1
|
Pradhan C, Khandelwal D, Punji B. Regioselective Difluoroalkylation of 2-Pyridones with Fluoroalkyl Bromides Enabled by a Nickel(II) Catalyst. Chem Asian J 2025:e202401870. [PMID: 39786319 DOI: 10.1002/asia.202401870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Regioselective C-H difluoroalkylation of diverse 2-pyridones with ethyl bromodifluoroacetates and bromodifluoroacetamides is accomplished by using a (dppf)NiCl2 catalyst under mild conditions. This efficient protocol could deliver a variety of C-3 difluoroalkylated pyridones with the tolerance of a range of highly susceptible functionalities, such as -Cl, -Br, -I, -COMe, -CN, -NMe2 and -NO2, including heteroarenes like pyridinyl, furanyl, thiophenyl and carbazolyl moieties. A preliminary mechanistic study suggests the radical pathway for the reaction involving fluoroalkyl radical intermediate.
Collapse
Affiliation(s)
- Chandini Pradhan
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Disha Khandelwal
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- K J Somaiya College of Science and Commerce, Vidya Vihar, Mumbai, 400 077, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
2
|
Lu XY, Huang R, Wang ZZ, Zhang X, Jiang F, Yang GX, Shui FY, Su MX, Sun YX, Sun HL. Photoinduced Decarboxylative Difluoroalkylation and Perfluoroalkylation of α-Fluoroacrylic Acids. J Org Chem 2024; 89:6494-6505. [PMID: 38634729 DOI: 10.1021/acs.joc.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Herein, a novel and practical methodology for the photoinduced decarboxylative difluoroalkylation and perfluoroalkylation of α-fluoroacrylic acids is reported. A wide range of α-fluoroacrylic acids can be used as applicable feedstocks, allowing for rapid access to structurally important difluoroalkylated and polyfluoroalkylated monofluoroalkenes with high Z-stereoselectivity under mild conditions. The protocol demonstrates excellent functional group compatibility and provides a platform for modifying complex biologically active molecules.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Rui Huang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Zi-Zhen Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Xiang Zhang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Fan Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Gui-Xian Yang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Fu-Yi Shui
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Meng-Xue Su
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Yan-Xi Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Hai-Lun Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| |
Collapse
|
3
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
4
|
Cui Y, Xu W, Yang W, Meng F. Access to CF 2COR-Containing Quinazolinones via Visible-Light-Induced Domino Difluoroalkylation/Cyclization of N-Cyanamide Alkenes. Org Lett 2024; 26:2119-2123. [PMID: 38436251 DOI: 10.1021/acs.orglett.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A green and highly efficient visible-light-induced radical cascade difluoroalkylation/cyclization reaction of N-cyanamide alkenes has been developed. A variety of CF2COR-containing quinazolinones have been obtained in high yields with cheap non-metallic 4CzIPN as the photocatalyst. This photocatalytic reaction provides rapid, facile, and practical access to valuable polycyclic quinazolinone, and it is amenable to the gram scale.
Collapse
Affiliation(s)
- Yangyang Cui
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen Xu
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenchao Yang
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fei Meng
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Barron B, Edge C, Fenner S, Shrives H, Sollis S, Whiting M, Valette D. A Concise Enantioselective Synthesis of Fluorinated Pyrazolo-Piperidine GSK3901383A Enabled by an Organocatalytic Aza-Michael Addition. Org Lett 2024; 26:1533-1538. [PMID: 38363757 DOI: 10.1021/acs.orglett.3c03694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
A highly enantioselective organocatalytic aza-Michael addition of 4-nitro-pyrazole to ethyl (E)-2,2-difluoro-5-oxopent-3-enoate has been developed. This reaction enabled a concise, four-step, stereoselective synthesis of highly functionalized 3,3-difluoro-4-pyrazolo-piperidine GSK3901383A, a key intermediate for the synthesis of a leucine-rich repeat kinase 2 inhibitor API. Computational analysis provided insight into the steric requirements of the catalytic system, enabling rational selection of a highly selective catalyst.
