1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Mansour AM, Arafa MM, Hegazy YS, Sadek MS, Ibrahim HH, Abdullah YS, Shehab OR. A comprehensive survey of cytotoxic active half-sandwich Ir(III) complexes: structural perspective, and mechanism of action. Dalton Trans 2025; 54:4788-4847. [PMID: 39932564 DOI: 10.1039/d4dt03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Iridium(III) complexes, particularly those with piano-stool structures, have drawn a lot of interest recently as possible anticancer drugs. These complexes, which have displayed enhanced cytotoxicity and cytoselectivity compared with clinically approved drugs like cisplatin, oxaliplatin, and carboplatin, hold promising prospects for further anticancer research. Our review aims to explore the complex interplay between cytotoxic properties, cellular uptake efficiency, and intracellular distribution properties of this class of Ir(III) complexes, considering the variation of the coordination site atoms. We provide an overview of the majority of research on mono- and polynunclear half-sandwich Ir(III) complexes with mono- and bidentate ligands, focusing on the impact of altering the leaving group, tethers, substituents on the cyclopentadienyl ring and ligand, spacers, and counter ions on the cytotoxicity and mode of action.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Mohamed M Arafa
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Yara S Hegazy
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Muhammed S Sadek
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Hadeer H Ibrahim
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Yomna S Abdullah
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt
| |
Collapse
|
3
|
Kostova I. Cytotoxic Organometallic Iridium(III) Complexes. Molecules 2025; 30:801. [PMID: 40005112 PMCID: PMC11858622 DOI: 10.3390/molecules30040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Iridium complexes attract a lot of attention as highly promising antitumor agents due to their various structures, which offer the modification of their physicochemical and biological effects. Compared to conventional platinum-based drugs, iridium complexes are commonly thought to be more active in tumors, resistant to platinum agents and more stable in air and moisture conditions. Chloridoiridium complexes offer a range of advantages facilitating their rational design, reactivity and photochemical activity, leading to different cytotoxic profiles, diverse mechanisms of action and specific intracellular organelles as targets. They are also known as good light-mediated chemotherapeutics, serving as bioimaging and biosensing agents. The potential biological and photophysical properties of chloridoiridium(III) complexes can be readily controlled by suitable ligand modifications and substitution patterns, providing a wide range of versatile structures. Over the years, numerous different structural types of chloridoiridium complexes have been developed and studied for their antineoplastic activity. In this review, the recent advances in the cytotoxicity studies of chloridoiridium(III) compounds have been summarized. The studied complexes have been categorized in this review according to the number of coordinated ligands, the type of donor atoms, nuclearity of the complexes, etc., allowing for a thorough discussion of the structure-activity relationship.
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Liu X, Ji C, Tao R, Zheng W, Liu M, Bi S, Chang Q, Yuan XA, Yue M, Liu Z. Effects of structurally varied fluorescent half-sandwich iridium(III) Schiff base complexes on A549 cell line. J Inorg Biochem 2025; 263:112792. [PMID: 39615316 DOI: 10.1016/j.jinorgbio.2024.112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024]
Abstract
Half-sandwich iridium(III) (IrIII) anticancer complexes, as promising alternatives to platinum-based drugs, especially for solving resistance to platinum drugs, have demonstrated excellent application prospect. The potency of these IrIII complexes as anticancer agents could be significantly enhanced through the strategic modification of their peripheral ligands. In this study, four structurally varied triphenylamine (TPA)-modified half-sandwich IrIII Schiff base complexes were designed and prepared. The incorporation of TPA unit has effectively endowed these complexes with suitable emission, which facilitates the evaluation of intracellular accumulation and cell morphology. These complexes demonstrated favorable in vitro anti-proliferative activity against A549 cell line (lung cancer cells, derived from alveolar basal epithelial cells), especially for pentamethylcyclopentadiene (Cp*)-based one (IrTS1 and IrTS3), and that is almost 2.5-fold more than cisplatin under the same conditions. Meanwhile, IrTS1 and IrTS3 possessed excellent activity against A549/DDP (cisplatin-resistant) cell line and the similar cytotoxicity to cisplatin against BEAS-2B cell line (derived from the bronchial epithelium of normal human lungs), then following a mitochondria apoptotic channel.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Changjian Ji
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Rui Tao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenya Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shiqing Bi
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qinghua Chang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
5
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
6
|
Ji C, Dong R, Zhang P, Tao R, Wang X, Dai Q, Liu X, Yuan XA, Zhang S, Yue M, Liu Z. Ferrocene-modified half-sandwich iridium(III) and ruthenium(II) propionylhydrazone complexes and anticancer application. J Inorg Biochem 2024; 257:112586. [PMID: 38728860 DOI: 10.1016/j.jinorgbio.2024.112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Ferrocene, ruthenium(II) and iridium(III) organometallic complexes, potential substitutes for platinum-based drugs, have shown good application prospects in the field of cancer therapy. Therefore, in this paper, six ferrocene-modified half-sandwich ruthenium(II) and iridium(III) propionylhydrazone complexes were prepared, and the anticancer potential was evaluated and compared with cisplatin. These complexes showed potential in-vitro anti-proliferative activity against A549 cancer cells, especially for Ir-based complexes, and showing favorable synergistic anticancer effect. Meanwhile, these complexes showed little cytotoxicity and effective anti-migration activity. Ir3, the most active complex (ferrocene-appended iridium(III) complex), could accumulate in the intracellular mitochondria, disturb the cell cycle (S-phase), induce the accumulation of reactive oxygen species, and eventually cause the apoptosis of A549 cells. Then, the design of these complexes provides a good structural basis for the multi-active non‑platinum organometallic anticancer complexes.
