robust antibody responses. However, the capacity to augment humoral immunity is antigen-dependent, with significant boosting observed for prototypic ovalbumin immunogens but reduced effectiveness with the SARS-CoV-2 RBD. This work provides a rapid platform for screening targeting antibodies, which will accelerate mechanistic insights into optimal delivery strategies for nanoparticle-based vaccines to maximize protective immunity.
Collapse
Affiliation(s)
- Mai N. Vu
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Faculty of Pharmaceutics and Pharmaceutical TechnologyHanoi University of Pharmacy10000HanoiVietnam
| | - Emily H. Pilkington
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Wen Shi Lee
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
| | - Hyon‐Xhi Tan
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Stephen J. Kent
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| | - Adam K. Wheatley
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
| |
Collapse
|
13
|
Obeng EM, Steer DL, Fulcher AJ, Wagstaff KM. Sortase A transpeptidation produces seamless, unbranched biotinylated nanobodies for multivalent and multifunctional applications. NANOSCALE ADVANCES 2023; 5:2251-2260. [PMID: 37056610 PMCID: PMC10089078 DOI: 10.1039/d3na00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Exploitation of the biotin-streptavidin interaction for advanced protein engineering is used in many bio-nanotechnology applications. As such, researchers have used diverse techniques involving chemical and enzyme reactions to conjugate biotin to biomolecules of interest for subsequent docking onto streptavidin-associated molecules. Unfortunately, the biotin-streptavidin interaction is susceptible to steric hindrance and conformational malformation, leading to random orientations that ultimately impair the function of the displayed biomolecule. To minimize steric conflicts, we employ sortase A transpeptidation to produce quantitative, seamless, and unbranched nanobody-biotin conjugates for efficient display on streptavidin-associated nanoparticles. We further characterize the protein-nanoparticle complex and demonstrate its usefulness in optical microscopy and multivalent severe acute respiratory syndrome coronavirus (SARS-CoV-2) antigen interaction. The approach reported here provides a template for making novel multivalent and multifunctional protein complexes for avidity-inspired technologies.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - David L Steer
- Monash Proteomics and Metabolomics Facility, Monash University Clayton VIC 3800 Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University Clayton VIC 3800 Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
14
|
Handali PR, Webb LJ. Gold Nanoparticles Are an Immobilization Platform for Active and Stable Acetylcholinesterase: Demonstration of a General Surface Protein Functionalization Strategy. ACS APPLIED BIO MATERIALS 2023; 6:209-217. [PMID: 36508683 DOI: 10.1021/acsabm.2c00834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immobilizing enzymes onto abiological surfaces is a key step for developing protein-based technologies that can be useful for applications such as biosensors and biofuel cells. A central impediment for the advancement of this effort is a lack of generalizable strategies for functionalizing surfaces with proteins in ways that prevent unfolding, aggregation, and uncontrolled binding, requiring surface chemistries to be developed for each surface-enzyme pair of interest. In this work, we demonstrate a significant advancement toward addressing this problem using a gold nanoparticle (AuNP) as an initial scaffold for the chemical bonding of the enzyme acetylcholinesterase (AChE), forming the conjugate AuNP-AChE. This can then be placed onto chemically and structurally distinct surfaces (e.g., metals, semiconductors, plastics, etc.), thereby bypassing the need to develop surface functionalization strategies for every substrate or condition of interest. Carbodiimide crosslinker chemistry was used to bind surface lysine residues in AChE to AuNPs functionalized with ligands containing carboxylic acid tails. Using amino acid analysis, we found that on average, 3.3 ± 0.1 AChE proteins were bound per 5.22 ± 1.25 nm AuNP. We used circular dichroism spectroscopy to measure the structure of the bound protein and determined that it remained essentially unchanged after binding. Finally, we performed Michaelis-Menten kinetics to determine that the enzyme retained 18.2 ± 2.0% of its activity and maintained that activity over a period of at least three weeks after conjugation to AuNPs. We hypothesize that structural changes to the peripheral active site of AChE are responsible for the differences in activity of bound AChE and unbound AChE. This work is a proof-of-concept demonstration of a generalizable method for placing proteins onto chemically and structurally diverse substrates and materials without the need for surface functionalization strategies.
Collapse
Affiliation(s)
- Paul R Handali
- The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
15
|
Xu JX, Alom MS, Yadav R, Fitzkee NC. Predicting protein function and orientation on a gold nanoparticle surface using a residue-based affinity scale. Nat Commun 2022; 13:7313. [PMID: 36437251 PMCID: PMC9701677 DOI: 10.1038/s41467-022-34749-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
The orientation adopted by proteins on nanoparticle surfaces determines the nanoparticle's bioactivity and its interactions with living systems. Here, we present a residue-based affinity scale for predicting protein orientation on citrate-gold nanoparticles (AuNPs). Competitive binding between protein variants accounts for thermodynamic and kinetic aspects of adsorption in this scale. For hydrophobic residues, the steric considerations dominate, whereas electrostatic interactions are critical for hydrophilic residues. The scale rationalizes the well-defined binding orientation of the small GB3 protein, and it subsequently predicts the orientation and active site accessibility of two enzymes on AuNPs. Additionally, our approach accounts for the AuNP-bound activity of five out of six additional enzymes from the literature. The model developed here enables high-throughput predictions of protein behavior on nanoparticles, and it enhances our understanding of protein orientation in the biomolecular corona, which should greatly enhance the performance and safety of nanomedicines used in vivo.
