1
|
Lanfranchi E, Ferrario V, Gandomkar S, Payer SE, Zukic E, Rudalija H, Musi A, Gaberscek I, Orel Y, Schachtschabel D, Willrodt C, Breuer M, Kroutil W. Transforming a Historical Chemical Synthetic Route for Vanillin Starting from Renewable Eugenol to a Cell-Free Bi-Enzymatic Cascade. CHEMSUSCHEM 2025:e202500387. [PMID: 40091706 DOI: 10.1002/cssc.202500387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Vanillin is one of the most important aroma compounds, naturally occurring in vanilla pods. Many routes to access natural vanillin from various renewables have been investigated, including a natural five-step microbial transformation of eugenol to vanillin. Readily available eugenol was also the starting material for a chemical two-step sequence to vanillin employed in the 19th century. Here we show that a two-step sequence can also be realized using biocatalysts only and run it in one-pot simultaneously. This was achieved by isomerizing the C=C double bond of eugenol by oxidation to coniferyl alcohol followed by oxidative C=C cleavage catalyzed by newly identified enzymes. Thus, two oxidative steps catalyzed by two different biocatalysts - one containing flavin and the other a non-heme iron(II) cofactor - were successfully run simultaneously just requiring molecular oxygen as oxidant for each step. Using natural eugenol sources, e. g. clove oil, vanillin was obtained with 91 % product formation. This study shows that natural pathways like the microbial transformation of eugenol to vanillin involving five steps can be shortened, hereto just two simultaneous steps, by exploiting and combining the repertoire of promiscuous enzymatic activities present in different organisms leading to new-to-nature cascades.
Collapse
Affiliation(s)
- Elisa Lanfranchi
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Valerio Ferrario
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Somayyeh Gandomkar
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Stefan E Payer
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Erna Zukic
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Haris Rudalija
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Alexandra Musi
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Ines Gaberscek
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Yuliya Orel
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | | | - Christian Willrodt
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Michael Breuer
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Wolfgang Kroutil
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Group Research BASF SE Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| |
Collapse
|
2
|
Yu M, Gao Y, Liu Y, Wang Z, Zhang Y, Li Y, Fan L, Li X. Substrate Specificity of Adenine-Cu-PO 4 Nanozyme: Ascorbic Acid Oxidation and Selective Cytotoxicity. Chemistry 2025; 31:e202403568. [PMID: 39777753 DOI: 10.1002/chem.202403568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Though nanozymes are becoming promising alternatives to natural enzymes due to their superior properties, constructing nanozyme with high specificity is still a great challenge. Herein, with Cu2+ as an active site and adenine as a ligand, Adenine-Cu-PO4 is synthesized in phosphate-buffered saline. As an oxidase mimic, Adenine-Cu-PO4 could selectively catalyze oxidation of ascorbic acid (AA) to dehydroascorbic acid, but not universal substrates (3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,4-dichlorophenol (2,4-DP)), small biomolecules (dopamine, glutathione, glucose, galactose), other vitamins (vitamin A acid, vitamin B1, vitamin K1) and even dithiothreitol (a common interference of AA). Such the specific AA catalytic oxidation is revealed that Adenine-Cu-PO4 selectively binds with AA through hydrogen bonds, accompanied with catalyzing AA oxidation, and concurrently O2 transferring to H2O2 via O2⋅-, further to H2O via ⋅OH. Based on the produced reactive oxygen species, with AA as a pro-oxidant, Adenine-Cu-PO4 nanozyme efficiently triggers severe intratumor oxidative stress to induce tumor cell death. This work opens a new avenue to design intrinsic nanozymes with high specificity, and also presents a promising application in the field of AA oxidation induced cancer therapy.
Collapse
Affiliation(s)
- Mincong Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuanbo Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yichen Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhuo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key, Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Koo YS, Chen AX, Tay CYJ, Wang VYE, See JY, Lim YH, Tay DWP. Navigating Side Reactions for Robust Colorimetric Detection of Galactose Oxidase Activity. Anal Chem 2025; 97:5266-5273. [PMID: 40021128 PMCID: PMC11912124 DOI: 10.1021/acs.analchem.4c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
Colorimetric assays are a rapid, scalable technique well suited to enzyme activity screening. However, side reactions or chromogenic reagent instability can result in false positives or false negatives that compromise the accuracy of such assays. Here, we identify three classes of compounds incompatible with the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) colorimetric assay for galactose oxidase activity. Dark green ABTS·+ cationic radicals indicating enzyme activity can get quenched to yield colorless solutions or couple with substrates to form differently colored adducts, thus preventing accurate colorimetric measurements. These side reactions limit the utility of the ABTS assay and introduce uncertainty in the substrate scope to which it is applicable. We have investigated the underlying mechanisms behind these side reactions to conclude that free radical scavengers, phenols with electron-donating substituents, and β,γ-unsaturated aryl ketones are incompatible with the ABTS colorimetric assay. In search of a viable alternative, we developed an assay using 2,4-dinitrophenylhydrazine under neutral conditions with isopropyl alcohol as a solubilizing agent. The use of neutral conditions was found to be critical to avoid hydrolysis of hydrazone adducts, ensuring reproducible measurements. Our assay is compatible with free radical scavengers (R2 = 0.98), phenols with electron-donating substituents (R2 = 0.97), and β,γ-unsaturated aryl ketones (R2 = 0.88). This modified assay enables galactose oxidase activity screening across a broader substrate scope, thus facilitating enzyme use for more practical applications.