Collapse
Affiliation(s)
- Benedict Barron
- Drug Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Colin Edge
- Computational Chemistry, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Sabine Fenner
- Drug Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Harry Shrives
- Medicinal Chemistry, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Steven Sollis
- Medicinal Chemistry, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew Whiting
- Drug Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Damien Valette
- Drug Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
6
|
Tian YM, Silva W, Gschwind RM, König B. Accelerated photochemical reactions at oil-water interface exploiting melting point depression. Science 2024; 383:750-756. [PMID: 38359135 DOI: 10.1126/science.adl3092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Water can accelerate a variety of organic reactions far beyond the rates observed in classical organic solvents. However, using pure water as a solvent introduces solubility constraints that have limited the applicability of efficient photochemistry in particular. We report here the formation of aggregates between pairs of arenes, heteroarenes, enamines, or esters with different electron affinities in an aqueous medium, leading to an oil-water phase boundary through substrate melting point depression. The active hydrogen atoms in the reactants engage in hydrogen bonds with water, thereby accelerating photochemical reactions. This methodology realizes appealingly simple conditions for aqueous coupling reactions of complex solid molecules, including complex drug molecules that are poorly soluble in water.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Wagner Silva
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
7
|
Zhang X, Deng J, Ji Y, Li R, Sivaguru P, Song Q, Karmakar S, Bi X. Defluorinative 1,3-Dienylation of Fluoroalkyl N-Triftosylhydrazones with Homoallenols. Chemistry 2023; 29:e202302562. [PMID: 37695246 DOI: 10.1002/chem.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A silver-catalyzed regioselective defluorinative 1,3-dienylation of trifluoromethyl phenyl N-triftosylhydrazones using homoallenols as 1,3-dienyl sources provides a variety of α-(di)fluoro-β-vinyl allyl ketones with excellent functional group tolerance in moderate to good yields. The reaction proceeds through a silver carbene-initiated sequential etherification and Claisen type [3,3]-sigmatropic rearrangement cascade. The synthetic utility of this protocol was demonstrated through the downstream synthetic elaboration toward diverse synthetically useful building blocks.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiahua Deng
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rong Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Swastik Karmakar
- Department of Chemistry, Basirhat College, West Bengal State University, Basirhat, 743412, West Bengal, India
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Deeksha, Bittu, Singh R. Synthetic strategies for the construction of C3-fluorinated oxindoles. Org Biomol Chem 2023; 21:6456-6467. [PMID: 37531214 DOI: 10.1039/d3ob01012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
C3-fluorinated oxindoles are important scaffolds known to demonstrate various biological properties. As bio-isosteres of oxindoles, these compounds have shown tremendous potential in drug research discovery programs. Besides, they also serve as starting materials for synthesizing other fluorine-containing new architectures, thus launching research for developing new methods for their synthesis. Consequently, various approaches have been developed over the years to synthesize C3-fluorinated oxindoles. This review highlights the strategies developed to date to access C3-difluoro and monofluorooxindoles via intermolecular and intramolecular approaches. The key findings of the strategies developed are discussed along with the prevailing mechanism.
Collapse
Affiliation(s)
- Deeksha
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| | - Bittu
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| | - Ritesh Singh
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
9
|
Liu R, Zhou N, Zhao T, Zhang Y, Wang K, Zhao X, Lu K. Visible-Light-Induced Difluoroalkylation of Alkenes and Alkynes with Fluoro-Containing Hypervalent Iodane (III) Reagents Under Photo-Catalyst-Free Conditions. J Org Chem 2023; 88:483-492. [PMID: 36563003 DOI: 10.1021/acs.joc.2c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A visible-light-induced difluoroalkylation of unactivated alkenes by fluoro-containing hypervalent iodine-based difluoroalkylation reagent was achieved for the first time under photo-catalyst-free conditions. Moreover, the same reaction conditions were applicable to the difluoroalkylation of alkynes to give the hydrodifluoroalkylation products in moderate to excellent yields. The readily available reagent, broad substrate scope, and photo-catalyst-free conditions make this protocol an efficient and environmental friendly method for the hydrodifluoroalkylation of alkenes and alkynes.