Collapse
Affiliation(s)
- Joanna Xiuzhu Xu
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Md Siddik Alom
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Rahul Yadav
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
16
|
Eiamthong B, Meesawat P, Wongsatit T, Jitdee J, Sangsri R, Patchsung M, Aphicho K, Suraritdechachai S, Huguenin-Dezot N, Tang S, Suginta W, Paosawatyanyong B, Babu MM, Chin JW, Pakotiprapha D, Bhanthumnavin W, Uttamapinant C. Discovery and Genetic Code Expansion of a Polyethylene Terephthalate (PET) Hydrolase from the Human Saliva Metagenome for the Degradation and Bio-Functionalization of PET. Angew Chem Int Ed Engl 2022; 61:e202203061. [PMID: 35656865 PMCID: PMC7613822 DOI: 10.1002/anie.202203061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/24/2022]
Abstract
We report a bioinformatic workflow and subsequent discovery of a new polyethylene terephthalate (PET) hydrolase, which we named MG8, from the human saliva metagenome. MG8 has robust PET plastic degradation activities under different temperature and salinity conditions, outperforming several naturally occurring and engineered hydrolases in degrading PET. Moreover, we genetically encoded 2,3-diaminopropionic acid (DAP) in place of the catalytic serine residue of MG8, thereby converting a PET hydrolase into a covalent binder for bio-functionalization of PET. We show that MG8(DAP), in conjunction with a split green fluorescent protein system, can be used to attach protein cargos to PET as well as other polyester plastics. The discovery of a highly active PET hydrolase from the human metagenome-currently an underexplored resource for industrial enzyme discovery-as well as the repurposing of such an enzyme into a plastic functionalization tool, should facilitate ongoing efforts to degrade and maximize reusability of PET.
Collapse
Affiliation(s)
- Bhumrapee Eiamthong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Piyachat Meesawat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Thanakrit Wongsatit
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Jariya Jitdee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Raweewan Sangsri
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Maturada Patchsung
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Kanokpol Aphicho
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | | | - Shan Tang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Wipa Suginta
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | | | - M Madan Babu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Worawan Bhanthumnavin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
17
|
Kim DH. Combination of interventional oncology local therapies and immunotherapy for the treatment of hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2022; 22:93-102. [PMID: 37383404 PMCID: PMC10035730 DOI: 10.17998/jlc.2022.03.28] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 06/30/2023]
Abstract
Interventional oncology (IO) local therapies of hepatocellular carcinoma (HCC) can activate anti-cancer immunity and it is potentially leading to an anti-cancer immunity throughout the body. For the development of an effective HCC treatment regime, great emphasis has been dedicated to different IO local therapy mediated immune modulation and possible combinations with immune checkpoint inhibitor immunotherapy. In this review paper, we summarize the status of combination of IO local therapy and immunotherapy, as well as the prospective role of therapeutic carriers and locally administered immunotherapy in advanced HCC.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Correira JM, Handali PR, Webb LJ. Characterizing Protein-Surface and Protein-Nanoparticle Conjugates: Activity, Binding, and Structure. J Chem Phys 2022; 157:090902. [DOI: 10.1063/5.0101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many sensors and catalysts composed of proteins immobilized on inorganic materials have been reported over the past few decades. Despite some examples of functional protein-surface and protein-nanoparticle conjugates, thorough characterization of the biological-abiological interface at the heart of these materials and devices is often overlooked in lieu of demonstrating acceptable system performance. This has resulted in a focus on generating functioning protein-based devices without a concerted effort to develop reliable tools necessary to measure the fundamental properties of the bio-abio interface such as surface concentration, biomolecular structure, and activity. In this Perspective we discuss current methods used to characterize these critical properties of devices that operate by integrating a protein into both flat surfaces and nanoparticle materials. We highlight the advantages and drawbacks of each method as they relate to understanding the function of the protein-surface interface, and explore the manner in which an informed understanding of this complex interaction leads directly to the advancement of protein-based materials and technology.
Collapse
Affiliation(s)
| | - Paul R Handali
- The University of Texas at Austin, United States of America
| | - Lauren J. Webb
- Chemistry, The University of Texas at Austin Department of Chemistry, United States of America
| |
Collapse
|
19
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, Dejneka A, Stephanopoulos N, Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater 2022; 146:10-22. [PMID: 35523414 PMCID: PMC9590281 DOI: 10.1016/j.actbio.2022.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
DNA nanotechnology has yielded remarkable advances in composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States.