Collapse
Affiliation(s)
- Ying Sin Koo
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Adrielle Xianwen Chen
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Charlotte Y. J. Tay
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Valerie Y. E. Wang
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Jie Yang See
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| | - Yee Hwee Lim
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
- Synthetic
Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Dillon W. P. Tay
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore 138665, Republic of Singapore
| |
Collapse
|
4
|
Hamed EM, He L, Rai V, Hu S, Li SFY. Copper Single-Atom Nanozyme Mimicking Galactose Oxidase with Superior Catalytic Activity and Selectivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405986. [PMID: 39248675 DOI: 10.1002/smll.202405986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Due to the low stability and high cost of some natural enzymes, nanozymes have been developed as enzyme-imitating nanomaterials. Single-atom nanozymes are a class of nanozymes with metal centers that mimic the structure of metal-based natural enzymes. Herein, Cu-N-C single-atom nanozyme (SAN) is synthesized with excellent peroxidase- and enhanced oxidase-like activities to mimic the action of natural galactose oxidase. Cu-SAN demonstrates stereospecific activity akin to that of natural galactose oxidase by oxidizing D-galactose and primary alcohol but not L-Galactose or other carbohydrates. The SAN can catalyze the oxidation of galactose in the presence of oxygen, producing hydrogen peroxide as a sub-product. The produced hydrogen peroxide then oxidizes 3,3',5,5'-tetramethylbenzidine catalyzed by the SAN, yielding the typical blue product. The relationship between absorbance and galactose concentration is linear in the 1-60 µm range with a detection limit as low as 0.23 µm. This strategy can be utilized in the diagnosis of galactosemia disorder and detection of galactose in some dairy and other commercial products. DFT calculations clarify the high activity of the Cu sites in the POD-like reaction and explain the selectivity of the Cu-SAN oxidase-like reaction toward D-galactose.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Limo He
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Varun Rai
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Song Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Porat J, Watkins CP, Jin C, Xie X, Tan X, Lebedenko CG, Hemberger H, Shin W, Chai P, Collins JJ, Garcia BA, Bojar D, Flynn RA. O-glycosylation contributes to mammalian glycoRNA biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610074. [PMID: 39257776 PMCID: PMC11384000 DOI: 10.1101/2024.08.28.610074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
There is an increasing appreciation for the role of cell surface glycans in modulating interactions with extracellular ligands and participating in intercellular communication. We recently reported the existence of sialoglycoRNAs, where mammalian small RNAs are covalently linked to N-glycans through the modified base acp3U and trafficked to the cell surface. However, little is currently known about the role for O-glycosylation, another major class of carbohydrate polymer modifications. Here, we use parallel genetic, enzymatic, and mass spectrometry approaches to demonstrate that O-linked glycan biosynthesis is responsible for the majority of sialoglycoRNA levels. By examining the O-glycans associated with RNA from cell lines and colon organoids we find known and previously unreported O-linked glycan structures. Further, we find that O-linked glycans released from small RNA from organoids derived from ulcerative colitis patients exhibit higher levels of sialylation than glycans from healthy organoids. Together, our work provides flexible tools to interrogate O-linked glycoRNAs (O-glycoRNA) and suggests that they may be modulated in human disease.
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Christopher P. Watkins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xixuan Xie
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiao Tan
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlotta G. Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Woojung Shin
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - James J. Collins
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ryan A. Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, USA
| |
Collapse
|
6
|
Giri P, Lim S, Khobragade TP, Pagar AD, Patil MD, Sarak S, Jeon H, Joo S, Goh Y, Jung S, Jang YJ, Choi SB, Kim YC, Kang TJ, Heo YS, Yun H. Biocatalysis enables the scalable conversion of biobased furans into various furfurylamines. Nat Commun 2024; 15:6371. [PMID: 39075048 PMCID: PMC11286754 DOI: 10.1038/s41467-024-50637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Biobased furans have emerged as chemical building blocks for the development of materials because of their diverse scaffolds and as they can be directly prepared from sugars. However, selective, efficient, and cost-effective scalable conversion of biobased furans remains elusive. Here, we report a robust transaminase (TA) from Shimia marina (SMTA) that enables the scalable amination of biobased furanaldehydes with high activity and broad substrate specificity. Crystallographic and mutagenesis analyses provide mechanistic insights and a structural basis for understanding SMTA, which enables a higher substrate conversion. The enzymatic cascade process established in this study allows one-pot synthesis of 2,5-bis(aminomethyl)furan (BAMF) and 5-(aminomethyl)furan-2-carboxylic acid from 5-hydroxymethylfurfural. The biosynthesis of various furfurylamines, including a one-pot cascade reaction for BAMF generation using whole cells, demonstrates their practical application in the pharmaceutical and polymer industries.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Taresh P Khobragade
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Mahesh D Patil
- Chemical Engineering and Process Development Division, CSIR- National Chemical Laboratory, Pune, 411008, India
| | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sangwoo Joo
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Younghwan Goh
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seohee Jung
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yu-Jeong Jang
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung Beom Choi
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ye Chan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
7
|
Jiao H, Zhang M, Sun J, Ali SS, Zhang H, Li Y, Wang X, Fu Y, Wang X, Liu J. Exploring the potential of selective oxidation in bioconjugation of collagen with xyloglucan carboxylates. Int J Biol Macromol 2024; 269:131771. [PMID: 38688792 DOI: 10.1016/j.ijbiomac.2024.131771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/09/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Xyloglucan (XG), as a natural biopolymer, possesses a sound biocompatibility and an impressive biodegradability, which are usually featured with abundant hydroxyl groups available for the bioconjugation with a bioactive moiety, suggesting a promising or unique value possibly applied in the field of biomedicine. In this study, XG was extracted from Tamarind seeds and subjected to four regioselective oxidation methods to introduce carboxyl groups onto the XG molecules for a bioconjugation with collagen. Galactose oxidase and reducing end aldehyde group oxidation mainly resulted in a low carboxylate content at ∼0.34 mmol/g, whereas the primary and secondary hydroxyl group oxidations would lead to a high carboxyl content at ∼0.84 mmol/g. The number-average molar mass (Mn) and weight-average molar mass (Mw) of XG were 8.8 × 105 g/mol and 1.1 × 106 g/mol, respectively. The oxidized XGs were then subjected to a further biofunctionalization with the collagen through EDC/NHS coupling, which exhibited a degree of conjugation rate, ranged from 50 % to 72 %. The collagen-conjugated at the C6 position of XGs exhibited the highest cell viability recorded at 168 % in promoting cell growth and proliferation after 72 h of culture, surpassing that of pure collagen recorded at 138 %, which may indeed suggest a promising value in a biomedical application.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Center on High-value Utilization of Agricultural Waste Biomass between Jiangsu University and Mie University, Zhenjiang 212013, China.
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hongxing Zhang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiulun Wang
- International Joint Research Center on High-value Utilization of Agricultural Waste Biomass between Jiangsu University and Mie University, Zhenjiang 212013, China; Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Jun Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Center on High-value Utilization of Agricultural Waste Biomass between Jiangsu University and Mie University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Yamaguchi T, Asano Y. Nitrile-synthesizing enzymes and biocatalytic synthesis of volatile nitrile compounds: A review. J Biotechnol 2024; 384:20-28. [PMID: 38395363 DOI: 10.1016/j.jbiotec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
9
|
Alpdağtaş S, Jankowski N, Urlacher VB, Koschorreck K. Identification of redox activators for continuous reactivation of glyoxal oxidase from Trametes versicolor in a two-enzyme reaction cascade. Sci Rep 2024; 14:5932. [PMID: 38467766 PMCID: PMC10928124 DOI: 10.1038/s41598-024-56429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O2 to H2O2. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion. Furthermore, only a few glyoxal oxidases have been expressed and characterized so far. Here, we report on a new glyoxal oxidase from Trametes versicolor (TvGLOX) that was expressed at high levels in Pichia pastoris (reclassified as Komagataella phaffii). TvGLOX was found to catalyze the oxidation of aldehyde groups in glyoxylic acid, methyl glyoxal, HMF, 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA), but barely accepted alcohol groups as in 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), preventing formation of FDCA from HMF. Various redox activators were tested for TvGLOX reactivation during catalyzed reactions. Among them, a combination of horseradish peroxidase and its substrate 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) most efficiently reactivated TvGLOX. Through continuous reactivation of TvGLOX in a two-enzyme system employing a recombinant Moesziomyces antarcticus aryl-alcohol oxidase (MaAAO) almost complete conversion of 8 mM HMF to FDCA was achieved within 24 h.