Collapse
Affiliation(s)
- Ruiyue Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Tingting Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Kun Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Dong DQ, Yang SH, Wu P, Wang JZ, Min LH, Yang H, Zhou MY, Wei ZH, Ding CZ, Wang YL, Gao JH, Wang SJ, Wang ZL. Copper-Catalyzed Difluoroalkylation Reaction. Molecules 2022; 27:molecules27238461. [PMID: 36500553 PMCID: PMC9740754 DOI: 10.3390/molecules27238461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics, we classify these difluoroalkylation reactions into three types.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shao-Hui Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Pei Wu
- Shandong Academy of Pesticide Sciences, Beiyuan Street, Jinan 250033, China
- Correspondence: (P.W.); (Z.-L.W.)
| | - Jin-Zhi Wang
- Tancheng County Agricultural Technology Popularization Center, Linyi 276100, China
| | - Ling-Hao Min
- Qingdao Zhongda Agritech Co., Ltd., Qingdao 266109, China
| | - Hao Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng-Yu Zhou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ze-Hui Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Cai-Zhen Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Hui Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shu-Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (P.W.); (Z.-L.W.)
| |
Collapse
|
12
|
Shreiber ST, Granados A, Matsuo B, Majhi J, Campbell MW, Patel S, Molander GA. Visible-Light-Induced C-F Bond Activation for the Difluoroalkylation of Indoles. Org Lett 2022; 24:8542-8546. [PMID: 36373860 PMCID: PMC10414767 DOI: 10.1021/acs.orglett.2c03549] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An aryl disulfide mediated C-F bond activation of the trifluoromethyl group to generate valuable gem-difluoroalkylindoles is described. This method relies on readily available commodity reagents under mild reaction conditions and represents the first transition-metal-free redox-neutral C-F bond activation strategy. The reaction employs various substituted indoles and α-fluoro-substituted esters. Further, this mode of C-F activation was also amenable to the activation of trifluoromethylated arenes for the preparation of bis-benzylic gem-difluoromethylenes between indole and arene substructures, providing access to a unique chemical space.
Collapse
Affiliation(s)
- Scott T Shreiber
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mark W Campbell
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shivani Patel
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
Vuagnat M, Tognetti V, Jubault P, Besset T. Ru(II)-Catalyzed Hydroarylation of in situ Generated 3,3,3-Trifluoro-1-propyne by C-H Bond Activation: A Facile and Practical Access to β-Trifluoromethylstyrenes. Chemistry 2022; 28:e202201928. [PMID: 35736795 PMCID: PMC9804422 DOI: 10.1002/chem.202201928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, a practical and straightforward synthesis of β-(E)-trifluoromethylstyrenes by ruthenium-catalyzed C-H bond activation was developed. The readily available and inexpensive 2-bromo-3,3,3-trifluoropropene (BTP), a non-ozone depleting reagent, was used as a reservoir of 3,3,3-trifluoropropyne. With this approach, the monofunctionalization of a panel of heteroarenes was possible in a safe and scalable manner (23 examples, up to 87 % yield). Mechanistic investigations and density functional theory (DFT) calculations were also conducted to get a better understanding of the mechanism of this transformation. These studies suggested that 1) a cyclometallated ruthenium complex enabled the transformation, 2) this complex exhibited high efficiency in this transformation compared to the commercially available [RuCl2 (p-cymene)]2 and 3) the mechanism proceeded through a bis-cyclometallated ruthenium intermediate for the carboruthenation step.
Collapse
Affiliation(s)
- Martin Vuagnat
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Vincent Tognetti
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Tatiana Besset
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| |
Collapse
|
14
|
Zhang J, Zhang B, He J, Shi H, Du Y. Divergent synthesis of 2-methylthioindole and 2-unsubstituted indole derivatives mediated by SOCl 2 and dimethyl/diethyl sulfoxides. Org Biomol Chem 2022; 20:7886-7890. [PMID: 36169012 DOI: 10.1039/d2ob01580c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free divergent synthesis of indole compounds dependent on a reagent via intramolecular C(sp2)-H amination was described. The reaction of 2-vinylanilines with DMSO/SOCl2 at 70 °C was found to give 2-thiomethylindoles, while replacing DMSO with diethyl sulfoxide afforded 2-unsubstituted indoles in a highly selective manner.
