1
|
Jiao T, Wu CH, Zhang YS, Miao X, Wu S, Jiang SD, Wu J. Solution-phase synthesis of Clar's goblet and elucidation of its spin properties. Nat Chem 2025:10.1038/s41557-025-01776-1. [PMID: 40097834 DOI: 10.1038/s41557-025-01776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
In the traditional view, spin pairing occurs between two electrons in a chemical bond where the bonding interaction compensates for the penalty of electrostatic repulsion. It is a mystery whether spin pairing can occur between two non-bonded electrons within a molecular entity. Unveiling this type of spin entanglement (that is, pairing between two spatially segregated spins) at the molecular scale is a long-standing challenge. Clar's goblet, proposed by Erich Clar in 1972, provides an ideal platform to verify this unusual property. Here we report the solution-phase synthesis of Clar's goblet and experimental elucidation of its spin properties. Magnetic studies reveal that the two spins are spatially segregated with an average distance of 8.7 Å and antiferromagnetically coupled in the ground state with an ΔES-T of -0.29 kcal mol-1. Our results provide insight into the spin entanglement in Clar's goblet and may inspire the design of correlated molecular spins for quantum information technologies.
Collapse
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Cong-Hui Wu
- Spin-X Institute, School of Chemistry and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Yu-Shuang Zhang
- Spin-X Institute, School of Chemistry and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Xiaohe Miao
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Instrumentation and Service Center for Molecular Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen-Hong Kong International Science and Technology Park, Shenzhen, China.
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Zhang Y, Shi J, Ji L. B←N Lewis Pair-Functionalized Perylenes: Tuning Optoelectronic Properties via Regioisomerization. J Org Chem 2025; 90:3071-3077. [PMID: 39950898 DOI: 10.1021/acs.joc.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Herein, we report two peri-regioisomers of B←N Lewis pair-functionalized perylenes: the centrosymmetric PBNPf1 and the mirror-symmetric PBNPf2. Mirror-symmetric functionalization more effectively tunes the photoelectronic properties. The LUMO energy levels of PBNPf1 and PBNPf2 are stabilized to -3.00 eV and -3.30 eV. Additionally, the emission maxima of PBNPf1 and PBNPf2 are shifted to 574 and 628 nm, with fluorescence quantum yields of up to 96% and 87%, respectively.
Collapse
Affiliation(s)
- Yufeng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
3
|
Wang C, Lin J, Huang H, Ye C, Bao H. Regio- and Diastereoselective Radical Dimerization Reactions for the Construction of Benzo[ f]isoindole Dimers. Org Lett 2024; 26:2580-2584. [PMID: 38526484 DOI: 10.1021/acs.orglett.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study presents a novel approach for synthesizing benzo[f]isoindole dimers, which involves cascade cyclization and oxidative radical dimerization. Our method allows for the formation of up to five carbon-carbon bonds in a single reaction, exhibiting remarkable diastereoselectivity and regioselectivity. The mechanism and regioselectivity were investigated through a combination of experiments and calculations.
Collapse
Affiliation(s)
- Chuanchuan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Jingyi Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Haiyang Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| |
Collapse
|
4
|
Yang K, Li Z, Huang Y, Zeng Z. bay/ ortho-Octa-substituted Perylene: A Versatile Building Block toward Novel Polycyclic (Hetero)Aromatic Hydrocarbons. Acc Chem Res 2024; 57:763-775. [PMID: 38386871 DOI: 10.1021/acs.accounts.3c00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
ConspectusPolycyclic (hetero)aromatic hydrocarbons (PAHs) have emerged as a focal point in current interdisciplinary research, spanning the realms of chemistry, physics, and materials science. Possessing distinctive optical, electronic, and magnetic properties, these π-functional materials exhibit significant potential across diverse applications, including molecular electronic devices, organic spintronics, and biomedical functions, among others. Despite the extensive documentation of various PAHs over the decades, the efficient and precise synthesis of π-extended PAHs remains a formidable challenge, hindering their broader application. This challenge is primarily attributed to the intricate and often elusive nature of their synthesis, compounded by issues related to low solubility and unfavored stability.The development of π-building blocks that can be facilely and modularly transformed into diverse π-frameworks constitutes a potent strategy for the creation of novel PAH materials. For instance, based on the classic perylene diimide (PDI) unit, researchers such as Würthner, Wang, and Nuckolls have successfully synthesized a plethora of structurally diverse PAHs, as well as numerous other π-functional materials. However, until now the availability of such versatile building blocks is still severely limited, especially for those simultaneously having a facile preparation process, adequate solubilizing groups, favored material stability, and critically, rich possibilities for structural extension spaces.In this Account, we present an overview of our invention of a highly versatile bay-/ortho-octa-substituted perylene building block, designated as Per-4Br, for the construction of a series of novel PAH scaffolds with tailor-made structures and rich optoelectronic and magnetic properties. First, starting with a brief discussion of current challenges associated with the bottom-up synthesis of π-extended PAHs, we rationalize the key features of Per-4Br that enable facile access to new PAH molecules