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
20
|
Eiamthong B, Meesawat P, Wongsatit T, Jitdee J, Sangsri R, Patchsung M, Aphicho K, Suraritdechachai S, Huguenin-Dezot N, Tang S, Suginta W, Paosawatyanyong B, Babu MM, Chin JW, Pakotiprapha D, Bhanthumnavin W, Uttamapinant C. Discovery and Genetic Code Expansion of a Polyethylene Terephthalate (PET) Hydrolase from the Human Saliva Metagenome for the Degradation and Bio‐Functionalization of PET. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bhumrapee Eiamthong
- Vidyasirimedhi Institute of Science and Technology School of Biomolecular Science and Engineering THAILAND
| | - Piyachat Meesawat
- Vidyasirimedhi Institute of Science and Technology School of Biomolecular Science and Engineering THAILAND
| | - Thanakrit Wongsatit
- Vidyasirimedhi Institute of Science and Technology School of Biomolecular Science and Engineering THAILAND
| | - Jariya Jitdee
- Chulalongkorn University Faculty of Science Chemistry THAILAND
| | | | - Maturada Patchsung
- Vidyasirimedhi Institute of Science and Technology Biomolecular Science and Engineering THAILAND
| | - Kanokpol Aphicho
- Vidyasirimedhi Institute of Science and Technology Biomolecular Science and Engineering THAILAND
| | - Surased Suraritdechachai
- Vidyasirimedhi Institute of Science and Technology Biomolecular Science and Engineering THAILAND
| | | | - Shan Tang
- MRC Laboratory of Molecular Biology Protein and nucleic acid chemistry UNITED KINGDOM
| | - Wipa Suginta
- Vidyasirimedhi Institute of Science and Technology Biomolecular Science and Engineering THAILAND
| | | | - M. Madan Babu
- St Jude Children's Research Hospital Department of Structural Biology Structural Biology UNITED STATES
| | - Jason W Chin
- MRC Laboratory of Molecular Biology Protein and nucleic acid chemistry UNITED KINGDOM
| | | | | | - Chayasith Uttamapinant
- Vidyasirimedhi Institute of Science and Technology School of Biomolecular Science and Engineering 555 Moo 1 PayupnaiWangchan Valley 21210 Rayong THAILAND
| |
Collapse
|
21
|
Vranckx C, Lambricht L, Préat V, Cornu O, Dupont-Gillain C, Vander Straeten A. Layer-by-Layer Nanoarchitectonics Using Protein-Polyelectrolyte Complexes toward a Generalizable Tool for Protein Surface Immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5579-5589. [PMID: 35481352 DOI: 10.1021/acs.langmuir.2c00191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layer-by-layer (LbL) self-assembly is an attractive method for the immobilization of macromolecules at interfaces. Integrating proteins in LbL thin films is however challenging due to their polyampholyte nature. Recently, we developed a method to integrate lysozyme into multilayers using protein-polyelectrolytes complexes (PPCs). In this work, we extended this method to a wide range of protein-polyelectrolyte combinations. We demonstrated the robustness and versatility of PPCs as building blocks. LL-37, insulin, lysozyme, and glucose oxidase were complexed with alginate, poly(styrenesulfonate), heparin, and poly(allylamine hydrochloride). The resulting PPCs were then LbL self-assembled with chitosan, PAH, and heparin. We demonstrated that multilayers built with PPCs are thicker compared to the LbL self-assembly of bare protein molecules. This is attributed to the higher mass of protein in the multilayers and/or the more hydrated state of the assemblies. PPCs enabled the self-assembly of proteins that could otherwise not be LbL assembled with a PE or with another protein. Furthermore, the results also show that LbL with PPCs enabled the construction of multilayers combining different proteins, highlighting the formation of multifunctional films. Importantly, we show that the adsorption behavior and thus the multilayer growth strongly depend on the nature of the protein and polyelectrolyte used. In this work, we elaborated a rationale to help and guide the use of PPCs for protein LbL assembly. It will therefore be beneficial to the many scientific communities willing to modify interfaces with hard-to-immobilize proteins and peptides.
Collapse
Affiliation(s)
- Cédric Vranckx
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Laure Lambricht
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Olivier Cornu
- Neuro-Musculo-Skeletal Pole, Experimental and Clinical Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
- Orthopaedic and Trauma Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| | - Aurélien Vander Straeten
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.10, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Van Fossen EM, Bednar RM, Jana S, Franklin R, Beckman J, Karplus PA, Mehl RA. Nanobody assemblies with fully flexible topology enabled by genetically encoded tetrazine amino acids. SCIENCE ADVANCES 2022; 8:eabm6909. [PMID: 35522749 PMCID: PMC9075797 DOI: 10.1126/sciadv.abm6909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Assembling nanobodies (Nbs) into polyvalent multimers is a powerful strategy for improving the effectiveness of Nb-based therapeutics and biotechnological tools. However, generally effective approaches to Nb assembly are currently restricted to the amino or carboxyl termini, greatly limiting the diversity of Nb multimer topologies that can be produced. Here, we show that reactive tetrazine groups-site-specifically inserted by genetic code expansion at Nb surface sites-are compatible with Nb folding and function, enabling Nb assembly at any desired point. Using two anti-SARS-CoV-2 Nbs with viral neutralization ability, we created Nb homo- and heterodimers with improved properties compared with conventionally linked Nb homodimers, which, in the case of our tetrazine-conjugated trimer, translated into enhanced viral neutralization. Thus, this tetrazine-based approach is a generally applicable strategy that greatly increases the accessible range of Nb assembly topologies, and thereby adds the optimization of topology as an effective avenue to generate Nb assemblies with improved efficacy.
Collapse
Affiliation(s)
- Elise M. Van Fossen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Rachel Franklin
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, OR 97330, USA
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
23
|
Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022; 33:429-443. [PMID: 35167255 PMCID: PMC8931723 DOI: 10.1021/acs.bioconjchem.1c00546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The progress achieved
over the last three decades in the field
of bioconjugation has enabled the preparation of sophisticated nanomaterial–biomolecule
conjugates, referred to herein as bionanoconstructs, for a multitude
of applications including biosensing, diagnostics, and therapeutics.
However, the development of bionanoconstructs for the active targeting
of cells and cellular compartments, both in vitro and in vivo, is challenged by the lack of understanding
of the mechanisms governing nanoscale recognition. In this review,
we highlight fundamental obstacles in designing a successful bionanoconstruct,
considering findings in the field of bionanointeractions. We argue
that the biological recognition of bionanoconstructs is modulated
not only by their molecular composition but also by the collective
architecture presented upon their surface, and we discuss fundamental
aspects of this surface architecture that are central to successful
recognition, such as the mode of biomolecule conjugation and nanomaterial
passivation. We also emphasize the need for thorough characterization
of engineered bionanoconstructs and highlight the significance of
population heterogeneity, which too presents a significant challenge
in the interpretation of in vitro and in
vivo results. Consideration of such issues together will
better define the arena in which bioconjugation, in the future, will
deliver functional and clinically relevant bionanoconstructs.