Collapse
Affiliation(s)
- Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Beibei Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxin He
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haofeng Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Wang H, Huang Y, Wu Q, Lu J, Xu YL, Chen YY. Visible-Light-Promoted bis(Difluoromethylation)/Cyclization of 2-Vinyloxy Arylalkynes to Prepare Benzofuran Derivatives. J Org Chem 2022; 87:13288-13299. [PMID: 36166821 DOI: 10.1021/acs.joc.2c01938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-promoted difluoromethylation/cyclization of 2-vinyloxy arylalkynes was developed, providing a variety of bis(difluoromethyl)-substituted benzofurans in moderate to good yields. A plausible mechanism involving difluoromethyl radical cascade cyclization and solvent-promoted ionic addition was proposed. This protocol has the advantages of having mild reaction conditions, simple operation, and good functional group tolerance.
Collapse
Affiliation(s)
- Huan Wang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yao Huang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Qiaoyan Wu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Jun Lu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Li Xu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Yan Chen
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
16
|
Gong H, Wang J, Peng Y, Chen H, Deng H, Hao J, Wan W. Photocatalyzed difluoroalkylation of pyridine N-oxides. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Haiying Gong
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Juan Wang
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Yi Peng
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hua Chen
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hongmei Deng
- Laboratory of Microstructures, Shanghai University, Shanghai, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Wen Wan
- Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
17
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chem Sci 2022; 13:9387-9391. [PMID: 36093028 PMCID: PMC9384137 DOI: 10.1039/d2sc02665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of fluorine atoms into organic molecules is an attractive but challenging topic. In this work, an interesting palladium-catalyzed difluoroalkylative carbonylation of aryl olefins has been developed. A wide range of aryl olefins were transformed into the corresponding difluoropentanedioate compounds with good functional-group tolerance and excellent regioselectivity. Inexpensive ethyl bromodifluoroacetate acts both as a difluoroalkyl precursor and a nucleophile here. Additionally, a scale-up reaction was also performed successfully, and further transformations of the obtained product were shown as well.
Collapse
Affiliation(s)
- Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| |
Collapse
|
18
|
Zhang ZZ, Lei JJ, Zhang XH, Zhang XG, Tu HY. Ni-Catalyzed Reductive Fluoroalkylacylation of Alkynes for the Steroselective Synthesis of Fluoroalkylated Enones. Org Lett 2022; 24:6192-6196. [PMID: 35972409 DOI: 10.1021/acs.orglett.2c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Ni-catalyzed three-component reductive fluoroalkylacylation of alkynes with fluoroalkyl halides and acyl chlorides is presented. This dicarbofunctionalization provides an efficient method for the synthesis of fluoroalkyl-incorporated enones under mild conditions with high yields and excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Zhu-Zhu Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jia-Jia Lei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
19
|
Mori A, Curpanen S, Pezzetta C, Perez-Luna A, Poli G, Oble J. C–H Activation Based Functionalizations of Furfural Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessia Mori
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| | | | | | | | | | - Julie Oble
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| |
Collapse
|
20
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
21
|
Li BS, Guo HX, Sun W, Sun M. Rh(III)-Catalyzed three-component C H functionalization reaction with vinylene carbonate: Late-stage C H esterification of indole derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Huang QP, Li WP, Li R, Zhao L, Wang HY, Li X, Wang P, He CY. Visible-light Promoted Cross-coupling of Ethyl Iododifluoroacetate with Silyl Enol Ethers for the Synthesis of β-Fluoroenones via Noncovalent Interactions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Yang Z, Chen L, Sun Q, Guo M, Wang G, Zhao W, Tang X. Tetrahydroxydiboron and Nickel Chloride Cocatalyzed Rapid Radical Cyclization toward Pyrrolizidine and Indolizidine Alkaloids. J Org Chem 2022; 87:3788-3793. [PMID: 35188782 DOI: 10.1021/acs.joc.1c02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel tetrahydroxydiboron and nickel chloride cocatalyzed radical cyclization cascade with a broad substrate scope and an ultrashort reaction time was developed. The mechanistic investigation indicated that the reaction might involve a homocleavage of tetrahydroxydiboron and nickel hydride intermediates. This approach enables the simple and efficient synthesis of a series of heteropolycycles.