Collapse
Affiliation(s)
- Changjian Ji
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Rui Tao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuan Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Qiaoqiao Dai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shumiao Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
7
|
Kar B, Shanavas S, Karmakar A, Nagendra AH, Vardhan S, Sahoo SK, Bose B, Kundu S, Paira P. 2-Aryl-1 H-imidazo[4,5- f][1,10]phenanthroline-Based Binuclear Ru(II)/Ir(III)/Re(I) Complexes as Mitochondria Targeting Cancer Stem Cell Therapeutic Agents. J Med Chem 2024; 67:10928-10945. [PMID: 38812379 DOI: 10.1021/acs.jmedchem.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A series of novel Ru(II)/Ir(III)/Re(I)-based organometallic complexes [Ru2L1, Ru2L2, Ir2L1, Ir2L2, Re2L1, and Re2L2] have been synthesized to assess their potency and selectivity against multiple cancer cells A549, HCT-116, and HCT-116 colon CSCs. The cytotoxic screening of the synthesized complexes has revealed that complex Ru2L1 and Ir2L2 are two proficient complexes among all, but Ru2L1 is the most potent complex. A significant binding constant value was observed for DNA and BSA in all complexes. Significant lipophilic properties allow them to penetrate cancer cell membranes, and substantial quantum yield (ϕf) values support bioimaging potential. Again, these complexes are particular for mitochondrial localization and produce a profuse amount of ROS to damage the mitochondrial DNA and then G1 phase cell-cycle arrest. Protein expression analysis unveiled that pro-apoptotic Bax protein overexpressed in Ru2L1-treated cells, whereas antiapoptotic Bcl-2 protein was expressed twofold in Ir2L2-treated cells, which correlated with autophagy reticence.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shanooja Shanavas
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Arun Karmakar
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Apoorva H Nagendra
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Seshu Vardhan
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath Surat, Gujarat 395007, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath Surat, Gujarat 395007, India
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Subrata Kundu
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
8
|
Gonzalo-Navarro C, Zafon E, Organero JA, Jalón FA, Lima JC, Espino G, Rodríguez AM, Santos L, Moro AJ, Barrabés S, Castro J, Camacho-Aguayo J, Massaguer A, Manzano BR, Durá G. Ir(III) Half-Sandwich Photosensitizers with a π-Expansive Ligand for Efficient Anticancer Photodynamic Therapy. J Med Chem 2024; 67:1783-1811. [PMID: 38291666 PMCID: PMC10859961 DOI: 10.1021/acs.jmedchem.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
One approach to reduce the side effects of chemotherapy in cancer treatment is photodynamic therapy (PDT), which allows spatiotemporal control of the cytotoxicity. We have used the strategy of coordinating π-expansive ligands to increase the excited state lifetimes of Ir(III) half-sandwich complexes in order to facilitate the generation of 1O2. We have obtained derivatives of formulas [Cp*Ir(C∧N)Cl] and [Cp*Ir(C∧N)L]BF4 with different degrees of π-expansion in the C∧N ligands. Complexes with the more π-expansive ligand are very effective photosensitizers with phototoxic indexes PI > 2000. Furthermore, PI values of 63 were achieved with red light. Time-dependent density functional theory (TD-DFT) calculations nicely explain the effect of the π-expansion. The complexes produce reactive oxygen species (ROS) at the cellular level, causing mitochondrial membrane depolarization, cleavage of DNA, nicotinamide adenine dinucleotide (NADH) oxidation, as well as lysosomal damage. Consequently, cell death by apoptosis and secondary necrosis is activated. Thus, we describe the first class of half-sandwich iridium cyclometalated complexes active in PDT.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Elisenda Zafon
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Juan Angel Organero
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímicas and INAMOL, Universidad
de Castilla-La Mancha, 45071 Toledo, Spain
| | - Félix A. Jalón
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Joao Carlos Lima
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gustavo Espino
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001 Burgos, Spain
| | - Ana María Rodríguez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071 Ciudad Real, Spain
| | - Lucía Santos
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. C. J. Cela,
s/n, 13071 Ciudad
Real, Spain
| | - Artur J. Moro
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sílvia Barrabés
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Jessica Castro
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Javier Camacho-Aguayo
- Analytical
Chemistry Department, Analytic Biosensors Group, Instituto de Nanociencia
y Nanomateriales de Aragon, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Anna Massaguer
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R. Manzano
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gema Durá
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
9
|
Kowalik M, Masternak J, Olszewski M, Maciejewska N, Kazimierczuk K, Sitkowski J, Dąbrowska AM, Chylewska A, Makowski M. Anticancer Study on Ir III and Rh III Half-Sandwich Complexes with the Bipyridylsulfonamide Ligand. Inorg Chem 2024; 63:1296-1316. [PMID: 38174357 DOI: 10.1021/acs.inorgchem.3c03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academic of Science, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
| | | | - Agnieszka Chylewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
10
|
Bai Y, Aodeng G, Ga L, Hai W, Ai J. Research Progress of Metal Anticancer Drugs. Pharmaceutics 2023; 15:2750. [PMID: 38140091 PMCID: PMC10747151 DOI: 10.3390/pharmaceutics15122750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer treatments, including traditional chemotherapy, have failed to cure human malignancies. The main reasons for the failure of these treatments are the inevitable drug resistance and serious side effects. In clinical treatment, only 5 percent of the 50 percent of cancer patients who are able to receive conventional chemotherapy survive. Because of these factors, being able to develop a drug and treatment that can target only cancer cells without affecting normal cells remains a big challenge. Since the special properties of cisplatin in the treatment of malignant tumors were accidentally discovered in the last century, metal anticancer drugs have become a research hotspot. Metal anticancer drugs have unique pharmaceutical properties, such as ruthenium metal drugs with their high selectivity, low toxicity, easy absorption by tumor tissue, excretion, and so on. In recent years, efficient and low-toxicity metal antitumor complexes have been synthesized. In this paper, the scientific literature on platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and other anticancer complexes was reviewed by referring to a large amount of relevant literature at home and abroad.