Collapse
Affiliation(s)
- Aisling Fleming
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yan Yan
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zengchun Xie
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
24
|
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1809. [PMID: 36416028 PMCID: PMC9786906 DOI: 10.1002/wnan.1809] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Lara M. Mollé
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Cameron H. Smyth
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
25
|
Al-Abboodi A, Mhouse Alsaady HA, Banoon SR, Al-Saady M. Conjugation strategies on functionalized iron oxide nanoparticles as a malaria vaccine delivery system. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vaccination has been used effectively to protect from infectious diseases and non-infectious diseases such as cancer and allergies. Different forms of particulate arrangements, including nanoparticles, virus-like particles (VLPs), and virosomes, have been built recently depending on the type of pathogen to be targeted. The ability to conjugate the recombinant Plasmodium yoelii, 19-kDa C-terminal fragment of merozoite surface protein 1 (PyMSP119) on the surface of superparamagnetic magnetite nanoparticles (SPIONs) was explored as a new technique of enhancing vaccination against malaria. Different conjugation strategies were performed to correlate the effects of nanoparticle chemistry surfaces to bind later with the malaria protein. (SPIONs) were prepared by chemical coprecipitation method and coated with 3-aminopropyltriethoxysilane (APTS) alone (as a surface coater), or with both APTS and polyethylene glycol (PEG) (as a shield to protect the malaria protein from proteolytic enzymes) by using a modified silanisation method.
X-ray powder diffraction (XRD, Philips Model) patterns indicated that the SPIONs were of high purity with an inverse spinal structure. Fourier Transform Infrared Spectroscopy (FTIR) was collected using PerkinElmer Spectrum 100 Series; spectra of uncoated and coated magnetite nanoparticles confirmed that the silane layer had been coated on the surface Fe3O4. The SPIONs were superparamagnetic as investigated by Vibrating Sample Magnetometry (VSM, Princeton Applied Research, model ISS) and relatively stable in aqueous phase at room temperature and could also be quickly recovered from suspension using an external magnet. Introduce the carboxyl groups onto the SPIONs surfaces, resulting in a relatively high protein binding capacity onto the nanoparticle surfaces.
The bare particles had a mean size of around 20 nm with a relatively narrow size distribution. 82% of African Green Monkey fibroblast (COS-7) were alive in nanoparticle suspension using the MTT assay method. The quantity of protein explicitly bound to particles was determined using Sodium Dodecyl Sulfate (SDS) - Polyacrylamide Gel Electrophoresis (PAGE). SDS–PAGE. When the conjugation blend was prepared in EDC, there was approximately 100% binding between PyMSP119 and the Fe3O4-COOH particles because no protein band was apparent at the expected molecular weight for PyMSP119 (45 kDa).
The current study investigates the theory that the gradual, persistent release of the malaria antigen may stimulate and maintain an elevated level of immune response for an extended period in vivo, which will be the scope of future work.
Collapse
Affiliation(s)
- Aswan Al-Abboodi
- Department of Biology, College of Science, University of Misan, Misan, Iraq. ORCID: 0000-0003-1063-9900
| | - Hussain A. Mhouse Alsaady
- Department of Biology, College of Science, University of Misan, Misan, Iraq. ORCID: 0000-0001-6111-400X
| | - Shaima R. Banoon
- Department of Biology, College of Science, University of Misan, Misan, Iraq. ORCID: 0000-0002-9133-2259
| | - Mohammed Al-Saady
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton,VIC 3800, Australia
| |
Collapse
|
26
|
Cremers GAO, Rosier BJHM, Meijs A, Tito NB, van Duijnhoven SMJ, van Eenennaam H, Albertazzi L, de Greef TFA. Determinants of Ligand-Functionalized DNA Nanostructure-Cell Interactions. J Am Chem Soc 2021; 143:10131-10142. [PMID: 34180666 PMCID: PMC8283757 DOI: 10.1021/jacs.1c02298] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Synthesis of ligand-functionalized
nanomaterials with control over
size, shape, and ligand orientation facilitates the design of targeted
nanomedicines for therapeutic purposes. DNA nanotechnology has emerged
as a powerful tool to rationally construct two- and three-dimensional
nanostructures, enabling site-specific incorporation of protein ligands
with control over stoichiometry and orientation. To efficiently target
cell surface receptors, exploration of the parameters that modulate
cellular accessibility of these nanostructures is essential. In this
study, we systematically investigate tunable design parameters of
antibody-functionalized DNA nanostructures binding to therapeutically
relevant receptors, including the programmed cell death protein 1,
the epidermal growth factor receptor, and the human epidermal growth
factor receptor 2. We show that, although the native affinity of antibody-functionalized
DNA nanostructures remains unaltered, the absolute number of bound
surface receptors is lower compared to soluble antibodies due to receptor
accessibility by the nanostructure. We explore structural determinants
of this phenomenon to improve efficiency, revealing that receptor
binding is mainly governed by nanostructure size and DNA handle location.
The obtained results provide key insights in the ability of ligand-functionalized
DNA nanostructures to bind surface receptors and yields design rules
for optimal cellular targeting.