Collapse
Affiliation(s)
- Saadet Alpdağtaş
- Department of Biology, Van Yuzuncu Yil University, Van, 65080, Turkey
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nina Jankowski
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
10
|
Lorente-Arevalo A, Orellana G, Ladero M, Bolivar JM. Overcoming Biochemical Limitations of Galactose Oxidase through the Design of a Solid-Supported Self-Sufficient Biocatalyst. Chembiochem 2023; 24:e202300421. [PMID: 37782555 DOI: 10.1002/cbic.202300421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Galactose Oxidase (GalOx) has gained significant interest in biocatalysis due to its ability for selective oxidation beyond the natural oxidation of galactose, enabling the production of valuable derivatives. However, the practical application of GalOx has been hindered by the limited availability of active and stable biocatalysts, as well as the inherent biochemical limitations such as oxygen (O2 ) dependency and the need for activation. In this study, we addressed these challenges by immobilizing GalOx into agarose-based and Purolite supports to enhance its activity and stability. Additionally, we identified and quantified the oxygen supply limitation into solid catalysts by intraparticle oxygen sensing showing a trade-off between the amount of protein loaded onto the solid support and the catalytic effectiveness of the immobilized enzyme. Furthermore, we coimmobilized a heme-containing protein along with the enzyme to function as an activator. To evaluate the practical application of the immobilized GalOx, we conducted the oxidation of galactose in an instrumented aerated reactor. The results showcased the efficient performance of the immobilized enzyme in the 8 h reaction cycle. Notably, the GalOx immobilized into dextran sulfate-activated agarose exhibited improved stability, overcoming the need for a soluble activator supply, and demonstrated exceptional performance in galactose oxidation. These findings offer promising prospects for the utilization of GalOx in technical biocatalytic applications.
Collapse
Affiliation(s)
- Alvaro Lorente-Arevalo
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Guillermo Orellana
- Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel Ladero
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Juan M Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
11
|
Swanson CB, Ford GJ, Mattey AP, Gourbeyre L, Flitsch SL. Biocatalytic Cascades toward Iminosugar Scaffolds Reveal Promiscuous Activity of Shikimate Dehydrogenases. ACS CENTRAL SCIENCE 2023; 9:103-108. [PMID: 36712485 PMCID: PMC9881201 DOI: 10.1021/acscentsci.2c01169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Iminosugar scaffolds are highly sought-after pharmaceutical targets, but their chemical synthesis is lengthy and can suffer from poor scalability and purification. Here we report protecting-group-free chemoenzymatic and biocatalytic cascades to synthesize iminosugars from sugar-derived aminopolyols in two steps. Using galactose oxidase variant F2 followed by a chemical or enzymatic reduction provided an efficient one-pot route to these targets, with product formation >70%. Key to success of this strategy was the application of genome mining, which identified bacterial shikimate dehydrogenases as promiscuous iminosugar reductases. The cell-free protocols allowed for isolation of highly polar iminosugar products from biotransformations in a single step through development of a gradient-elution cation exchange purification. The two-step pathway provides a short synthetic route that can be used as a cell-free platform for broader iminosugar synthesis.
Collapse
|
12
|
Copper radical oxidases: galactose oxidase, glyoxal oxidase, and beyond! Essays Biochem 2022; 67:597-613. [PMID: 36562172 DOI: 10.1042/ebc20220124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
The copper radical oxidases (CROs) are an evolutionary and functionally diverse group of enzymes established by the historically significant galactose 6-oxidase and glyoxal oxidase from fungi. Inducted in 2013, CROs now constitute Auxiliary Activity Family 5 (AA5) in the Carbohydrate-Active Enzymes (CAZy) classification. CROs catalyse the two-electron oxidation of their substrates using oxygen as the final electron acceptor and are particularly distinguished by a cross-linked tyrosine-cysteine co-factor that is integral to radical stabilization. Recently, there has been a significant increase in the biochemically and structurally characterized CROs, which has revealed an expanded natural diversity of catalytic activities in the family. This review provides a brief historical introduction to CRO biochemistry and structural biology as a foundation for an update on current advances in CRO enzymology, biotechnology, and biology across kingdoms of life.
Collapse
|
13
|
Yeow K, Haarr MB, Muldoon J, O'Reilly E. Preparation of iminosugars from aminopolyols via selective oxidation using galactose oxidase. Chem Commun (Camb) 2022; 58:13640-13643. [PMID: 36409216 DOI: 10.1039/d2cc04989a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Minimally protected aminopolyols are novel substrates for the galactose oxidase variant F2. Site-selective oxidation proceeds at the terminal primary alcohol, followed by spontaneous cyclisation to afford stable hemiaminal/hemiacetal anomers of the piperidine and azepane scaffolds, with isolated yields of up to 94%. Simultaneous deprotection and reduction occured readily to afford valuable and biologically relevant iminosugars.
Collapse
Affiliation(s)
- Kathryn Yeow
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Marianne B Haarr
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jimmy Muldoon
- Mass Spectrometry Facility, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Koschorreck K, Alpdagtas S, Urlacher VB. Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications. ENGINEERING MICROBIOLOGY 2022; 2:100037. [PMID: 39629025 PMCID: PMC11611005 DOI: 10.1016/j.engmic.2022.100037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/06/2024]
Abstract
Copper-radical oxidases (CROs) catalyze the two-electron oxidation of a large number of primary alcohols including carbohydrates, polyols and benzylic alcohols as well as aldehydes and α-hydroxy-carbonyl compounds while reducing molecular oxygen to hydrogen peroxide. Initially, CROs like galactose oxidase and glyoxal oxidase were identified only in fungal secretomes. Since the last decade, their representatives have also been identified in some bacteria. CROs are grouped in the AA5 family of "auxiliary activities" in the database of Carbohydrate-Active enzymes. Despite low overall sequence similarity and different substrate specificities, sequence alignments and the solved crystal structures revealed a conserved architecture of the active sites in all CROs, with a mononuclear copper ion coordinated to an axial tyrosine, two histidines, and a cross-linked cysteine-tyrosyl radical cofactor. This unique post-translationally modified protein cofactor has attracted much attention in the past, which resulted in a large number of reports that shed light on key steps of the catalytic cycle and physico-chemical properties of CROs. Thanks to their broad substrate spectrum accompanied by the only need for molecular oxygen for catalysis, CROs since recently experience a renaissance and have been applied in various biocatalytic processes. This review provides an overview of the structural features, catalytic mechanism and substrates of CROs, presents an update on the engineering of these enzymes to improve their expression in recombinant hosts and to enhance their activity, and describes their potential fields of biotechnological application.