Collapse
Affiliation(s)
- Yun Bai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Gerile Aodeng
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| |
Collapse
|
11
|
Liu X, Wang Z, Zhang X, Lv X, Sun Y, Dong R, Li G, Ren X, Ji Z, Yuan XA, Liu Z. Configurationally regulated half-sandwich iridium(III)-ferrocene heteronuclear metal complexes: Potential anticancer agents. J Inorg Biochem 2023; 249:112393. [PMID: 37806004 DOI: 10.1016/j.jinorgbio.2023.112393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Half-sandwich iridium(III) (IrIII) complexes and ferrocenyl (Fc) derivatives are becoming the research hotspot in the field of anticancer because of their good bioactivity and unique anticancer mechanism different from platinum-based drugs. Then, a series of half-sandwich IrIII-Fc pyridine complexes have been prepared through the structural regulation in this study. The incorporation of half-sandwich IrIII complex with Fc unit successfully improves their anticancer activity, and the optimal performance (IrFc5) is almost 3-fold higher than that of cisplatin against A549 cells, meanwhile, which also shows better anti-proliferative activity against A549/DDP cells. Complexes can aggregate in the intracellular lysosome of A549 cells and induce lysosomal damage, disrupt the cell cycle, increase the level of intracellular reactive oxygen species, and eventually lead to cell apoptosis. Half-sandwich IrIII-Fc heteronuclear metal complexes possess a different anticancer mechanism from cisplatin, which can serve as a potential alternative to platinum-based drugs and show a good application prospect.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Zihan Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaocai Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yong Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Guangxiao Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xueyan Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhongyin Ji
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
12
|
Gadre S, M M, Chakraborty G, Rayrikar A, Paul S, Patra C, Patra M. Development of a Highly In Vivo Efficacious Dual Antitumor and Antiangiogenic Organoiridium Complex as a Potential Anti-Lung Cancer Agent. J Med Chem 2023; 66:13481-13500. [PMID: 37784224 DOI: 10.1021/acs.jmedchem.3c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
While the phenomenal clinical success of blockbuster platinum (Pt) drugs is highly encouraging, the inherent and acquired resistance and dose-limiting side effects severely limit their clinical application. To find a better alternative with translational potential, we synthesized a library of six organo-IrIII half-sandwich [(η5-CpX)Ir(N∧N)Cl]+-type complexes. In vitro screening identified two lead candidates [(η5-CpXPh)Ir(Ph2Phen)Cl]+ (5, CpXPh = tetramethyl-phenyl-cyclopentadienyl and Ph2Phen = 4,7-diphenyl-1,10-phenanthroline) and [(η5-CpXBiPh)Ir(Ph2Phen)Cl]+ (6, CpXBiPh = tetramethyl-biphenyl-cyclopentadienyl) with nanomolar IC50 values. Both 5 and 6 efficiently overcame Pt resistance and presented excellent cancer cell selectivity in vitro. Potent antiangiogenic properties of 6 were demonstrated in the zebrafish model. Satisfyingly, 6 and its nanoliposome Lipo-6 presented considerably higher in vivo antitumor efficacy as compared to cisplatin, as well as earlier reported IrIII half-sandwich complexes in mice bearing the A549 non-small lung cancer xenograft. In particular, complex 6 is the first example of this class that exerted dual in vivo antiangiogenic and antitumor properties.
Collapse
Affiliation(s)
- Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Subhadeep Paul
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
13
|
Křikavová R, Romanovová M, Jendželovská Z, Majerník M, Masaryk L, Zoufalý P, Milde D, Moncol J, Herchel R, Jendželovský R, Nemec I. Impact of the central atom and halido ligand on the structure, antiproliferative activity and selectivity of half-sandwich Ru(II) and Ir(III) complexes with a 1,3,4-thiadiazole-based ligand. Dalton Trans 2023; 52:12717-12732. [PMID: 37610172 DOI: 10.1039/d3dt01696j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Half-sandwich complexes [Ru(η6-pcym)(L1)X]PF6 (1, 3) and [Ir(η5-Cp*)(L1)X]PF6 (2, 4) featuring a thiadiazole-based ligand L1 (2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-thiadiazole) were synthesized and characterized by varied analytical methods, including single-crystal X-ray diffraction (X = Cl or I, pcym = p-cymene, Cp* = pentamethylcyclopentadienyl). The structures of the molecules were analysed and interpreted using computational methods such as Density Functional Theory (DFT) and Quantum Theory of Atoms in Molecules (QT-AIM). A 1H NMR spectroscopy study showed that complexes 1-3 exhibited hydrolytic stability while 4 underwent partial iodido/chlorido ligand exchange in phosphate-buffered saline. Moreover, 1-4 demonstrated the ability to oxidize NADH (reduced nicotinamide adenine dinucleotide) to NAD+ with Ir(III) complexes 2 and 4 displaying higher catalytic activity compared to their Ru(II) analogues. None of the complexes interacted with reduced glutathione (GSH). Additionally, 1-4 exhibited greater lipophilicity than cisplatin. In vitro biological analyses were performed in healthy cell lines (CCD-18Co colon and CCD-1072Sk foreskin fibroblasts) as well as in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian cancer cell lines. The results indicated that Ir(III) complexes 2 and 4 had no effect on human fibroblasts, demonstrating their selectivity. In contrast, complexes 1 and 4 exhibited moderate inhibitory effects on the metabolic and proliferation activities of the cancer cells tested (selectivity index SI > 3.4 for 4 and 2.6 for cisplatin; SI = IC50(A2780)/IC50(CCD-18Co)), including the cisplatin-resistant cancer cell line. Based on these findings, it is possible to emphasize that mainly complex 4 could represent a further step in the development of selective and highly effective anticancer agents, particularly against resistant tumour types.
Collapse
Affiliation(s)
- Radka Křikavová
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Michaela Romanovová
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Zuzana Jendželovská
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Martin Majerník
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Lukáš Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Pavel Zoufalý
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Jan Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Rastislav Jendželovský
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
14
|
Varghese N, Jose JR, Krishna PM, Philip D, Joy F, Vinod TP, Prathapachandra Kurup MR, Nair Y. In vitro
Analytical Techniques as Screening Tools to investigate the Metal chelate‐DNA interactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nikita Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - Joyna Reba Jose
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - P. Murali Krishna
- Department of Chemistry Ramaiah institute of technology MSRIT Post, M S Ramaiah Nagar Bengaluru 560054 Karnataka India
| | - Darit Philip
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - Francis Joy
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - T. P. Vinod
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | | | - Yamuna Nair
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| |
Collapse
|
15
|
Graf M, Ochs J, Metzler‐Nolte N, Mayer P, Böttcher H. Synthesis, Characterization and Cytotoxic Activities of Half‐sandwich Pentamethylcyclopentadienyl Iridium(III) Complexes Containing 4,4'‐substituted 2,2'‐Bipyridine Ligands. Z Anorg Allg Chem 2023. [DOI: 10.1002/zaac.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marion Graf
- Department Chemie Ludwig-Maxim010ilians-Universität Butenandtstrasse 5–13 D 81377 München Germany
| | - Jasmine Ochs
- Faculty for Chemistry and Biochemistry Chair of Inorganic Chemistry I – Bioinorganic Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Nils Metzler‐Nolte
- Faculty for Chemistry and Biochemistry Chair of Inorganic Chemistry I – Bioinorganic Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Peter Mayer
- Department Chemie Ludwig-Maxim010ilians-Universität Butenandtstrasse 5–13 D 81377 München Germany
| | - Hans‐Christian Böttcher
- Department Chemie Ludwig-Maxim010ilians-Universität Butenandtstrasse 5–13 D 81377 München Germany
| |
Collapse
|
16
|
Wang Z, Lv Z, Liu X, Wu Y, Chang J, Dong R, Li C, Yuan XA, Liu Z. Anticancer application of ferrocene appended configuration-regulated half-sandwich iridium(III) pyridine complexes. J Inorg Biochem 2022; 237:112010. [PMID: 36152469 DOI: 10.1016/j.jinorgbio.2022.112010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
Ferrocenyl derivatives and half-sandwich iridium(III) complexes have received extensive attention in the field of anticancer. In this paper, series of configuration-controlled ferrocene-modified half-sandwich iridium(III) pyridine complexes were prepared. The combination of half-sandwich iridium(III) complexes and ferrocenyl unit successfully improved the anticancer activity of these complexes, especially for trans-configurational one towards A549 cells, and the best-performing (FeIr5) was almost 3.5 times more potent than that of cisplatin. In addition, these complexes could inhibit the migration of A549 cells. Complexes can accumulate in intracellular lysosomes (PCC: >0.75), induce lysosomal damage, disturb the cell circle, decrease the mitochondrial membrane potential, improve the intracellular reactive oxygen species (ROS) levels, and eventually lead to apoptosis. Meanwhile, complexes could bind to serum protein following a static quenching mechanism and transport through it. Then, ferrocene-modified half-sandwich iridium(III) pyridine complexes hold the promise as potential organometallic anticancer agents for further investigation.