Collapse
Affiliation(s)
- Glenn A O Cremers
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bas J H M Rosier
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ab Meijs
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nicholas B Tito
- Electric Ant Lab, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | | | - Hans van Eenennaam
- Aduro Biotech Europe B.V., Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Lorenzo Albertazzi
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
27
|
Huang J, Yuen D, Mintern JD, Johnston APR. Opportunities for innovation: Building on the success of lipid nanoparticle vaccines. Curr Opin Colloid Interface Sci 2021; 55:101468. [PMID: 34093062 PMCID: PMC8164502 DOI: 10.1016/j.cocis.2021.101468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.
Collapse
Affiliation(s)
- Jessica Huang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| |
Collapse
|
28
|
Zhang L, Yao K, Wang Y, Zhou YL, Fu Z, Li G, Ling J, Yang Y. Brain-Targeted Dual Site-Selective Functionalized Poly(β-Amino Esters) Delivery Platform for Nerve Regeneration. NANO LETTERS 2021; 21:3007-3015. [PMID: 33797927 DOI: 10.1021/acs.nanolett.1c00175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain injuries are devastating central nervous system diseases, resulting in cognitive, motor, and sensory dysfunctions. However, clinical therapeutic options are still limited for brain injuries, indicating an urgent need to investigate new therapies. Furthermore, the efficient delivery of therapeutics across the blood-brain barrier (BBB) to the brain is a serious problem. In this study, a facile strategy of dual site-selective functionalized (DSSF) poly(β-amino esters) was developed using bio-orthogonal chemistry for promoting brain nerve regeneration. Fluorescence colocalization studies demonstrated that these proton-sponge DSSF poly(β-amino esters) targeted mitochondria through electrostatic interactions. More importantly, this delivery system could effectively accumulate in the injured brain sites and accelerate the recovery of the injured brain. Finally, this DSSF poly(β-amino esters) platform may provide a new methodology for the construction of dual regioselective carriers in protein/peptide delivery and tissue engineering.
Collapse
Affiliation(s)
- Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Ke Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yuqing Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - You Lang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Zexi Fu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| |
Collapse
|
29
|
Cano-Cortes MV, Altea-Manzano P, Laz-Ruiz JA, Unciti-Broceta JD, Lopez-Delgado FJ, Espejo-Roman JM, Diaz-Mochon JJ, Sanchez-Martin RM. An effective polymeric nanocarrier that allows for active targeting and selective drug delivery in cell coculture systems. NANOSCALE 2021; 13:3500-3511. [PMID: 33560282 DOI: 10.1039/d0nr07145e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this manuscript, we report the development of a versatile, robust, and stable targeting nanocarrier for active delivery. This nanocarrier is based on bifunctionalized polymeric nanoparticles conjugated to a monoclonal antibody that allows for active targeting of either (i) a fluorophore for tracking or (ii) a drug for monitoring specific cell responses. This nanodevice can efficiently discriminate between cells in coculture based on the expression levels of cell surface receptors. As a proof of concept, we have demonstrated efficient delivery using a broadly established cell surface receptor as the target, the epidermal growth factor receptor (EGFR), which is overexpressed in several types of cancers. Additionally, a second validation of this nanodevice was successfully carried out using another cell surface receptor as the target, the cluster of differentiation 147 (CD147). Our results suggest that this versatile nanocarrier can be expanded to other cell receptors and bioactive cargoes, offering remarkable discrimination efficiency between cells with different expression levels of a specific marker. This work supports the ability of nanoplatforms to boost and improve the progress towards personalized medicine.
Collapse
Affiliation(s)
- Maria Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | - Patricia Altea-Manzano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Campus GasthuisberǵHerestraat 49, 3000 Leuven, Belgium
| | - Jose Antonio Laz-Ruiz
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | | | - Francisco Javier Lopez-Delgado
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and DestiNA Genomica S.L. PTS Granada, Avenida de la Innovación 1, Edificio BIC, 18016, Granada, Spain
| | - Jose Manuel Espejo-Roman
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | - Juan Jose Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| |
Collapse
|
30
|
Cifuentes-Rius A, Desai A, Yuen D, Johnston APR, Voelcker NH. Inducing immune tolerance with dendritic cell-targeting nanomedicines. NATURE NANOTECHNOLOGY 2021; 16:37-46. [PMID: 33349685 DOI: 10.1038/s41565-020-00810-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/29/2020] [Indexed: 04/14/2023]
Abstract
Induced tolerogenic dendritic cells are a powerful immunotherapy for autoimmune disease that have shown promise in laboratory models of disease and early clinical trials. In contrast to conventional immunosuppressive treatments, tolerogenic immunotherapy leverages the cells and function of the immune system to quell the autoreactive lymphocytes responsible for damage and disease. The principle techniques of isolating and reprogramming dendritic cells (DCs), central to this approach, are well characterized. However, the broader application of this technology is limited by its high cost and bespoke nature. Nanomedicine offers an alternative route by performing this reprogramming process in situ. Here, we review the challenges and opportunities in using nanoparticles as a delivery mechanism to target DCs and induce immunomodulation, emphasizing their versatility. We then highlight their potential to solve critical problems in organ transplantation and increasingly prevalent autoimmune disorders such as type 1 diabetes mellitus and multiple sclerosis, where new immunotherapy approaches have begun to show promise.
Collapse
Affiliation(s)
- Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia.
| | - Anal Desai
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Daniel Yuen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia.