Collapse
Affiliation(s)
- Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Saadet Alpdagtas
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Department of Biology, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
15
|
Mathieu Y, Cleveland ME, Brumer H. Active-Site Engineering Switches Carbohydrate Regiospecificity in a Fungal Copper Radical Oxidase. ACS Catal 2022; 12:10264-10275. [PMID: 36033369 PMCID: PMC9397409 DOI: 10.1021/acscatal.2c01956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Copper radical oxidases (CROs) from Auxiliary Activity Family 5, Subfamily 2 (AA5_2), are organic cofactor-free biocatalysts for the selective oxidation of alcohols to the corresponding aldehydes. AA5_2 CROs comprise canonical galactose-6-oxidases as well as the more recently discovered general alcohol oxidases and aryl alcohol oxidases. Guided by primary and tertiary protein structural analyses, we targeted a distinct extended loop in the active site of a Colletotrichum graminicola aryl alcohol oxidase (CgrAAO) to explore its effect on catalysis in the broader context of AA5_2. Deletion of this loop, which is bracketed by a conserved disulfide bridge, significantly reduced the inherent activity of the enzyme toward extended galacto-oligosaccharides, as anticipated from molecular modeling. Unexpectedly, kinetic and product analysis on a range of monosaccharides and disaccharides revealed that an altered carbohydrate specificity in CgrAAO-Δloop was accompanied by a complete change in regiospecificity from C-6 to C-1 oxidation, thereby generating aldonic acids. C-1 regiospecificity is unprecedented in AA5 enzymes and is classically associated with flavin-dependent carbohydrate oxidases of Auxiliary Activity Family 3. Thus, this work further highlights the catalytic adaptability of the unique mononuclear copper radical active site and provides a basis for the design of improved biocatalysts for diverse potential applications.
Collapse
Affiliation(s)
- Yann Mathieu
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maria E. Cleveland
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Harry Brumer
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
16
|
Medina-Castillo AL, Ruzic L, Nidetzky B, Bolivar JM. Hydrophilic Nonwoven Nanofiber Membranes as Nanostructured Supports for Enzyme Immobilization. ACS APPLIED POLYMER MATERIALS 2022; 4:6054-6066. [PMID: 35991305 PMCID: PMC9379912 DOI: 10.1021/acsapm.2c00863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The high porosity, interconnected pore structure, and high surface area-to-volume ratio make the hydrophilic nonwoven nanofiber membranes (NV-NF-Ms) promising nanostructured supports for enzyme immobilization in different biotechnological applications. In this work, NV-NF-Ms with excellent mechanical and chemical properties were designed and fabricated by electrospinning in one step without using additives or complicated crosslinking processes after electrospinning. To do so, two types of ultrahigh-molecular-weight linear copolymers with very different mechanical properties were used. Methyl methacrylate-co-hydroxyethyl methacrylate (p(MMA)-co-p(HEMA)) and methyl acrylate-co-hydroxyethyl acrylate (p(MA)-co-p(HEA)) were designed and synthesized by reverse atom transfer radical polymerization (reverse-ATRP) and copper-mediated living radical polymerization (Cu0-MC-LRP), respectively. The copolymers were characterized by nuclear magnetic resonance (1H-NMR) spectroscopy and by triple detection gel permeation chromatography (GPC). The polarity, topology, and molecular weight of the copolymers were perfectly adjusted. The polymeric blend formed by (MMA)1002-co-(HEMA)1002 (M w = 230,855 ± 7418 Da; M n = 115,748 ± 35,567 Da; PDI = 2.00) and (MA)11709-co-(HEA)7806 (M w = 1.972 × 106 ± 33,729 Da; M n = 1.395 × 106 ± 35,019 Da; PDI = 1.41) was used to manufacture (without additives or chemical crosslinking processes) hydroxylated nonwoven nanofiber membranes (NV-NF-Ms-OH; 300 nm in fiber diameter) with excellent mechanical and chemical properties. The morphology of NV-NF-Ms-OH was studied by scanning electron microscopy (SEM). The suitability for enzyme binding was proven by designing a palette of different surface functionalization to enable both reversible and irreversible enzyme immobilization. NV-NF-Ms-OH were successfully functionalized with vinyl sulfone (281 ± 20 μmol/g), carboxyl (560 ± 50 μmol/g), and amine groups (281 ± 20 μmol/g) and applied for the immobilization of two enzymes of biotechnological interest. Galactose oxidase was immobilized on vinyl sulfone-activated materials and carboxyl-activated materials, while laccase was immobilized onto amine-activated materials. These preliminary results are a promising basis for the application of nonwoven membranes in enzyme technology.
Collapse
Affiliation(s)
- Antonio L. Medina-Castillo
- Nanomateriales
y Polimeros S.L. (NanoMyP®), Spin-Off Company of the University
of Granada, BIC Building,
Avd. Innovacion 1, E-18016 Granada, Spain
- Department
of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Lucija Ruzic
- Nanomateriales
y Polimeros S.L. (NanoMyP®), Spin-Off Company of the University
of Granada, BIC Building,
Avd. Innovacion 1, E-18016 Granada, Spain
- FQPIMA
Group, Chemical and Materials Engineering Department, Faculty of Chemical
Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria
| | - Juan M. Bolivar
- FQPIMA
Group, Chemical and Materials Engineering Department, Faculty of Chemical
Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Jankowski N, Koschorreck K, Urlacher VB. Aryl‐Alcohol‐Oxidase‐Mediated Synthesis of Piperonal and Other Valuable Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Katja Koschorreck
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
18
|
Zhao F, Brix AC, Lielpetere A, Schuhmann W, Conzuelo F. On the Mediated Electron Transfer of Immobilized Galactose Oxidase for Biotechnological Applications. Chemistry 2022; 28:e202200868. [PMID: 35338670 PMCID: PMC9325534 DOI: 10.1002/chem.202200868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/08/2022]
Abstract
The use of enzymes as catalysts in chemical synthesis offers advantages in terms of clean and highly selective transformations. Galactose oxidase (GalOx) is a remarkable enzyme with several applications in industrial conversions as it catalyzes the oxidation of primary alcohols. We have investigated the wiring of GalOx with a redox polymer; this enables mediated electron transfer with the electrode surface for its potential application in biotechnological conversions. As a result of electrochemical regeneration of the catalytic center, the formation of harmful H2 O2 is minimized during enzymatic catalysis. The introduced bioelectrode was applied to the conversion of bio-renewable platform materials, with glycerol as model substrate. The biocatalytic transformations of glycerol and 5-hydroxymethylfurfural (HMF) were investigated in a circular flow-through setup to assess the possibility of substrate over-oxidation, which is observed for glycerol oxidation but not during HMF conversion.