Collapse
Affiliation(s)
- Zihan Wang
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zexuan Lv
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiaying Chang
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ruixiao Dong
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Caiyue Li
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
17
|
Komarnicka UK, Kozieł S, Pucelik B, Barzowska A, Siczek M, Malik M, Wojtala D, Niorettini A, Kyzioł A, Sebastian V, Kopel P, Caramori S, Bieńko A. Liposomal Binuclear Ir(III)–Cu(II) Coordination Compounds with Phosphino-Fluoroquinolone Conjugates for Human Prostate Carcinoma Treatment. Inorg Chem 2022; 61:19261-19273. [DOI: 10.1021/acs.inorgchem.2c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Urszula K. Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Barbara Pucelik
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Agata Barzowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Victor Sebastian
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Campus Río Ebro-Edificio I+D, Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28-029 Madrid, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
18
|
Yang T, Zhu M, Jiang M, Yang F, Zhang Z. Current status of iridium-based complexes against lung cancer. Front Pharmacol 2022; 13:1025544. [PMID: 36210835 PMCID: PMC9538862 DOI: 10.3389/fphar.2022.1025544] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest mortality rate in the world, and its incidence is second only to breast cancer. It has posed a serious threat to human health. Cisplatin, a metal-based drug, is one of the most widely used chemotherapeutic agents for the treatment of various cancers. However, its clinical efficacy is seriously limited by numerous side effects and drug resistance. This has led to the exploration and development of other transition metal complexes for the treatment of malignant tumors. In recent years, iridium-based complexes have attracted extensive attention due to their potent anticancer activities, limited side effects, unique antitumor mechanisms, and rich optical properties, and are expected to be potential antitumor drugs. In this review, we summarize the recent progress of iridium complexes against lung cancer and introduce their anti-tumor mechanisms, including apoptosis, cycle arrest, inhibition of lung cancer cell migration, induction of immunogenic cell death, etc.
Collapse
Affiliation(s)
- Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- School of food and biochemical engineering, Guangxi Science and Technology Normal University, Laibin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- *Correspondence: Zhenlei Zhang,
| |
Collapse
|
19
|
Xu R, Wu Y, Liu Z, Liu J, Liu X. Lysosomal Targeted Cyclometallic Iridium(Ⅲ) Salicylaldehyde-Coumarin Schiff Base Complexes and Anticancer Application. Front Chem 2022; 10:906954. [PMID: 35620650 PMCID: PMC9127163 DOI: 10.3389/fchem.2022.906954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Natural coumarin derivatives and cyclometallic iridium (Ⅲ) (IrⅢ) complexes have attracted much attention in the field of anticancer. In this study, six coumarin-modified cyclometallic IrⅢ salicylaldehyde Schiff base complexes ([(ppy)2Ir(O^N)]/[(ppy-CHO)2Ir(O^N)]) were designed and synthesized. Compared with coumarin and IrⅢ complex monomers, target complexes exhibited favorable cytotoxic activity toward A549 and BEAS-2B cells. These complexes could induce extensive apoptosis of A549 cell (late apoptosis), which was represented by the disturbance of cell cycle (G1-phase) and the accumulation of intracellular reactive oxygen species, exhibiting an anticancer mechanism of oxidation. With the help of suitable fluorescence of these complexes, no conflict with the probes, confocal detection confirmed that complexes showed an energy-dependent cellular uptake mechanism and triggered lysosome-mediated apoptosis in A549 cell line. Above all, our findings reveal the design of a lysosomal targeting cyclometallic IrⅢ Schiff base complexes and provide a new idea for the design of integrated drugs for diagnosis and treatment.
Collapse
Affiliation(s)
- Ruixi Xu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- *Correspondence: Xicheng Liu, ; Zhe Liu,
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- *Correspondence: Xicheng Liu, ; Zhe Liu,
| |
Collapse
|
20
|
Banerjee S, Banerjee S. Metal-Based Complexes as Potential Anti-cancer Agents. Anticancer Agents Med Chem 2022; 22:2684-2707. [PMID: 35362388 DOI: 10.2174/1871520622666220331085144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Metal based therapy is no new in biomedical research. In early days the biggest limitation was the inequality among therapeutical and toxicological dosages. Ever since, Barnett Rosenberg discovered cisplatin, a new era has begun to treat cancer with metal complexes. Platinum complexes such as oxaliplatin, cisplatin, and carboplatin, seem to be the foundation of metal/s-based components to challenge malignancies. With an advancement in the biomolemoecular mechanism, researchers have started developing non-classical platinum-based complexes, where a different mechanistic approach of the complexes is observed towards the biomolecular target. Till date, larger number of metal/s-based complexes was synthesized by overhauling the present structures chemically by substituting the ligand or preparing the whole novel component with improved cytotoxic and safety profiles. Howsoever, due to elevated accentuation upon the therapeutic importance of metal/s-based components, a couple of those agents are at present on clinical trials and several other are in anticipating regulatory endorsement to enter the trial. This literature highlights the detailed heterometallic multinuclear components, primarily focusing on platinum, ruthenium, gold and remarks on possible stability, synergism, mechanistic studies and structure activity relationships.