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
| |
Collapse
|
31
|
Liu J, Shi J, Nie W, Wang S, Liu G, Cai K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv Healthc Mater 2021; 10:e2001207. [PMID: 33000920 DOI: 10.1002/adhm.202001207] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, mainly relies on phototherapeutic agents (PAs) to produce heat or toxic reactive oxygen species (ROS) to kill tumors. It has attracted wide attention due to its merits of noninvasive properties and negligible drug resistance. However, the phototoxicity of conventional PAs is one of the main challenges for its potential clinical application. This is mainly caused by the uncontrolled distribution of PA in vivo, as well as the inevitable damage to healthy cells along the light path. Ensuring the generation of ROS or heat specific at tumor site is the key for precise tumor phototherapy. In this review, the progress of targeted delivery of PA and activatable phototherapy strategies based on nanocarriers for precise tumor therapy is summarized. The research progress of passive targeting, active targeting, and activatable targeting strategies in the delivery of PA is also described. Then, the switchable nanosystems for tumor precise phototherapy in response to tumor microenvironment, including pH, glutathione (GSH), protein, and nucleic acid, are highlighted. Finally, the challenges and opportunities of nanocarrier-based precise phototherapy are discussed for clinical application in the future.
Collapse
Affiliation(s)
- Junjie Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Jinjin Shi
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Weimin Nie
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Sijie Wang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
32
|
Jain A, Trindade GF, Hicks JM, Potts JC, Rahman R, Hague RJM, Amabilino DB, Pérez-García L, Rawson FJ. Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. J Colloid Interface Sci 2020; 587:150-161. [PMID: 33360888 DOI: 10.1016/j.jcis.2020.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022]
Abstract
Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorption on the surface of nanoparticles (NPs) is vital for the development of clinically important protein-based nanomedicines. In this work, new insights on the effect of the different orientation of cytochrome c (cyt c) bound to gold nanoparticles (GNPs) using various ligands on its apoptotic activity is reported. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS), electrochemical and circular dichroism (CD) analyses are used to investigate the characteristics of cyt c orientation and structure on functionalized GNPs. These studies indicate that the orientation and position of the heme ring inside the cyt c structure can be altered by changing the surface chemistry on the GNPs. A difference in the apoptosis inducing capability because of different orientation of cyt c bound to the GNPs is observed. These findings indicate that the biological activity of a protein can be modulated on the surface of NPs by varying its adsorption orientation. This study will impact on the rational design of new nanoscale biosensors, bioelectronics, and nanoparticle-protein based drugs.
Collapse
Affiliation(s)
- Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gustavo F Trindade
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jordan C Potts
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J M Hague
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, UK
| | - David B Amabilino
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, UK
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
33
|
Zhao M, Liang Z, Zhang B, Wang Q, Lee J, Li F, Wang Q, Ma D, Ling D. Supramolecular Container-Mediated Surface Engineering Approach for Regulating the Biological Targeting Effect of Nanoparticles. NANO LETTERS 2020; 20:7941-7947. [PMID: 33078612 DOI: 10.1021/acs.nanolett.0c02701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface chemistry is essential for the biomedical applications of functional nanomaterials. Here, a supramolecular container-based surface engineering approach is designed to impart excellent water dispersibility and precisely control the orientation of surface targeting ligands of the nanoparticles. An acyclic cucurbituril (aCB) molecular container is used as a chemical bridge to incorporate nanoparticles and targeting ligands via a bilateral host-guest complexation, enabling the bioactive moieties of targeting ligands to be fully exposed and faced outward to facilitate biological targeting. The enhanced biological targeting effect as well as targeted imaging performance of aCB-engineered nanoparticles are demonstrated in vitro and in vivo. Molecular dynamic simulations illustrate a tight binding of targeting ligand to the relevant receptor with the assistance of the aCB molecular container for the enhanced targeting efficiency, representing an attractive extension of supramolecular chemistry-based technology for nanoparticle surface engineering and supramolecularly regulated biological targeting.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Da Ma
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. Cells 2020; 9:cells9102222. [PMID: 33019594 PMCID: PMC7600184 DOI: 10.3390/cells9102222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with naïve or MMR-expressing Chinese hamster ovary (CHO) cells, a nanobody mediated targeting and uptake could be confirmed for the nanobody-modified nanocarriers. Thereby, the intact nanogels that display nanobodies on their surface in a multivalent way showed a much stronger binding and uptake compared to the soluble polymers. Based on their acidic pH-responsive degradation potential, ketal crosslinked nanogels are capable of mediating a transient targeting that gets diminished upon unfolding into single polymer chains after endosomal acidification. Such control over particle integrity and targeting performance can be considered as highly attractive for safe and controllable immunodrug delivery purposes.
Collapse
|
35
|
Fletcher NL, Kempe K, Thurecht KJ. Next-Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromol Rapid Commun 2020; 41:e2000319. [PMID: 32767396 DOI: 10.1002/marc.202000319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Precision polymers as advanced nanomedicines represent an appealing approach for the treatment of otherwise untreatable malignancies. By taking advantage of unique nanomaterial properties and implementing judicious design strategies, polymeric nanomedicines are able to be produced that overcome many barriers to effective treatment. Current key research focus areas anticipated to produce the greatest impact in polymer applications in nanomedicine for oncology include new strategies to achieve "active" targeting, polymeric pro-drug activation, and combinatorial polymer drug delivery approaches in combination with enhanced understanding of complex bio-nano interactions. These approaches, both in isolation or combination, form the next generation of precision nanomedicines with significant anticipated future health outcomes. Of necessity, these approaches will combine an intimate understanding of biological interactions with advanced materials design. This perspectives piece aims to highlight emerging opportunities that promise to be game changers in the nanomedicine oncology field. Discussed herein are current and next generation polymeric nanomedicines with a focus towards structures that are, or could, undergo clinical translation as well as highlight key advances in the field.