Collapse
Affiliation(s)
- Fangyuan Zhao
- School of Chemical Engineering & TechnologyChina University of Mining and TechnologyXuzhou221116, JiangsuP. R. China
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Ann Cathrin Brix
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Anna Lielpetere
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Felipe Conzuelo
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República2780-157OeirasPortugal
| |
Collapse
|
19
|
Milić M, Byström E, Domínguez de María P, Kara S. Enzymatic Cascade for the Synthesis of 2,5-Furandicarboxylic Acid in Biphasic and Microaqueous Conditions: 'Media-Agnostic' Biocatalysts for Biorefineries. CHEMSUSCHEM 2022; 15:e202102704. [PMID: 35438241 PMCID: PMC9322558 DOI: 10.1002/cssc.202102704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) is produced upon dehydration of C6 sugars in biorefineries. As the product, it remains either in aqueous solutions, or is in situ extracted to an organic medium (biphasic system). For the subsequent oxidation of HMF to 2,5-furandicarboxylic acid (FDCA), 'media-agnostic' catalysts that can be efficiently used in different conditions, from aqueous to biphasic, and to organic (microaqueous) media, are of interest. Here, the concept of a one-pot biocatalytic cascade for production of FDCA from HMF was reported, using galactose oxidase (GalOx) for the formation of 2,5-diformylfuran (DFF), followed by the lipase-mediated peracid oxidation of DFF to FDCA. GalOx maintained its catalytic activity upon exposure to a range of organic solvents with only 1 % (v/v) of water. The oxidation of HMF to 2,5-diformylfuran (DFF) was successfully established in ethyl acetate-based biphasic or microaqueous systems. To validate the concept, the reaction was conducted at 5 % (v/v) water, and integrated in a cascade where DFF was subsequently oxidized to FDCA in a reaction catalyzed by Candida antarctica lipase B.
Collapse
Affiliation(s)
- Milica Milić
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 108000Aarhus CDenmark
| | | | | | - Selin Kara
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 108000Aarhus CDenmark
- Institute of Technical ChemistryLeibniz University HannoverCallinstr. 530167HannoverGermany
| |
Collapse
|
20
|
Woodley JM. Ensuring the Sustainability of Biocatalysis. CHEMSUSCHEM 2022; 15:e202102683. [PMID: 35084801 DOI: 10.1002/cssc.202102683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Biocatalysis offers many attractive features for the synthetic chemist. In many cases, the high selectivity and ability to tailor specific enzyme features via protein engineering already make it the catalyst of choice. From the perspective of sustainability, several features such as catalysis under mild conditions and use of a renewable and biodegradable catalyst also look attractive. Nevertheless, to be sustainable at a larger scale it will be essential to develop processes operating at far higher concentrations of product, and which make better use of the enzyme via improved stability. In this Concept, it is argued that a particular emphasis on these specific metrics is of particular importance for the future implementation of biocatalysis in industry, at a level that fulfills its true potential.
Collapse
Affiliation(s)
- John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
21
|
Schelch S, Bolivar JM, Nidetzky B. Monitoring and control of the release of soluble O 2 from H 2 O 2 inside porous enzyme carrier for O 2 supply to an immobilized D-amino acid oxidase. Biotechnol Bioeng 2022; 119:2374-2387. [PMID: 35510396 PMCID: PMC9545842 DOI: 10.1002/bit.28130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/09/2022]
Abstract
While O2 substrate for bio‐transformations in bulk liquid is routinely provided from entrained air or O2 gas, tailored solutions of O2 supply are required when the bio‐catalysis happens spatially confined to the microstructure of a solid support. Release of soluble O2 from H2O2 by catalase is promising, but spatiotemporal control of the process is challenging to achieve. Here, we show monitoring and control by optical sensing within a porous carrier of the soluble O2 formed by an immobilized catalase upon feeding of H2O2. The internally released O2 is used to drive the reaction of d‐amino acid oxidase (oxidation of d‐methionine) that is co‐immobilized with the catalase in the same carrier. The H2O2 is supplied in portions at properly timed intervals, or continuously at controlled flow rate, to balance the O2 production and consumption inside the carrier so as to maintain the internal O2 concentration in the range of 100–500 µM. Thus, enzyme inactivation by excess H2O2 is prevented and gas formation from the released O2 is avoided at the same time. The reaction rate of the co‐immobilized enzyme preparation is shown to depend linearly on the internal O2 concentration up to the air‐saturated level. Conversions at a 200 ml scale using varied H2O2 feed rate (0.04–0.18 mmol/min) give the equivalent production rate from d‐methionine (200 mM) and achieve rate enhancement by ∼1.55‐fold compared to the same oxidase reaction under bubble aeration. Collectively, these results show an integrated strategy of biomolecular engineering for tightly controlled supply of O2 substrate from H2O2 into carrier‐immobilized enzymes. By addressing limitations of O2 supply via gas‐liquid transfer, especially at the microscale, this can be generally useful to develop specialized process strategies for O2‐dependent biocatalytic reactions.
Collapse
Affiliation(s)
- Sabine Schelch
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Juan M Bolivar
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| |
Collapse
|
22
|
Ribeaucourt D, Höfler GT, Yemloul M, Bissaro B, Lambert F, Berrin JG, Lafond M, Paul CE. Tunable Production of ( R)- or ( S)-Citronellal from Geraniol via a Bienzymatic Cascade Using a Copper Radical Alcohol Oxidase and Old Yellow Enzyme. ACS Catal 2022; 12:1111-1116. [PMID: 35096467 PMCID: PMC8787751 DOI: 10.1021/acscatal.1c05334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Indexed: 01/08/2023]
Abstract
Biocatalytic pathways for the synthesis of (-)-menthol, the most sold flavor worldwide, are highly sought-after. To access the key intermediate (R)-citronellal used in current major industrial production routes, we established a one-pot bienzymatic cascade from inexpensive geraniol, overcoming the problematic biocatalytic reduction of the mixture of (E/Z)-isomers in citral by harnessing a copper radical oxidase (CgrAlcOx) and an old yellow enzyme (OYE). The cascade using OYE2 delivered 95.1% conversion to (R)-citronellal with 95.9% ee, a 62 mg scale-up affording high yield and similar optical purity. An alternative OYE, GluER, gave (S)-citronellal from geraniol with 95.3% conversion and 99.2% ee.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Georg T. Höfler
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mehdi Yemloul
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Caroline E. Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
23
|
Mahdi WA, Absar MS, Choi S, Yang VC, Kwon YM. Enhanced control of bioactivity of tissue plasminogen activator (tPA) through domain-directed enzymatic oxidation of terminal galactose. BIOIMPACTS : BI 2022; 12:479-486. [PMID: 36644546 PMCID: PMC9809136 DOI: 10.34172/bi.2022.23477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/17/2021] [Accepted: 05/22/2021] [Indexed: 11/06/2022]
Abstract
Introduction: In targeted enzyme prodrug constructs, it is critical to control the bioactivity of the drug in its prodrug form. The preparation of such constructs often involves conjugation reactions directed to functional groups on amino acid side chains of the protein, which result in random conjugation and incomplete control of bioactivity of a prodrug, which may result in significant nontarget effect. Thus, more specific method of modification is desired. If the drug is a glycoprotein, enzymatic oxidation may offer an alternative approach for therapeutic glycoproteins. Methods: Tissue plasminogen activator (tPA), a model glycoprotein enzyme, was treated with galactose oxidase (GO) and horseradish peroxidase, followed by thiolation reaction and conjugation with low molecular weight heparin (LMWH). The LMWH-tPA conjugate was isolated by ion-exchange chromatography followed by centrifugal filtration. The conjugate was characterized for its fibrinolytic activity and for its plasminogen activation through an indirect amidolytic assay with a plasmin-specific substrate S-2251 when LMWH-tPA conjugate is complexed with protamine-albumin conjugate, followed by triggered activation in the presence of heparin. Results: LMWH-tPA conjugate prepared via enzymatic oxidation retained ~95% of its fibrinolytic activity with respect to native tPA. Upon complexation with protamine-albumin conjugate, the activity of LMWH-tPA was effectively inhibited (~90%) whereas the LMWH-tPA prepared by random thiolation exhibited ~55% inhibition. Addition of heparin fully generated the activities of both conjugates. Conclusion: The tPA was successfully modified via enzymatic oxidation by GO, resulting in enhanced control of its activity in the prodrug construct. This approach can be applied to other therapeutic glycoproteins.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad S. Absar