Collapse
Affiliation(s)
- Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| |
Collapse
|
21
|
Maliyappa M, Keshavayya J, Sudhanva M, Pushpavathi I, kumar V. Heterocyclic azo dyes derived from 2-(6-chloro-1,3-benzothiazol-2-yl)-5-methyl-2,4-dihydro-3H-pyrazol-3-one having benzothiazole skeleton: Synthesis, structural, computational and biological studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Grimm AB, Wang K, Rheingold AL, Moore CE, Szieberth D, Nyulászi L, Protasiewicz JD. 2-Aryl-1,3-Benzoxaphospholes as Unwilling Participants for Catalytic Suzuki–Miyaura CC Coupling Reactions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra B. Grimm
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kai Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Dénes Szieberth
- Department of Inorganic Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group H-1521 Budapest, Hungary
| | - László Nyulászi
- Department of Inorganic Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group H-1521 Budapest, Hungary
| | - John D. Protasiewicz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
23
|
Ramos R, Zimbron JM, Thorimbert S, Chamoreau LM, Munier A, Botuha C, Karaiskou A, Salmain M, Sobczak-Thépot J. Insights into the antiproliferative mechanism of (C^N)-chelated half-sandwich iridium complexes. Dalton Trans 2021; 49:17635-17641. [PMID: 33226042 DOI: 10.1039/d0dt03414b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition metal-based anticancer compounds, as an alternative to platinum derivatives, are raising scientific interest as they may present distinct although poorly understood mechanisms of action. We used a structure-activity relationship-based methodology to investigate the chemical and biological features of a series of ten (C^N)-chelated half-sandwich iridiumIII complexes of the general formula [IrCp*(phox)Cl], where (phox) is a 2-phenyloxazoline ligand forming a 5-membered metallacycle. This series of compounds undergoes a fast exchange of their chlorido ligand once solubilised in DMSO. They were cytotoxic to HeLa cells with IC50 values in the micromolar range and induced a rapid activation of caspase-3, an apoptosis marker. In vitro, the oxidative power of all the complexes towards NADH was highlighted but only the complexes bearing substituents on the oxazoline ring were able to produce H2O2 at the micromolar range. However, we demonstrated using a powerful HyPer protein redox sensor-based flow cytometry assay that most complexes rapidly raised intracellular levels of H2O2. Hence, this study shows that oxidative stress can partly explain the cytotoxicity of these complexes on the HeLa cell line and gives a first entry to their mechanism of action.
Collapse
Affiliation(s)
- Robin Ramos
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Interaction between DNA, Albumin and Apo-Transferrin and Iridium(III) Complexes with Phosphines Derived from Fluoroquinolones as a Potent Anticancer Drug. Pharmaceuticals (Basel) 2021; 14:ph14070685. [PMID: 34358111 PMCID: PMC8308524 DOI: 10.3390/ph14070685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.
Collapse
|
25
|
Shao M, Liu X, Sun Y, Dou S, Chen Q, Yuan XA, Tian L, Liu Z. Preparation and the anticancer mechanism of configuration-controlled Fe(II)-Ir(III) heteronuclear metal complexes. Dalton Trans 2021; 49:12599-12609. [PMID: 32857087 DOI: 10.1039/d0dt02408b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of configuration-controlled Fe(ii)-Ir(iii) heteronuclear metal complexes, including ferrocene and half-sandwich like iridium(iii) complex units, have been designed and prepared. These complexes show better anticancer activity than cisplatin under the same conditions, especially cis-configurational ones. Laser confocal microscopy analysis confirms that the complexes follow a non-energy-dependent cellular uptake mechanism, accumulate in lysosomes (pearson co-localization coefficient: ∼0.7), lead to lysosomal damage, and eventually induce apoptosis. These complexes can reduce the mitochondrial membrane potential, disturb the cell circle, catalyze the oxidation of nicotinamide-adenine dinucleotide (NADH) and increase the levels of intracellular reactive oxygen species (ROS), following an anticancer mechanism of oxidation. In addition, the complexes could bind to serum protein, and transport through it. Above all, the Fe(ii)-Ir(iii) heteronuclear metal complexes hold promise as potential anticancer agents for further study.
Collapse
Affiliation(s)
- Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiwei Sun
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Shuaihua Dou
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Qi Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
26
|
Chuong C, DuChane CM, Webb EM, Rai P, Marano JM, Bernier CM, Merola JS, Weger-Lucarelli J. Noble Metal Organometallic Complexes Display Antiviral Activity against SARS-CoV-2. Viruses 2021; 13:v13060980. [PMID: 34070524 PMCID: PMC8227008 DOI: 10.3390/v13060980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023] Open
Abstract
SARS-CoV-2 emerged in 2019 as a devastating viral pathogen with no available preventative or treatment to control what led to the current global pandemic. The continued spread of the virus and increasing death toll necessitate the development of effective antiviral treatments to combat this virus. To this end, we evaluated a new class of organometallic complexes as potential antivirals. Our findings demonstrate that two pentamethylcyclopentadienyl (Cp*) rhodium piano stool complexes, Cp*Rh(1,3-dicyclohexylimidazol-2-ylidene)Cl2 (complex 2) and Cp*Rh(dipivaloylmethanato)Cl (complex 4), have direct virucidal activity against SARS-CoV-2. Subsequent in vitro testing suggests that complex 4 is the more stable and effective complex and demonstrates that both 2 and 4 have low toxicity in Vero E6 and Calu-3 cells. The results presented here highlight the potential application of organometallic complexes as antivirals and support further investigation into their activity.
Collapse
Affiliation(s)
- Christina Chuong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA 24061, USA; (C.C.); (P.R.)
| | - Christine M. DuChane
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.D.); (C.M.B.)
| | - Emily M. Webb
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA 24061, USA; (C.C.); (P.R.)
| | - Jeffrey M. Marano
- Department of Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Chad M. Bernier
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.D.); (C.M.B.)
| | - Joseph S. Merola
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA; (C.M.D.); (C.M.B.)
- Correspondence: (J.S.M.); (J.W.-L.)
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA 24061, USA; (C.C.); (P.R.)