Collapse
Affiliation(s)
- Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristian Kempe
- Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
36
|
Dager A, Baliyan A, Kurosu S, Maekawa T, Tachibana M. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: application of C-QDs to grow fluorescent protein crystals. Sci Rep 2020; 10:12333. [PMID: 32704038 PMCID: PMC7378176 DOI: 10.1038/s41598-020-69264-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023] Open
Abstract
Herein, we present the rapid synthesis of mono-dispersed carbon quantum dots (C-QDs) via a single-step microwave plasma-enhanced decomposition (MPED) process. Highly-crystalline C-QDs were synthesized in a matter of 5 min using the fenugreek seeds as a sustainable carbon source. It is the first report, to the best of our knowledge, where C-QDs were synthesized using MPED via natural carbon precursor. Synthesis of C-QDs requires no external temperature other than hydrogen (H2) plasma. Plasma containing the high-energy electrons and activated hydrogen ions predominantly provide the required energy directly into the reaction volume, thus maximizing the atom economy. C-QDs shows excellent Photoluminescence (PL) activity along with the dual-mode of excitation-dependent PL emission (blue and redshift). We investigate the reason behind the dual-mode of excitation-dependent PL. To prove the efficacy of the MPED process, C-QDs were also derived from fenugreek seeds using the traditional synthesis process, highlighting their respective size-distribution, crystallinity, quantum yield, and PL. Notably, C-QDs synthesis via MPED was 97.2% faster than the traditional thermal decomposition process. To the best of our knowledge, the present methodology to synthesize C-QDs via natural source employing MPED is three times faster and far more energy-efficient than reported so far. Additionally, the application of C-QDs to produce the florescent lysozyme protein crystals "hybrid bio-nano crystals" is also discussed. Such a guest-host strategy can be exploited to develop diverse and complex "bio-nano systems". The florescent lysozyme protein crystals could provide a platform for the development of novel next-generation polychrome luminescent crystals.
Collapse
Affiliation(s)
- Akansha Dager
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Ankur Baliyan
- NISSAN ARC, LTD, 1-Natsushima-cho, Yokosuka, 236-0061, Japan
| | - Shunji Kurosu
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Masaru Tachibana
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| |
Collapse
|
37
|
Greene MK, Nogueira JCF, Tracey SR, Richards DA, McDaid WJ, Burrows JF, Campbell K, Longley DB, Chudasama V, Scott CJ. Refined construction of antibody-targeted nanoparticles leads to superior antigen binding and enhanced delivery of an entrapped payload to pancreatic cancer cells. NANOSCALE 2020; 12:11647-11658. [PMID: 32436550 DOI: 10.1039/d0nr02387f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibody-targeted nanoparticles have shown exceptional promise as delivery vehicles for anticancer drugs, although manufacturability challenges have hampered clinical progress. These include the potential for uncontrolled and random antibody conjugation, resulting in masked or inactive paratopes and unwanted Fc domain interactions. To circumvent these issues, we show that the interchain disulfide of cetuximab F(ab) may be selectively re-bridged with a strained alkyne handle, to permit 'click' coupling to azide-capped nanoparticles in a highly uniform and oriented manner. When compared to conventional carbodiimide chemistry, this conjugation approach leads to the generation of nanoparticles with a higher surface loading of cetuximab F(ab) and with markedly improved ability to bind to the target epidermal growth factor receptor. Moreover, we show that entrapment of a camptothecin payload within these nanoparticles can enhance drug targeting to antigen-expressing pancreatic cancer cells, resulting in superior cytotoxicity versus the conventional nanoformulation. Collectively, this work highlights the critical need to develop refined methods for the construction of targeted nanoparticles that will accelerate their clinical translation through improved performance and manufacturability.
Collapse
Affiliation(s)
- Michelle K Greene
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Shannon R Tracey
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - William J McDaid
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
38
|
de Marco A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif 2020; 172:105645. [PMID: 32289357 PMCID: PMC7151424 DOI: 10.1016/j.pep.2020.105645] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Antibody fragments for which the sequence is available are suitable for straightforward engineering and expression in both eukaryotic and prokaryotic systems. When produced as fusions with convenient tags, they become reagents which pair their selective binding capacity to an orthogonal function. Several kinds of immunoreagents composed by nanobodies and either large proteins or short sequences have been designed for providing inexpensive ready-to-use biological tools. The possibility to choose among alternative expression strategies is critical because the fusion moieties might require specific conditions for correct folding or post-translational modifications. In the case of nanobody production, the trend is towards simpler but reliable (bacterial) methods that can substitute for more cumbersome processes requiring the use of eukaryotic systems. The use of these will not disappear, but will be restricted to those cases in which the final immunoconstructs must have features that cannot be obtained in prokaryotic cells. At the same time, bacterial expression has evolved from the conventional procedure which considered exclusively the nanobody and nanobody-fusion accumulation in the periplasm. Several reports show the advantage of cytoplasmic expression, surface-display and secretion for at least some applications. Finally, there is an increasing interest to use as a model the short nanobody sequence for the development of in silico methodologies aimed at optimizing the yields, stability and affinity of recombinant antibodies. There is an increasing request for immunoreagents based on nanobodies. The multiplicity of their applications requires constructs with different structural complexity. Alternative expression methods are necessary to achieve such structural requirements. In silico optimization of nanobody biophysical characteristics becomes more and more reliable.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, S-5000, Nova Gorica, Slovenia.