- Texas Tech University Health Sciences Center (TTUHSC), School of Pharmacy, Amarillo, TX 79106, USA
| | - Suna Choi
- Texas Tech University Health Sciences Center (TTUHSC), School of Pharmacy, Amarillo, TX 79106, USA
| | - Victor C. Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University Tianjin 300070, China
,University of Michigan, College of Pharmacy, MI 48109-1065, USA
| | - Young M. Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
,Corresponding author: Young M. Kwon, ykwon1nova.edu
| |
Collapse
|
24
|
Kaddouch E, Cleveland ME, Navarro D, Grisel S, Haon M, Brumer H, Lafond M, Berrin JG, Bissaro B. A simple and direct ionic chromatography method to monitor galactose oxidase activity. RSC Adv 2022; 12:26042-26050. [PMID: 36199594 PMCID: PMC9469488 DOI: 10.1039/d2ra04485d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Galactose oxidase (GalOx, EC.1.1.3.9) is one of the most extensively studied copper radical oxidases (CROs). The reaction catalyzed by GalOx leads to the oxidation of the C-6 hydroxyl group of galactose and galactosides (including galactosylated polysaccharides and glycoproteins) to the corresponding aldehydes, coupled to the reduction of dioxygen to hydrogen peroxide. Despite more than 60 years of research including mechanistic studies, enzyme engineering and application development, GalOx activity remains primarily monitored by indirect measurement of the co-product hydrogen peroxide. Here, we describe a simple direct method to measure GalOx activity through the identification of galactosylated oxidized products using high-performance anion-exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD). Using galactose and lactose as representative substrates, we were able to separate and detect the C-6 oxidized products, which were confirmed by LC-MS and NMR analyses to exist in their hydrated (geminal-diol) forms. We show that the HPAEC-PAD method is superior to other methods in terms of sensitivity as we could detect down to 0.08 μM of LacOX (eq. 30 μg L−1). We believe the method will prove useful for qualitative detection of galactose oxidase activity in biological samples or for quantitative purposes to analyze enzyme kinetics or to compare enzyme variants in directed evolution programs. Galactose oxidase (GalOx, EC.1.1.3.9) is one of the most extensively studied copper radical oxidases. Here, we show it can be monitored through the release of oxidized galactosylated products using a simple, direct and sensitive HPAEC-PAD method.![]()
Collapse
Affiliation(s)
- Eden Kaddouch
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Maria E. Cleveland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Navarro
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- INRAE, Aix Marseille Université, CIRM-CF, Marseille, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- INRAE, Aix Marseille Université, 3PE platform, Marseille, France
| | - Mireille Haon
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- INRAE, Aix Marseille Université, 3PE platform, Marseille, France
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mickaël Lafond
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- INRAE, Aix Marseille Université, 3PE platform, Marseille, France
| | - Bastien Bissaro
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| |
Collapse
|
25
|
Wahart AJC, Staniland J, Miller GJ, Cosgrove SC. Oxidase enzymes as sustainable oxidation catalysts. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211572. [PMID: 35242351 PMCID: PMC8753158 DOI: 10.1098/rsos.211572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals.
Collapse
Affiliation(s)
- Alice J. C. Wahart
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | | | - Gavin J. Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| | - Sebastian C. Cosgrove
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
26
|
Mechanistic kinetic modelling of enzyme-catalysed oxidation reactions of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Cleveland ME, Mathieu Y, Ribeaucourt D, Haon M, Mulyk P, Hein JE, Lafond M, Berrin JG, Brumer H. A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases. Cell Mol Life Sci 2021; 78:8187-8208. [PMID: 34738149 PMCID: PMC11072238 DOI: 10.1007/s00018-021-03981-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.
Collapse
Affiliation(s)
- Maria E Cleveland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620, Le Bar sur Loup, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Paul Mulyk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
28
|
Identification of Copper-Containing Oxidoreductases in the Secretomes of Three Colletotrichum Species with a Focus on Copper Radical Oxidases for the Biocatalytic Production of Fatty Aldehydes. Appl Environ Microbiol 2021; 87:e0152621. [PMID: 34613753 DOI: 10.1128/aem.01526-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum, and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in the absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29 to 52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11, AA12, AA13, and AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris, and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavor and fragrance ingredients. Copper radical alcohol oxidases (CRO-AlcOx) have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial applications to alleviate various costs pertaining to biocatalyst production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative stress conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, and lytic polysaccharide monooxygenases [LPMOs]) usually assigned to "plant cell wall degradation," despite the absence of any plant-biomass mimicking compound. However, in these conditions, only small amounts of CRO-AlcOx were secreted, pointing out recombinant expression as the most promising path for their biocatalytic application.
Collapse
|
29
|
Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering. Nat Commun 2021; 12:4946. [PMID: 34400632 PMCID: PMC8367993 DOI: 10.1038/s41467-021-25034-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2021] [Indexed: 02/05/2023] Open
Abstract
5-Hydroxymethylfurfural (HMF) has emerged as a crucial bio-based chemical building block in the drive towards developing materials from renewable resources, due to its direct preparation from sugars and its readily diversifiable scaffold. A key obstacle in transitioning to bio-based plastic production lies in meeting the necessary industrial production efficiency, particularly in the cost-effective conversion of HMF to valuable intermediates. Toward addressing the challenge of developing scalable technology for oxidizing crude HMF to more valuable chemicals, here we report coordinated reaction and enzyme engineering to provide a galactose oxidase (GOase) variant with remarkably high activity toward HMF, improved O2 binding and excellent productivity (>1,000,000 TTN). The biocatalyst and reaction conditions presented here for GOase catalysed selective oxidation of HMF to 2,5-diformylfuran offers a productive blueprint for further development, giving hope for the creation of a biocatalytic route to scalable production of furan-based chemical building blocks from sustainable feedstocks. 5-Hydroxymethylfurfural (HMF) can be transformed to a range of industrially useful derivatives, such as 2,5-diformylfuran (DFF), but the reactions needed for efficient industrial production are hindered by several issues. Here, the authors perform reaction and enzyme engineering resulting in a galactose oxidase variant with high activity towards HMF, improved oxygen binding and high productivity.