Collapse
Affiliation(s)
- Zequn Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Longhui Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Qi Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
24
|
Peng Y, Gong H, Wang J, Chen H, Deng H, Hao J, Wan W. Regiospecific C2‐Difluoroalkylation on Chromone via Transition‐Metal‐free Oxidative Decarboxylation of Aryldifluoroacetic acids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Peng
- Shanghai University Department of chemistry CHINA
| | - Haiying Gong
- Shanghai University Department of chemistry CHINA
| | - Juan Wang
- Shanghai University Department of chemistry CHINA
| | - Hua Chen
- Shanghai University Department of chemistry CHINA
| | - Hongmei Deng
- Shanghai University laboratory of Microstructures CHINA
| | - Jian Hao
- Shanghai University Department of chemistry CHINA
| | - Wen Wan
- Shanghai University of Science and Technology: Shanghai University Deptartment of Chemistry Shangda Road 99 200444 Shanghai CHINA
| |
Collapse
|
25
|
Wu F, Li Z, Huang G, Wu J, Wu J, Yu Y. The Visible Light‐mediated Tandem Addition/Elimination Reaction of Iododifluoromethyl Ketones and Alkenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fanhong Wu
- Shanghai Institute of Technology Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology CHINA
| | - Zhi Li
- Shanghai Institute of Technology Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology CHINA
| | | | - Jihong Wu
- Shanghai Institute of Technology Shanghai CHINA
| | - Jingjing Wu
- Shanghai Institute of Technology School of Chemcial and Environmental Engineering 100 Haiquan RD 201418 Shanghai CHINA
| | - Yanyan Yu
- Shanghai Institute of Technology shanghai CHINA
| |
Collapse
|
26
|
Sun Q, Sun Z, Yu Z, Wang G. Nickel-Catalyzed Stereoselective Aryl-Difluoroalkylation of Alkynes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Chen Z, Sun J, Ke Z, Huang X, Li Z. Silver-catalyzed stereoselective C-4 arylthiodifluoromethylation of coumarin-3-carboxylic acids via a double decarboxylative strategy. Org Chem Front 2022. [DOI: 10.1039/d1qo01609a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile silver-catalyzed dual decarboxylation of arylthio-difluoroacetic acid with coumarin-3-carboxylic acids/chromone-3-carboxylic acids was developed.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
28
|
Gao X, Pan X, Wang P, Jin Z. Visible Light-induced Phosphine-Catalyzed Perfluoroalkylation of Indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-induced, catalytic phosphine-promoted perfluoroalkylation reaction of indole molecules is developed. Inexpensive and readily available PPh3 is used in a catalytic amount as the sole reaction initiator in this protocol....
Collapse
|
29
|
Li T, Luo Y, Wu Z, Xiao T, Jiang Y, Qin G. Dual Fe/Pd‐Catalyzed Reductive Cross‐Coupling: Constructing
gem
‐Difluoroallylenes with Alkenyl Bromides and Bromodifluoromethanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tao Li
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Yuhang Luo
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Zefeng Wu
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Guiping Qin
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| |
Collapse
|
30
|
Cheng J, Zhang H, Lv J, Zheng J. Palladium‐Catalyzed Intermolecular Dicarbofunctionalization of Unactivated Alkenes: Synthesis of Fluoroalkylated Heterocycles with All‐Carbon Quaternary Centers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Huali Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Jinliang Lv
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Jinhua Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| |
Collapse
|
31
|
Selective Ni-catalyzed cross-electrophile coupling of alkynes, fluoroalkyl halides, and vinyl halides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Baguia H, Evano G. Copper-Catalyzed Direct Perfluoroalkylation of Heteroarenes. Chemistry 2021; 28:e202103599. [PMID: 34842313 DOI: 10.1002/chem.202103599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 02/04/2023]
Abstract
An efficient and broadly applicable process is reported for the copper-catalyzed direct perfluoroalkylation of C-H bonds in heteroarenes with commercially available perfluoroalkyl iodides. This reaction is based on a simple combination of copper(I) iodide and 1,10-phenanthroline enabling the easy reduction of perfluoroalkyl iodides to the corresponding radical species that add to a wide range of heteroarenes including benzofurans, benzothiophenes, (aza)indoles, furans and pyrroles. High levels of regioselectivity were obtained in all cases and the efficiency and robustness of this process was highlighted by the direct perfluoroalkylation of furan-containing peptides.