- Correspondence: (J.S.M.); (J.W.-L.)
| |
Collapse
|
27
|
Moharana P, Ghosh D, Paira P. Drive to organoruthenium and organoiridium complexes from organoplatinum: Next-generation anticancer metallotherapeutics. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Liu X, Shao M, Liang C, Guo J, Wang G, Yuan XA, Jing Z, Tian L, Liu Z. Preparation and Bioactivity of Iridium(III) Phenanthroline Complexes with Halide Ions and Pyridine Leaving Groups. Chembiochem 2020; 22:557-564. [PMID: 32964620 DOI: 10.1002/cbic.202000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/20/2020] [Indexed: 12/15/2022]
Abstract
A series of half-sandwich structural iridium(III) phenanthroline (Phen) complexes with halide ions (Cl- , Br- , I- ) and pyridine leaving groups ([(η5 -CpX )Ir(Phen)Z](PF6 )n , Cpx : electron-rich cyclopentadienyl group, Z: leaving group) have been prepared. Target complexes, especially the Cpxbiph (biphenyl-substituted cyclopentadienyl)-based one, showed favourable anticancer activity against human lung cancer (A549) cells; the best one (Ir8) was almost five times that of cisplatin under the same conditions. Compared with complexes involving halide ion leaving groups, the pyridine-based one did not display hydrolysis but effectively caused lysosomal damage, leading to accumulation in the cytosol, inducing an increase in the level of intracellular reactive oxygen species and apoptosis; this indicated an anticancer mechanism of oxidation. Additionally, these complexes could bind to serum albumin through a static quenching mechanism. The data highlight the potential value of half-sandwich iridium(III) phenanthroline complexes as anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Congcong Liang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Jinghang Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Guangxuan Wang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Zhihong Jing
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| |
Collapse
|
29
|
Soldevila-Barreda JJ, Fawibe KB, Azmanova M, Rafols L, Pitto-Barry A, Eke UB, Barry NPE. Synthesis, Characterisation and In Vitro Anticancer Activity of Catalytically Active Indole-Based Half-Sandwich Complexes. Molecules 2020; 25:E4540. [PMID: 33022980 PMCID: PMC7583056 DOI: 10.3390/molecules25194540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
The synthesis, characterisation and evaluation of the in vitro cytotoxicity of four indole-based half-sandwich metal complexes towards two ovarian cancer cell lines (A2780 and A2780cisR) and one normal prostate cell line (PNT2) are presented herein. Although capable of inducing catalytic oxidation of NADH and able to reduce NAD+ with high turnover frequencies, in cells and in the presence of sodium formate, these complexes also strongly interact with biomolecules such as glutathione. This work highlights that efficient out-of-cells catalytic activity might lead to higher reactivity towards biomolecules, thus inhibiting the in-cells catalytic processes.
Collapse
Affiliation(s)
- Joan J. Soldevila-Barreda
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Kehinde B. Fawibe
- Department of Chemistry, University of Ilorin, Ilorin P.M.B 1515, Nigeria; (K.B.F.); (U.B.E.)
| | - Maria Azmanova
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Laia Rafols
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| | - Uche B. Eke
- Department of Chemistry, University of Ilorin, Ilorin P.M.B 1515, Nigeria; (K.B.F.); (U.B.E.)
| | - Nicolas P. E. Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford BD1 7DP, UK; (J.J.S.-B.); (M.A.); (L.R.); (A.P.-B.)
| |
Collapse
|
30
|
Ru(II) Complexes Bearing O, O-Chelated Ligands Induced Apoptosis in A549 Cells through the Mitochondrial Apoptotic Pathway. Bioinorg Chem Appl 2020; 2020:8890950. [PMID: 32879623 PMCID: PMC7448123 DOI: 10.1155/2020/8890950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Two new Ru(II) complexes containing O, O-chelated ligands, Ru(dip)2(SA) (Ru-1) and Ru(dmp)2(SA) (Ru-2) (dip = 4,7-diphenyl-1,10-phenanthroline; dmp = 2,9-dimethyl-1,10-phenanthroline; SA = salicylate) were synthesized to evaluate their cytotoxicity in vitro. These complexes were found to exhibit moderate antitumor activity to different types of human cancers, including A549 (human lung carcinoma), MCF-7 (breast cancer), HeLa (human cervical cancer), and HepG2 (human hepatocellular carcinoma) cell lines, but displayed low toxicity to human normal cell lines BEAS-2B (immortalized human bronchial epithelial cells) when compared with that of cisplatin. Further studies revealed that these complexes could induce apoptosis in A549 cells, including activating caspase family proteins and poly (ADP-ribose) polymerase (PARP), reducing Bcl-2/Bax and Bcl-xl/Bad ratio, enhancing cellular reactive oxygen species (ROS) accumulation, triggering DNA damage, decreasing mitochondrial membrane potential (MMP), and leading cytochrome c release from mitochondria. Notably, complex Ru-1 showed low toxicity to developing zebrafish embryos. The obtained results suggest that these new synthetic complexes have the potential to be developed as low-toxicity agents for lung cancer treatment.
Collapse
|
31
|
Zhang WY, Banerjee S, Hughes GM, Bridgewater HE, Song JI, Breeze BG, Clarkson GJ, Coverdale JPC, Sanchez-Cano C, Ponte F, Sicilia E, Sadler PJ. Ligand-centred redox activation of inert organoiridium anticancer catalysts. Chem Sci 2020; 11:5466-5480. [PMID: 34094073 PMCID: PMC8159363 DOI: 10.1039/d0sc00897d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium(iii) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS- attack on the azo bond facilitates the substitution of iodide by GS-, and leads to formation of GSSG and superoxide if O2 is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate Ir-SG complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs.
Collapse
Affiliation(s)
- Wen-Ying Zhang
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Samya Banerjee
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - George M Hughes
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Ji-Inn Song
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Ben G Breeze
- Spectroscopy Research Technology Platform, University of Warwick Coventry CV4 7AL UK
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | | | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria via Pietro Bucci 87036 Arcavacata di Rende Cs Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria via Pietro Bucci 87036 Arcavacata di Rende Cs Italy
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
32
|
Carrasco AC, Rodríguez-Fanjul V, Habtemariam A, Pizarro AM. Structurally Strained Half-Sandwich Iridium(III) Complexes As Highly Potent Anticancer Agents. J Med Chem 2020; 63:4005-4021. [PMID: 32207946 DOI: 10.1021/acs.jmedchem.9b02000] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Six complexes of formula [Ir(η5:κ1-C5Me4CH2py)(C,N)]PF6, where C5Me4CH2py is 2-((2,3,4,5-tetramethylcyclopentadienyl)methyl)pyridine, and C,N is 2-phenylpyridine (1), 7,8-benzoquinoline (2), 1-phenylisoquinoline (3), 2-(p-tolyl)pyridine (4), 4-chloro-2-phenylquinoline (5), or 2-(2,4-difluorophenyl)pyridine (6), have been synthesized. The cyclopentadienyl ligand bears a tethered pyridine that binds to the metal center, resulting in an Ir(η5:κ1-C5Me4CH2pyN) tether-ring structure, as confirmed by the X-ray crystal structures of 1, 2, 4, 5, and 6. Nontether versions of 1 and 2 were synthesized to aid unambiguous correlation between structure and activity. While nontether complexes are highly potent toward MCF7 cancer cells (similar to cisplatin), complexes bearing the tether-ring structure, 1-6, are exceptionally more potent (1-2 orders of magnitude). Additionally, 1-6 disrupt mitochondrial membrane potential (ΔΨm) and induce oxidative stress. Internalization studies strongly correlate intracellular accumulation and anticancer activity in tether and nontether complexes. We present a new class of organo-iridium drug candidates bearing a structural feature that results in a leap in anticancer potency.