Collapse
|
30
|
Mattey AP, Ford GJ, Citoler J, Baldwin C, Marshall JR, Palmer RB, Thompson M, Turner NJ, Cosgrove SC, Flitsch SL. Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades*. Angew Chem Int Ed Engl 2021; 60:18660-18665. [PMID: 33856106 PMCID: PMC8453870 DOI: 10.1002/anie.202103805] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Indexed: 01/14/2023]
Abstract
A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.
Collapse
Affiliation(s)
- Ashley P. Mattey
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Grayson J. Ford
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Joan Citoler
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Christopher Baldwin
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ryan B. Palmer
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | | | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sebastian C. Cosgrove
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Lennard-Jones LaboratorySchool of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireST5 5BGUK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
31
|
Mattey AP, Ford GJ, Citoler J, Baldwin C, Marshall JR, Palmer RB, Thompson M, Turner NJ, Cosgrove SC, Flitsch SL. Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:18808-18813. [PMID: 38505092 PMCID: PMC10947180 DOI: 10.1002/ange.202103805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Indexed: 12/20/2022]
Abstract
A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.
Collapse
Affiliation(s)
- Ashley P. Mattey
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Grayson J. Ford
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Joan Citoler
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Christopher Baldwin
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ryan B. Palmer
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | | | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sebastian C. Cosgrove
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Lennard-Jones LaboratorySchool of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireST5 5BGUK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
32
|
Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin JG. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 2021; 56:107787. [PMID: 34147589 DOI: 10.1016/j.biotechadv.2021.107787] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France; Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
33
|
Zhang S, Ruccolo S, Fryszkowska A, Klapars A, Marshall N, Strotman NA. Electrochemical Activation of Galactose Oxidase: Mechanistic Studies and Synthetic Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shaoguang Zhang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Anna Fryszkowska
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Artis Klapars
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Nicholas Marshall
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
34
|
Wohlschlager L, Kracher D, Scheiblbrandner S, Csarman F, Ludwig R. Spectroelectrochemical investigation of the glyoxal oxidase activation mechanism. Bioelectrochemistry 2021; 141:107845. [PMID: 34147826 DOI: 10.1016/j.bioelechem.2021.107845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
Glyoxal oxidase (GLOX) is an extracellular source of H2O2 in white-rot secretomes, where it acts in concert with peroxidases to degrade lignin. It has been reported that GLOX requires activation prior to catalytic turnover and that a peroxidase system can fulfill this task. In this study, we verify that an oxidation product of horseradish peroxidase, the radical cation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), is an activator for GLOX. A spectroelectrochemical cell was used to generate the activating radical species, to continuously measure its concentration, and to simultaneously measure the catalytic activity of GLOX based on its O2 consumption. The results show that GLOX can undergo multiple catalytic turnovers upon activation and that activity increases with the activator concentration. However, we also found that the ABTS cation radical can serve as an electron acceptor which becomes visible in the absence of O2. Furthermore, GLOX activity is highly restrained by the naturally occurring, low O2 concentration. We conclude that GLOX is indeed an auxiliary enzyme for H2O2 production in white-rot secretomes. Its turnover rate is strongly regulated by the availability of O2 and the radical generating activity of peroxidases present in the secretome, which acts as a feedback loop for GLOX activity.
Collapse
Affiliation(s)
- Lena Wohlschlager
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Daniel Kracher
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
35
|
Lorente-Arevalo A, Ladero M, Bolivar JM. Framework of the kinetic analysis of O 2-dependent oxidative biocatalysts for reaction intensification. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00237f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A framework for kinetic modelling and evaluation of the reaction intensification of O2-dependent enzyme catalyzed reactions is built from measurements of consumption rates of the initially dissolved O2 in homogeneous liquid phase.
Collapse
Affiliation(s)
- Alvaro Lorente-Arevalo
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel Ladero
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
36
|
Johnson HC, Zhang S, Fryszkowska A, Ruccolo S, Robaire SA, Klapars A, Patel NR, Whittaker AM, Huffman MA, Strotman NA. Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(iii) activator for the synthesis of islatravir. Org Biomol Chem 2021; 19:1620-1625. [DOI: 10.1039/d0ob02395g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese(iii) acetate activates galactose oxidase (GOase), a Cu-dependent metalloenzyme that catalyzes the oxidation of alcohols to aldehydes.
Collapse
Affiliation(s)
| | - Shaoguang Zhang
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Anna Fryszkowska
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Serge Ruccolo
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Sandra A. Robaire
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Artis Klapars
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Niki R. Patel
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | | | - Mark A. Huffman
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Neil A. Strotman
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| |
Collapse
|
37
|
Ott W, Ceccarelli A, Manning J, Turner NJ, Oppenheimer R. Data‐driven enzyme immobilisation: a case study using DNA to immobilise galactose oxidase. ENGINEERING BIOLOGY 2020; 4:43-46. [PMID: 36968156 PMCID: PMC9996703 DOI: 10.1049/enb.2020.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
Biocatalysis has the potential to enable green chemistry. New methods of enzyme immobilisation will be required to improve enzyme stability, product purification, and compatibility of different enzymes in the same reaction conditions. Deoxyribonucleic acid (DNA) stands out among supramolecular scaffolds, as simple Watson-Crick base-pairing rules can be used to rationally design a unique nanoscale environment around each individual enzyme in a cascade. Enhancements of enzyme activity and stability on DNA nanostructures have previously been reported, but never in the context of industrially relevant chemical syntheses or reaction conditions. Here, the authors show DNA can enhance the activity and stability of a galactose oxidase mutant, which could be used in a cascade to produce bioplastics from lignin. The enzyme was enhanced in the cell-free extract, which to their knowledge has not been shown before for any enzymes on DNA. This is significant because crude biocatalytic reactions are vastly more cost-effective. This opens the door to further work on multienzyme cascades by tuning the properties of individual enzymes.