Collapse
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| |
Collapse
|
33
|
Csenki JT, Mészáros Á, Gonda Z, Novák Z. Stereoselective Direct N-Trifluoropropenylation of Heterocycles with a Hypervalent Iodonium Reagent. Chemistry 2021; 27:15638-15643. [PMID: 34549840 PMCID: PMC9293340 DOI: 10.1002/chem.202102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The availability and synthesis of fluorinated enamine derivatives such as N-(3,3,3-trifluoropropenyl)heterocycles are challenging, especially through direct functionalization of the heterocyclic scaffold. Herein, a stereoselective N-trifluoropropenylation method based on the use of a bench-stable trifluoropropenyl iodonium salt is described. This reagent enables the straightforward trifluoropropenylation of various N-heterocycles under mild reaction conditions, providing trifluoromethyl enamine type moieties with high stereoselectivity and efficiency.
Collapse
Affiliation(s)
- János T Csenki
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Ádám Mészáros
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Zsombor Gonda
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| |
Collapse
|
34
|
Hernandez LW, Gallagher WP, Guerrero CA, Gonzalez-Bobes F, Coombs JR. Radical Perfluoroalkylation of Arenes via Carbanion Intermediates. J Org Chem 2021; 86:10903-10913. [PMID: 34286987 DOI: 10.1021/acs.joc.1c01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of sodium dithionite with perfluoroalkyl iodides under basic conditions facilitates the direct perfluoroalkylation of arenes with pendant benzylic electron-withdrawing groups. This occurs via attack of the arene on the electrophilic perfluoroalkyl radical, through the donation of electron density from a benzylic anion. The substrate scope was expanded beyond benzylic nitriles with cyclic substrates bearing electron-withdrawing groups at the benzylic position-enforcing donation of electron density to the aromatic ring and enabling attack on the perfluoroalkyl radical.
Collapse
Affiliation(s)
- Lucas W Hernandez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - William P Gallagher
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Carlos A Guerrero
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Francisco Gonzalez-Bobes
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - John R Coombs
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
35
|
Zhou S, Hou X, Yang K, Guo M, Zhao W, Tang X, Wang G. Direct Synthesis of N-Difluoromethyl-2-pyridones from Pyridines. J Org Chem 2021; 86:6879-6887. [PMID: 33905251 DOI: 10.1021/acs.joc.1c00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method for the synthesis of N-difluoromethyl-2-pyridones was described. This protocol enables the synthesis of N-difluoromethyl-2-pyridones from readily available pyridines using mild reaction conditions that are compatible with a wide range of functional groups. The preliminary mechanistic study revealed that N-difluoromethylpyridinium salts were the key intermediates to complete this conversion.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
36
|
Quintavalla A, Veronesi R, Carboni D, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Chemodivergent Photocatalytic Synthesis of Dihydrofurans and β,γ‐Unsaturated Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Davide Carboni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ada Martinelli
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Liviana Mummolo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
37
|
Gu Q, Wang Q, Dai W, Wang X, Ban Y, Liu T, Zhao Y, Zhang Y, Ling Y, Zeng X. K 2S 2O 8-mediated regio- and stereo-selective thiocyanation of enamides with NH 4SCN. Org Biomol Chem 2021; 19:2512-2516. [PMID: 33662088 DOI: 10.1039/d1ob00156f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A direct and straightforward thiocyanation of enamides with NH4SCN under metal-free conditions has been accomplished. A variety of (E)-β-thiocyanoenamides are readily produced in a regio- and stereo-selective manner. The protocol features mild reaction conditions, good functional group tolerance and operational simplicity. The potential utility of this strategy was further demonstrated by transformation of thiocyanate into thiotetrazole-containing compounds and a Pd-catalyzed cross-coupling reaction to afford six- or seven-membered sulfur-containing heterocycles. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou S, Sun ZY, Zhu K, Zhao W, Tang X, Guo M, Wang G. Metal-Free Difunctionalization of Pyridines: Selective Construction of N-CF 2H and N-CHO Dihydropyridines. Org Lett 2021; 23:2205-2211. [PMID: 33635677 DOI: 10.1021/acs.orglett.1c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kongying Zhu
- Nuclear Magnetic Resonance Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
39
|
Huang J, Jia Y, Li X, Duan J, Jiang ZX, Yang Z. Halotrifluoromethylation of 1,3-Enynes: Access to Tetrasubstituted Allenes. Org Lett 2021; 23:2314-2319. [PMID: 33661651 DOI: 10.1021/acs.orglett.1c00449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly regioselective copper-catalyzed 1,4-chloro- and bromotrifluoromethylation of 1,3-enynes has been presented for the first time, which affords an efficient transformation to access halo- and CF3-containing tetrasubstituted allene derivatives with good to excellent yield. This protocol is practical and convenient, in which a wide range of functional groups are compatible. Applications of this method for the gram-scale preparation and late-stage functionalization of biologically active molecules are also demonstrated.