Collapse
Affiliation(s)
| | | | - Abraha Habtemariam
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Ana M Pizarro
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.,Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA, 28049 Madrid, Spain
| |
Collapse
|
33
|
Lapasam A, Adhikari S, Banothu V, Addepally U, Kollipara MR. Arene platinum group metal complexes containing imino-quinolyl ligands: synthesis and antibacterial studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1753037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Agreeda Lapasam
- Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| | - Sanjay Adhikari
- Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| | - Venkanna Banothu
- Centre for Biotechnology (CBT), Institute of Science & Technology (IST), Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, India
| | - Uma Addepally
- Centre for Biotechnology (CBT), Institute of Science & Technology (IST), Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, India
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| |
Collapse
|
34
|
Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. Cyclometalated Ir(III)-8-oxychinolin complexes acting as red-colored probes for specific mitochondrial imaging and anticancer drugs. Eur J Med Chem 2020; 192:112192. [PMID: 32146374 DOI: 10.1016/j.ejmech.2020.112192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
A new class of luminescent IrIII antitumor agents, namely, [Ir(CP1)(PY1)2] (Ir-1), [Ir(CP1)(PY2)2] (Ir-2), [Ir(CP1)(PY4)2] (Ir-3), [Ir(CP2)(PY1)2] (Ir-4), [Ir(CP2)(PY4)2] (Ir-5), [Ir(CP3)(PY1)2]⋅CH3OH (Ir-6), [Ir(CP4)(PY4)2]⋅CH3OH (Ir-7), [Ir(CP5)(PY2)2] (Ir-8), [Ir(CP5)(PY4)2]⋅CH3OH (Ir-9), [Ir(CP6)(PY1)2] (Ir-10), [Ir(CP6)(PY2)2]⋅CH3OH (Ir-11), [Ir(CP6)(PY3)2] (Ir-12), [Ir(CP6)(PY41)2] (Ir-13), and [Ir(CP7)(PY1)2] (Ir-14), supported by 8-oxychinolin derivatives and 1-phenylpyrazole ligands was prepared. Compared with SK-OV-3/DDP and HL-7702 cells, the Ir-1-Ir-14 compounds exhibited half maximal inhibitory concentration (IC50) values within the high nanomolar range (50 nM-10.99 μM) in HeLa cells. In addition, Ir-1 and Ir-3 accumulated and stained the mitochondrial inner membrane of HeLa cells with high selectivity and exhibited a high antineoplastic activity in the entire cervical HeLa cells, with IC50 values of 1.22 ± 0.36 μM and 0.05 ± 0.04 μM, respectively. This phenomenon induced mitochondrial dysfunction, suggesting that these cyclometalated IrIII complexes can be potentially used in biomedical imaging and Ir(III)-based anticancer drugs. Furthermore, the high cytotoxicity activity of Ir-3 is correlated with the 1-phenylpyrazole (H-PY4) secondary ligands in the luminescent IrIII antitumor complex.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
35
|
Davies DL, Singh K, Tamosiunaite N. Steric and electronic effects on acetate-assisted cyclometallation of 2-phenylpyridines at [MCl 2Cp*] 2 (M = Ir, Rh). Dalton Trans 2020; 49:2680-2686. [PMID: 32048671 DOI: 10.1039/c9dt04581c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reactions of substituted 2-phenylpyridines at [MCl2Cp*]2 dimers (M = Ir, Rh) in the presence of NaOAc form cyclometallated complexes Cp*M(Phpyr)Cl. H/D exchange experiments and substrate competition experiments show that kinetic selectivity favours electron donating substituents whilst substrates with electron withdrawing substituents are favoured thermodynamically. Experiments with Ir are mostly irreversible under the conditions used whilst those for Rh are more easily reversible. For meta-substituted phenylpyridines steric effects are important, larger substituents leading to formation of the para-substituted cyclometallated product.
Collapse
Affiliation(s)
- David L Davies
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| | - Kuldip Singh
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| | | |
Collapse
|
36
|
Aboura W, Batchelor LK, Garci A, Dyson PJ, Therrien B. Reactivity and biological activity of N,N,S-Schiff-base rhodium pentamethylcyclopentadienyl complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
38
|
Kozieł S, Komarnicka UK, Ziółkowska A, Skórska-Stania A, Pucelik B, Płotek M, Sebastian V, Bieńko A, Stochel G, Kyzioł A. Anticancer potency of novel organometallic Ir(iii) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00538j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 3D model of cell culturing (spheroids) was explored and the anticancer potential of the selected novel organometallic Ir(iii) complex encapsulated in Pluronic p-123 micelles was clearly proved.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | | | | | - Barbara Pucelik
- Małopolska Centre of Biotechnology
- Jagiellonian University
- Kraków
- Poland
| | - Michał Płotek
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
- Faculty of Conservation and Restoration of Works of Art
| | - Victor Sebastian
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- The Aragón Materials Science Institute (ICMA)
- University of Zaragoza
- 50018 Zaragoza
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Grażyna Stochel
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| |
Collapse
|
39
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2019; 59:1270-1278. [DOI: 10.1002/anie.201911510] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
40
|
Yang Y, Guo L, Ge X, Zhu T, Chen W, Zhou H, Zhao L, Liu Z. The Fluorine Effect in Zwitterionic Half-Sandwich Iridium(III) Anticancer Complexes. Inorg Chem 2019; 59:748-758. [DOI: 10.1021/acs.inorgchem.9b03006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yanjing Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Teng Zhu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Wenjing Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Huanxing Zhou
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Liping Zhao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
41
|
Koch V, Meschkov A, Feuerstein W, Pfeifer J, Fuhr O, Nieger M, Schepers U, Bräse S. Synthesis, Characterization, and Biological Properties of Steroidal Ruthenium(II) and Iridium(III) Complexes Based on the Androst-16-en-3-ol Framework. Inorg Chem 2019; 58:15917-15926. [DOI: 10.1021/acs.inorgchem.9b02402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa Koch
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anna Meschkov
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wolfram Feuerstein
- Institute of Inorganic Chemistry, Division Molecular Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Juliana Pfeifer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Olaf Fuhr
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Ute Schepers
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
42
|
Synthesis, structure and bonding modes of pyrazine based ligands of Cp*Rh and Cp*Ir complexes: The study of in-vitro cytotoxicity against human cell lines. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Ge X, Chen S, Liu X, Wang Q, Gao L, Zhao C, Zhang L, Shao M, Yuan XA, Tian L, Liu Z. Ferrocene-Appended Iridium(III) Complexes: Configuration Regulation, Anticancer Application, and Mechanism Research. Inorg Chem 2019; 58:14175-14184. [PMID: 31559820 DOI: 10.1021/acs.inorgchem.9b02227] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shujiao Chen
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qinghui Wang