Collapse
Affiliation(s)
- Wolfgang Ott
- FabricNano, Unit 19, Westbourne Studios 242 Acklam Rd London W10 5JJ UK
| | | | - Jack Manning
- FabricNano, Unit 19, Westbourne Studios 242 Acklam Rd London W10 5JJ UK
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | |
Collapse
|
38
|
Yuan B, Debecker DP, Wu X, Xiao J, Fei Q, Turner NJ. One‐pot Chemoenzymatic Deracemisation of Secondary Alcohols Employing Variants of Galactose Oxidase and Transfer Hydrogenation. ChemCatChem 2020. [DOI: 10.1002/cctc.202001191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Yuan
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Department of Chemistry University of Manchester Manchester Institute of Biotechnology M1 7DN Manchester UK
| | - Damien P. Debecker
- Institute of Condensed Matter and Nanosciences (IMCN) Université catholique de Louvain (UCLouvain) Ottignies-Louvain-la-Neuve 1348 Louvain-La-Neuve Belgium
| | - Xiaofeng Wu
- Department of Chemistry University of Liverpool L69 7ZD Liverpool UK
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool L69 7ZD Liverpool UK
| | - Qiang Fei
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Nicholas J. Turner
- Department of Chemistry University of Manchester Manchester Institute of Biotechnology M1 7DN Manchester UK
| |
Collapse
|
39
|
Bouri M, Zuaznabar‐Gardona JC, Novell M, Blondeau P, Andrade FJ. Paper‐based Potentiometric Biosensor for Monitoring Galactose in Whole Blood. ELECTROANAL 2020. [DOI: 10.1002/elan.202060285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamed Bouri
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Julio C. Zuaznabar‐Gardona
- current address: Nanobiotechnology & Bioanalysis Group Departament d'Enginyeria Química Universitat Rovira i Virgili Avinguda Països Catalans 26 43007 Tarragona Spain
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Marta Novell
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Francisco J. Andrade
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| |
Collapse
|
40
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
41
|
Xu J, Zhang K, Cao H, Li H, Cheng F, Cao C, Xue YP, Zheng YG. Development of a biocatalytic cascade for synthesis of 2-oxo-4-(hydroxymethylphosphinyl) butyric acid in one pot. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1797697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianmiao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kai Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Huiting Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Heng Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Chenghao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
42
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
43
|
Lindeque RM, Woodley JM. The Effect of Dissolved Oxygen on Kinetics during Continuous Biocatalytic Oxidations. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rowan M. Lindeque
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
44
|
Cajnko MM, Novak U, Grilc M, Likozar B. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2,5- diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) with air: mechanisms, pathways and synthesis selectivity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:66. [PMID: 32308735 PMCID: PMC7149886 DOI: 10.1186/s13068-020-01705-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 2,5-Furandicarboxylic acid (FDCA) is one of the top biomass-derived value-added chemicals. It can be produced from fructose and other C6 sugars via formation of 5-hydroxymethilfurfural (HMF) intermediate. Most of the chemical methods for FDCA production require harsh conditions, thus as an environmentally friendly alternative, an enzymatic conversion process can be applied. RESULTS Commercially available horseradish peroxidase (HRP) and lignin peroxidase (LPO), alcohol (AO) and galactose oxidase (GO), catalase (CAT) and laccase (LAC) were tested against HMF, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furoic acid (HMFA) and 5-formyl-2-furoic acid (FFA). Enzyme concentrations were determined based on the number of available active sites and reactions performed at atmospheric oxygen pressure. AO, GO, HRP and LPO were active against HMF, where LPO and HRP produced 0.6 and 0.7% of HMFA, and GO and AO produced 25.5 and 5.1% DFF, respectively. Most of the enzymes had only mild (3.2% yield or less) or no activity against DFF, HMFA and FFA, with only AO having a slightly higher activity against FFA with an FDCA yield of 11.6%. An effect of substrate concentration was measured only for AO, where 20 mM HMF resulted in 19.5% DFF and 5 mM HMF in 39.9% DFF, with a K m value of 14 mM. Some multi-enzyme reactions were also tested and the combination of AO and CAT proved most effective in converting over 97% HMF to DFF in 72 h. CONCLUSIONS Our study aimed at understanding the mechanism of conversion of bio-based HMF to FDCA by different selected enzymes. By understanding the reaction pathway, as well as substrate specificity and the effect of substrate concentration, we would be able to better optimize this process and obtain the best product yields in the future.
Collapse
Affiliation(s)
- Miša Mojca Cajnko
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
45
|
Abstract
The role of bio- and chemo-catalytic aerobic oxidations in the production of commodity chemicals in a bio-refinery is reviewed. The situation is fundamentally different to that in a petrochemicals refinery where the feedstocks are gaseous or liquid hydrocarbons that are oxidized at elevated temperatures in the vapor or liquid phase under solvent-free conditions. In contrast, the feedstocks in a biorefinery are carbohydrates that are water soluble solids and their conversion will largely involve aerobic oxidations of hydroxyl functional groups in water as the solvent under relatively mild conditions of temperature and pressure. This will require the development and use of cost-effective and environmentally attractive processes using both chemo- and biocatalytic methods for alcohols and polyols.
Collapse
Affiliation(s)
- Roger A. Sheldon
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
46
|
Ford GJ, Kress N, Mattey AP, Hepworth LJ, Baldwin CR, Marshall JR, Seibt LS, Huang M, Birmingham WR, Turner NJ, Flitsch SL. Synthesis of protected 3-aminopiperidine and 3-aminoazepane derivatives using enzyme cascades. Chem Commun (Camb) 2020; 56:7949-7952. [DOI: 10.1039/d0cc02976a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of Cbz-protected 3-aminopiperidine and 3-aminoazepane using a multi-enzyme cascade consisting of galactose oxidase and imine reductase variants.
Collapse
|
47
|
Woodley JM. Advances in biological conversion technologies: new opportunities for reaction engineering. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00422j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction engineering needs to embrace biological conversion technologies, on the road to identify more sustainable routes for chemical manufacture.
Collapse
Affiliation(s)
- John M. Woodley
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark (DTU)
- DK-2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
48
|
Srinivasamurthy VS, Böttcher D, Engel J, Kara S, Bornscheuer UT. A whole-cell process for the production of ε-caprolactone in aqueous media. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Valverde P, Vendeville JB, Hollingsworth K, Mattey AP, Keenan T, Chidwick H, Ledru H, Huonnic K, Huang K, Light ME, Turner N, Jiménez-Barbero J, Galan MC, Fascione MA, Flitsch S, Turnbull WB, Linclau B. Chemoenzymatic synthesis of 3-deoxy-3-fluoro-l-fucose and its enzymatic incorporation into glycoconjugates. Chem Commun (Camb) 2020; 56:6408-6411. [DOI: 10.1039/d0cc02209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A chemoenzymatic synthesis of 3-deoxy-3-fluoro-l-fucose, using a d- to l-sugar translation strategy, and its enzymatic activation and glycosylation, is reported.
Collapse
|
50
|
Forget SM, Xia F(R, Hein JE, Brumer H. Determination of biocatalytic parameters of a copper radical oxidase using real-time reaction progress monitoring. Org Biomol Chem 2020; 18:2076-2084. [DOI: 10.1039/c9ob02757b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
VTNA is applied to reaction progress curves to glean key kinetic and mechanistic details for a copper radical oxidase.
Collapse
Affiliation(s)
- Stephanie M. Forget
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| | - Fan (Roderick) Xia
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| | - Jason E. Hein
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Harry Brumer
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| |
Collapse
|