Collapse
Affiliation(s)
- Jinfeng Huang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yimin Jia
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangyu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jianli Duan
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
40
|
Fang X, Tan Y, Gu L, Ackermann L, Ma W. para
‐Selective Palladium‐Catalyzed C−H Difluoroalkylation by Weak Oxazolidinone Assistance. ChemCatChem 2021. [DOI: 10.1002/cctc.202002056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universitaet Goettingen Tammannstraße 2 37077 Goettingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| |
Collapse
|
41
|
Wu P, Zheng C, Wang X, Wu J, Wu F. Copper‐Catalyzed Three‐Component Reactions of 2‐Iodo‐2,2‐difluoroacetophenones, Alkynes, and Trimethylsilyl Cyanide. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pingjie Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Cheng Zheng
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Xia Wang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 200032 Shanghai P. R. China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
42
|
Wang RH, Li JF, Li Y, Qi SL, Zhang T, Luan YX, Ye M. Selective C(sp3)–H Cleavage of Enamides for Synthesis of 2-Pyridones via Ligand-Enabled Ni–Al Bimetallic Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Zhang W, Xiang S, Fan W, Jin J, Li Y, Huang D. A three-component iodine-catalyzed oxidative coupling reaction: a heterodifunctionalization of 3-methylindoles. Org Biomol Chem 2021; 19:5794-5799. [PMID: 34109340 DOI: 10.1039/d1ob00730k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A metal-free method for the synthesis of heterodifunctional indole derivatives is developed through TBHP/KI-mediated oxidative coupling. The reaction constructs C-O and C-C bonds in succession with the help of tert-butyl peroxy radicals generated by the TBHP/KI catalytic system, enabling the direct realization of the heterodifunctionalization of indole in one pot. The product of this reaction is a novel heterodifunctional compound. This work might provide a new effective method for the synthesis of polycyclic indole compounds.
Collapse
Affiliation(s)
- Wei Zhang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shiqun Xiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Deguang Huang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
44
|
Zhao K, Guo JY, Guan T, Wang YX, Tao JY, Zhang Y, Zhang QH, Ni K, Loh TP. Photoinitiated stereoselective direct C(sp 2)–H perfluoroalkylation and difluoroacetylation of enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00605c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinitiated regio- and stereoselective C(sp2)–H perfluoroalkylation and difluoroacetylation of enamides are developed, furnishing biologically and physiologically privileged fluoro-containing enamide scaffolds.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Jing-Yu Guo
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ting Guan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ying-Xue Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ji-Yu Tao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yu Zhang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Qing-Hong Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Kun Ni
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
45
|
Colombano A, Dall'Angelo S, Kingston L, Grönberg G, Correia C, Passannante R, Baz Z, Morcillo MÁ, Elmore CS, Llop J, Zanda M. 4,4,16-Trifluoropalmitate: Design, Synthesis, Tritiation, Radiofluorination and Preclinical PET Imaging Studies on Myocardial Fatty Acid Oxidation. ChemMedChem 2020; 15:2317-2331. [PMID: 32856369 DOI: 10.1002/cmdc.202000610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 11/10/2022]
Abstract
Fatty acid oxidation (FAO) produces most of the ATP used to sustain the cardiac contractile work, although glycolysis is a secondary source of ATP under normal physiological conditions. FAO impairment has been reported in the advanced stages of heart failure (HF) and is strongly linked to disease progression and severity. Thus, from a clinical perspective, FAO dysregulation provides prognostic value for HF progression, the assessment of which could be used to improve patient monitoring and the effectiveness of therapy. Positron emission tomography (PET) imaging represents a powerful tool for the assessment and quantification of metabolic pathways in vivo. Several FAO PET tracers have been reported in the literature, but none of them is in routine clinical use yet. Metabolically trapped tracers are particularly interesting because they undergo FAO to generate a radioactive metabolite that is subsequently trapped in the mitochondria, thus providing a quantitative means of measuring FAO in vivo. Herein, we describe the design, synthesis, tritium labelling and radiofluorination of 4,4,16-trifluoro-palmitate (1) as a novel potential metabolically trapped FAO tracer. Preliminary PET-CT studies on [18 F]1 in rats showed rapid blood clearance, good metabolic stability - confirmed by using [3 H]1 in vitro - and resistance towards defluorination. However, cardiac uptake in rats was modest (0.24±0.04 % ID/g), and kinetic analysis showed reversible uptake, thus indicating that [18 F]1 is not irreversibly trapped.