| |
Collapse
|
39
|
Zhang W, Besford QA, Christofferson AJ, Charchar P, Richardson JJ, Elbourne A, Kempe K, Hagemeyer CE, Field MR, McConville CF, Yarovsky I, Caruso F. Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. NANO LETTERS 2020; 20:2660-2666. [PMID: 32155075 DOI: 10.1021/acs.nanolett.0c00295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orientation-specific immobilization of antibodies onto nanoparticles, to preserve antibody-antigen recognition, is a key challenge in developing targeted nanomedicines. Herein, we report the targeting ability of metal-phenolic network (MPN)-coated gold nanoparticles with surface-physisorbed antibodies against respective antigens. The MPN coatings were self-assembled from metal ions (FeIII, CoII, CuII, NiII, or ZnII) cross-linked with tannic acid. Upon physisorption of antibodies, all particle systems exhibited enhanced association with target antigens, with CoII systems demonstrating more than 2-fold greater association. These systems contained more metal atoms distributed in a way to specifically interact with antibodies, which were investigated by molecular dynamics simulations. A model antibody fragment crystallizable (Fc) region in solution with CoII-tannic acid complexes revealed that the solvent-exposed CoII can directly coordinate to the histidine-rich portion of the Fc region. This one-pot interaction suggests anchoring of the antibody Fc region to the MPN on nanoparticles, allowing for enhanced targeting.
Collapse
Affiliation(s)
- Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Patrick Charchar
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aaron Elbourne
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne Victoria 3001, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew R Field
- RMIT Microscopy & Microanalysis Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Chris F McConville
- College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
40
|
Yong KW, Yuen D, Chen MZ, Johnston APR. Engineering the Orientation, Density, and Flexibility of Single-Domain Antibodies on Nanoparticles To Improve Cell Targeting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5593-5600. [PMID: 31917547 DOI: 10.1021/acsami.9b20993] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles targeted to specific cells have the potential to improve the delivery of therapeutics. The effectiveness of cell targeting can be significantly improved by optimizing how the targeting ligands are displayed on the nanoparticle surface. Crucial to optimizing the cell binding are the orientation, density, and flexibility of the targeting ligand on the nanoparticle surface. In this paper, we used an anti-EGFR single-domain antibody (sdAb or nanobody) to target fluorescent nanocrystals (Qdots) to epidermal growth factor receptor (EGFR)-positive cells. The sdAbs were expressed with a synthetic amino acid (azPhe), enabling site-specific conjugation to Qdots in an improved orientation. To optimize the targeting efficiency, we engineered the point of attachment (orientation), controlled the density of targeting groups on the surface of the Qdot, and optimized the length of the poly(ethylene glycol) linker used to couple the sdAb to the Qdot surface. By optimizing orientation, density, and flexibility, we improved cell targeting by more than an order of magnitude. This work highlights the importance of understanding the structure of the nanoparticle surface to achieve the optimal interactions with the intended receptors and how engineering the nanoparticle surface can significantly improve cell targeting.
Collapse
Affiliation(s)
- Ken W Yong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| | - Moore Z Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Parkville , Victoria 3052 , Australia
| |
Collapse
|
41
|
Bednar RM, Golbek TW, Kean KM, Brown WJ, Jana S, Baio JE, Karplus PA, Mehl RA. Immobilization of Proteins with Controlled Load and Orientation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36391-36398. [PMID: 31525993 DOI: 10.1021/acsami.9b12746] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomaterials based on immobilized proteins are key elements of many biomedical and industrial technologies. However, applications are limited by an inability to precisely construct materials of high homogeneity and defined content. We present here a general "protein-limited immobilization" strategy by combining the rapid, bioorthogonal, and biocompatible properties of a tetrazine-strained trans-cyclooctene reaction with genetic code expansion to site-specifically place the tetrazine into a protein. For the first time, we use this strategy to immobilize defined amounts of oriented proteins onto beads and flat surfaces in under 5 min at submicromolar concentrations without compromising activity. This approach opens the door to generating and studying diverse protein-based biomaterials that are much more precisely defined and characterized, providing a greater ability to engineer properties across a wide range of applications.
Collapse
Affiliation(s)
- Riley M Bednar
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| | - Thaddeus W Golbek
- School of Chemical, Biological and Environmental Engineering , Oregon State University , 116 Johnson Hall, 105 SW 26th Street , Corvallis , Oregon 97331-7305 , United States
| | - Kelsey M Kean
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| | - Wesley J Brown
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| | - Joe E Baio
- School of Chemical, Biological and Environmental Engineering , Oregon State University , 116 Johnson Hall, 105 SW 26th Street , Corvallis , Oregon 97331-7305 , United States
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| |
Collapse
|
42
|
Such GK, Johnston APR. Understanding Cell Interactions Using Modular Nanoparticle Libraries. Aust J Chem 2019. [DOI: 10.1071/ch19269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanoparticle delivery systems have significant potential to facilitate the delivery of novel therapeutics, such as proteins, DNA or small molecules. However, there are multiple biological barriers that need to be overcome to deliver the cargo in an active form. These challenges include evading clearance by the reticuloendothelial system, minimising adverse immune responses, targeting specific cells and tissues, and trafficking into the right compartment of the cell. In this account, we will discuss how nanoparticle structure can be tuned to optimise biological interactions and thus improve the ability of nanoparticles to overcome these barriers. The focus of this article will be on controlling cell targeting and trafficking within a cell, e.g. endosomal escape.
Collapse
|