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lijun Gao
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chengfeng Zhao
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Zhang
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
44
|
Ge X, Liu X, Tian Z, Chen S, Liu X, Guo L, Gong P, Ling B, Yuan X, Liu Z. Half‐sandwich Ruthenium (II) complexes with triphenylamine modified dipyridine skeleton and application in biology/luminescence imaging. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Shujiao Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Xinyu Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Peiwei Gong
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Baoping Ling
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| |
Collapse
|
45
|
Lord RM, McGowan PC. Organometallic Iridium Arene Compounds: The Effects of C-Donor Ligands on Anticancer Activity. CHEM LETT 2019; 48:916-924. [DOI: 10.1246/cl.190179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Rianne M. Lord
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, U.K
| | | |
Collapse
|
46
|
Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J Inorg Biochem 2019; 193:112-123. [DOI: 10.1016/j.jinorgbio.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
47
|
Wootton CA, Millett AJ, Lopez-Clavijo AF, Chiu CKC, Barrow MP, Clarkson GJ, Sadler PJ, O'Connor PB. Structural analysis of peptides modified with organo-iridium complexes, opportunities from multi-mode fragmentation. Analyst 2019; 144:1575-1581. [PMID: 30663751 DOI: 10.1039/c8an02094a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most widely used anticancer drugs are platinum complexes, but complexes of other transition metals also show promise and may widen the spectrum of activity, reduce side-effects, and overcome resistance. The latter include organo-iridium(iii) 'piano-stool' complexes. To understand their mechanism of action, it is important to discover how they bind to biomolecules and how binding is affected by functionalisation of the ligands bound to iridium. We have characterised, by MS and MS/MS techniques, unusual adducts from reactions between 3 novel iridium(iii) anti-cancer complexes each possessing reactive sites both at the metal (coordination by substitution of a labile chlorido ligand) and on the ligand (covalent bond formation involving imine formation by one or two aldehyde functions). Peptide modification by the metal complex had a drastic effect on both Collisonally Activated Dissociation (CAD) and Electron Capture Dissociation (ECD) MS/MS behaviour, tuning requirements, and fragmentation channels. CAD MS/MS was effective only when studying the covalent condensation products. ECD MS/MS, although hindered by electron-quenching at the Iridium complex site, was suitable for studying many of the species observed, locating the modification sites, and often identifying them to within a single amino acid residue.
Collapse
|
48
|
Vural H, İdil Ö. Synthesis, spectroscopic investigation and biological activities of copper(II) complex of 2-(2,4-difluorophenyl)pyridine: A combined theoretical and experimental study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Soldevila-Barreda JJ, Metzler-Nolte N. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chem Rev 2019; 119:829-869. [PMID: 30618246 DOI: 10.1021/acs.chemrev.8b00493] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum-containing drugs (e.g., cisplatin) are among the most frequently used chemotherapeutic agents. Their tremendous success has spurred research and development of other metal-based drugs, with notable achievements. Generally, the vast majority of metal-based drug candidates in clinical and developmental stages are stoichiometric agents, i.e., each metal complex reacts only once with their biological target. Additionally, many of these metal complexes are involved in side reactions, which not only reduce the effective amount of the drug but may also cause toxicity. On a separate note, transition metal complexes and nanoparticles have a well-established history of being potent catalysts for selective molecular transformations, with examples such as the Mo- and Ru-based catalysts for metathesis reactions (Nobel Prize in 2005) or palladium catalysts for C-C bond forming reactions such as Heck, Negishi, or Suzuki reactions (Nobel Prize in 2010). Also, notably, no direct biological equivalent of these transformations exists in a biological environment such as bacteria or mammalian cells. It is, therefore, only logical that recent interest has focused on developing transition-metal based catalytic systems that are capable of performing transformations inside cells, with the aim of inducing medicinally relevant cellular changes. Because unlike in stoichiometric reactions, a catalytically active compound may turn over many substrate molecules, only very small amounts of such a catalytic metallodrug are required to achieve a desired pharmacologic effect, and therefore, toxicity and side reactions are reduced. Furthermore, performing catalytic reactions in biological systems also opens the door for new methodologies to study the behavior of biomolecules in their natural state, e.g., via in situ labeling or by increasing/depleting their concentration at will. There is, of course, an art to the choice of catalysts and reactions which have to be compatible with biological conditions, namely an aqueous, oxygen-containing environment. In this review, we aim to describe new developments that bring together the far-distant worlds of transition-metal based catalysis and metal-based drugs, in what is termed "catalytic metallodrugs". Here we will focus on transformations that have been performed on small biomolecules (such as shifting equilibria like in the NAD+/NADH or GSH/GSSG couples), on non-natural molecules such as dyes for imaging purposes, or on biomacromolecules such as proteins. Neither reactions involving release (e.g., CO) or transformation of small molecules (e.g., 1O2 production), degradation of biomolecules such as proteins, RNA or DNA nor light-induced medicinal chemistry (e.g., photodynamic therapy) are covered, even if metal complexes are centrally involved in those. In each section, we describe the (inorganic) chemistry involved, as well as selected examples of biological applications in the hope that this snapshot of a new but quickly developing field will indeed inspire novel research and unprecedented interactions across disciplinary boundaries.
Collapse
Affiliation(s)
- Joan Josep Soldevila-Barreda
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| |
Collapse
|
50
|
Kong D, Guo L, Tian M, Zhang S, Tian Z, Yang H, Tian Y, Liu Z. Lysosome-targeted potent half-sandwich iridium(III) α-diimine antitumor complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Deliang Kong
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Lihua Guo
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Meng Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Shumiao Zhang
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhenzhen Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Huayun Yang
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Ye Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhe Liu
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| |
Collapse
|