Collapse
Affiliation(s)
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Lee Kingston
- Early Chemical Development, Pharmaceutical Science R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Gunnar Grönberg
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune BioPharmaceuticals R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Claudia Correia
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Rossana Passannante
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Miguel Ángel Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit, CIEMAT, 28040, Madrid, Spain
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Science R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Respiratorias - CIBERES, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Matteo Zanda
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,C.N.R.-SCITEC, Via Mancinelli 7, 20131, Milan, Italy.,Current address: School of Science, Centre for Sensing and Imaging Science, Loughborough University Sir David Davies Building, Loughborough, LE11 3TU, UK
| |
Collapse
|
46
|
Hou X, Zhou S, Li Y, Guo M, Zhao W, Tang X, Wang G. Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Org Lett 2020; 22:9313-9318. [DOI: 10.1021/acs.orglett.0c03540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yuli Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
47
|
Pan Y, Lu X, Qiu H, Tamio Hayashi, Huang Y. Highly Enantioselective Synthesis of Monofluoroalkenes by Rhodium-Catalyzed Asymmetric Arylation/Defluorination of Allyl Difluorides. Org Lett 2020; 22:8413-8418. [DOI: 10.1021/acs.orglett.0c03044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhang Pan
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaosa Lu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huayu Qiu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
48
|
Rao M, Wei Z, Yuan Y, Cheng J. Copper‐Catalyzed C−H Difluoroalkylation of Coumarins with Fluoroalkyl Bromides. ChemCatChem 2020. [DOI: 10.1002/cctc.202001025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Rao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou Fujian Province 350116 P. R. China
- Department of Chemistry and Environmental Sciences Shangrao Normal University 85 Zhimin Road Shangrao Jiangxi Province 334001 P. R. China
| | - Zhenwei Wei
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou Fujian Province 350116 P. R. China
| | - Yaofeng Yuan
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou Fujian Province 350116 P. R. China
| | - Jiajia Cheng
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou Fujian Province 350116 P. R. China
| |
Collapse
|
49
|
Li L, Zhao Z, Xu J, Luo H, Li Y, Ma X, Tang L, Ren B, Cao X, Ma YN. Synthesis of remote fluoroalkylated alkenes by a palladium-catalyzed relay Heck-type reaction. Chem Commun (Camb) 2020; 56:9384-9387. [PMID: 32672780 DOI: 10.1039/c9cc10048b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we report a palladium-catalyzed relay Heck-type reaction of fluoroalkyl bromide and terminal alkenes. The reaction involves fluoroalkylation of alkenes and migration of double bonds via a 1,5-hydrogen atom transfer strategy. Through this method, a series of remote fluoroalkylated alkenes was obtained under mild conditions.
Collapse
Affiliation(s)
- Lixin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sun ZY, Zhou S, Yang K, Guo M, Zhao W, Tang X, Wang G. Tetrahydroxydiboron-Promoted Radical Addition of Alkynols. Org Lett 2020; 22:6214-6219. [DOI: 10.1021/acs.orglett.0c02367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|