including its ease of large-scale preparation, favored material stability and solubility, and multiple flexible reaction sites, with a comparison to the PDI motif. Then, we showcase our rational design and sophisticated synthesis of a body of neutral or charged, closed- or open-shell, curved, or planar PAHs via controlled annulative π-extensions in different directions such as peripheral, diagonal, or multiple dimensions of the Per-4Br skeleton. In this part, the fundamental structure-property relationships between molecular conformations, electronic structures, and self-assembly behaviors of these PAHs and their unique physiochemical properties such as unusual open-shell ground states, global aromaticity, state-associated/stimuli-responsive magnetic activity, and charge transport characteristics will be emphatically elaborated. Finally, we offer our perspective on the continued advancement of π-functional materials based on Per-4Br, which, we posit, may stimulate heightened research interest in the versatile structural motifs typified by Per-4Br, consequently catalyzing further progress in the realm of organic π-functional materials.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yulin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Liao JZ, Zhu ZC, Liu ST, Ke H. Photothermal Conversion Perylene-Based Metal-Organic Framework with Panchromatic Absorption Bandwidth across the Visible to Near-Infrared. Inorg Chem 2024; 63:3327-3334. [PMID: 38315152 DOI: 10.1021/acs.inorgchem.3c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recently, facilely designable metal-organic frameworks have gained attention in the construction of photothermal conversion materials. Nonetheless, most of the previously reported photothermal conversion metal-organic frameworks exhibit limited light absorption capabilities. In this work, a distinctive metal-organic framework with heterogeneous periodic alternate spatial arrangements of metal-oxygen clusters and perylene-based derivative molecules was prepared by in situ synthesis. The building blocks in this inimitable structure behave as both electron donors and electron acceptors, giving rise to the significant inherent charge transfer in this crystalline material, resulting in a narrow band gap with excellent panchromatic absorption, with the ground state being the charge transfer state. Moreover, it can retain excellent air-, photo-, and water-stability in the solid state. The excellent stability and broad light absorption characteristics enable the effective realization of near-infrared (NIR) photothermal conversion, including infrequent NIR-II photothermal conversion, in this perylene-based metal-organic framework.
Collapse
Affiliation(s)
- Jian-Zhen Liao
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi 337055, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Zi-Chen Zhu
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi 337055, P. R. China
| | - Su-Ting Liu
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi 337055, P. R. China
| | - Hua Ke
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi 337055, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
6
|
Shen T, Zou Y, Hou X, Wei H, Ren L, Jiao L, Wu J. Bis-peri-dinaphtho-rylenes: Facile Synthesis via Radical-Mediated Coupling Reactions and their Distinctive Electronic Structures. Angew Chem Int Ed Engl 2023; 62:e202311928. [PMID: 37735099 DOI: 10.1002/anie.202311928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with a one-dimensional (1D), ribbon-like structure have the potential to serve as both model compounds for corresponding graphene nanoribbons (GNRs) and as materials for optoelectronics applications. However, synthesizing molecules of this type with extended π-conjugation presents a significant challenge. In this study, we present a straightforward synthetic method for a series of bis-peri-dinaphtho-rylene molecules, wherein the peri-positions of perylene, quaterrylene, and hexarylene are fused with naphtho-units. These molecules were efficiently synthesized primarily through intramolecular or intermolecular radical coupling of in situ generated organic radical species. Their structures were confirmed using X-ray crystallographic analysis, which also revealed a slightly bent geometry due to the incorporation of a cyclopentadiene ring at the bay regions of the rylene backbones. Bond lengh analysis and theoretical calculations indicate that their electronic structures resemble pyrenacenes more than quinoidal rylenes. That is, the aromatic sextets are predominantly localized along the long axis of the skeletones. As the chain length increases, these molecules exhibit enhanced electronic absorption with a bathochromic shift, and multiple amphoteric redox waves. This study introduces a novel synthetic approach for generating 1D extended PAHs and GNRs, along with their structure-dependent electronic properties.
Collapse
Affiliation(s)
- Tong Shen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ya Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Haipeng Wei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Longbin Ren
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Liuying Jiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Zhang Y, Zhang Z, Ji L, Huang W. Diagonal and Vertical B ← N Lewis Pair Functionalized Perylenes. Org Lett 2023. [PMID: 37418631 DOI: 10.1021/acs.orglett.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Two novel multiple B ← N Lewis pair functionalized perylenes are reported. While OBN-Pery shows a centrosymmetric and planar architecture, PBN-Pery displays an axisymmetric and twist structure. B ← N functionalization in both of them results in a large decrease in the HOMO-LUMO energy gap. PBN-Pery in particular has a low LUMO energy level (-3.00 eV) and red emission at the NIR I region with high fluorescence quantum yield.
Collapse
Affiliation(s)
- Yufeng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Beijing 100080, China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
8
|
Li Z, Tang Y, Guo J, Zhang J, Deng M, Xiao W, Li F, Yao Y, Xie S, Yang K, Zeng Z. Stair-like narrow N-doped nanographene with unusual diradical character at the topological interface. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Luo T, Wang Y, Hao J, Chen PA, Hu Y, Chen B, Zhang J, Yang K, Zeng Z. Furan-Extended Helical Rylenes with Fjord Edge Topology and Tunable Optoelectronic Properties. Angew Chem Int Ed Engl 2023; 62:e202214653. [PMID: 36470852 DOI: 10.1002/anie.202214653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lateral furan-expansion of polycyclic aromatics, which enables multiple O-doping and peripheral edge evolution of rylenes, is developed for the first time. Tetrafuranylperylene TPF-4CN and octafuranylquaterrylene OFQ-8CN were prepared as model compounds bearing unique fjord edge topology and helical conformations. Compared to TPF-4CN, the higher congener OFQ-8CN displays a largely red-shifted (≈333 nm) and intensified absorption band (λmax =829 nm) as well as a narrowed electrochemical band gap (≈1.08 eV) due to its pronounced π-delocalization and emerging of open-shell diradicaloid upon the increase of fjord edge length. Moreover, strong circular dichroism signals in a broad range until 900 nm are observed for open-shell chiral OFQ-8CN, owing to the excellent conformational stability of its central bis(tetraoxa[5]helicene) fragments. Our studies provide insights into the relationships between edge topologies and (chir)optoelectronic properties for this novel type of O-doped PAHs.
Collapse
Affiliation(s)
- Teng Luo
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanpei Wang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiahang Hao
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bo Chen
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230039, P. R. China
| | - Kun Yang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
10
|
Borioni J, Baumgartner MT, Puiatti M, Jimenez LB. 1-Substituted Perylene Derivatives by Anionic Cyclodehydrogenation: Analysis of the Reaction Mechanism. ACS OMEGA 2022; 7:21860-21867. [PMID: 35785287 PMCID: PMC9245103 DOI: 10.1021/acsomega.2c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Perylene derivatives constitute a promising class of compounds with technological applications mainly due to their optoelectronic properties. One mechanism proposed to synthesize them, starting from binaphthyl derivatives, is anionic cyclodehydrogenation (under reductive conditions). However, the scope of this reaction is limited. In the present study, we report a theoretical and experimental analysis of this particular reaction mechanism for its use in the synthesis of 1-substituted perylenes. Different substituents at position 2 of 1,1'-binaphthalene were evaluated: -OCH3, -OSi(CH3)2C(CH3)3, and -N(CH3)2. Based on density functional theory (DFT) calculations on the proposed mechanism, we suggest that the cyclization takes place from binaphthyl dianion instead of its radical anion. This dianion has an open-shell diradical nature, and this could be the species that was detected by EPR in previous studies. The O-substituted derivatives could not afford the perylene derivatives since their radical anions fragment and the necessary binaphthyl dianion could not be formed. On the other hand, 49% of N,N-dimethylperylen-1-amine was obtained starting from the N-substituted 2-binapthyl derivative as a substrate, employing a simpler experimental methodology.
Collapse
|
11
|
He Q, Dong F, Xing L, He H, Chen X, Wang H, Ji S, Huo Y. The effects of 1-and 3-positions substitutions on the photophysical properties of perylene and its application in thiol fluorescent probes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Zhang Y, Xia M, Li M, Ping Q, Yuan Z, Liu X, Yin H, Huang S, Rao Y. Energy-Transfer-Mediated Photocatalysis by a Bioinspired Organic Perylenephotosensitizer HiBRCP. J Org Chem 2021; 86:15284-15297. [PMID: 34647457 DOI: 10.1021/acs.joc.1c01876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Energy transfer plays a special role in photocatalysis by utilizing the potential energy of the excited state through indirect excitation, in which a photosensitizer determines the thermodynamic feasibility of the reaction. Bioinspired by the energy-transfer ability of natural product cercosporin, here we developed a green and highly efficient organic photosensitizer HiBRCP (hexaisobutyryl reduced cercosporin) through structural modification of cercosporin. After structural manipulation, its triplet energy was greatly improved, and then, it could markedly promote the efficient geometrical isomerization of alkenes from the E-isomer to the Z-isomer. Moreover, it was also effective for energy-transfer-mediated organometallic catalysis, which allowed realization of the cross-coupling of aryl bromides and carboxylic acids through efficient energy transfer from HiBRCP to nickel complexes. Thus, the study on the relationship between structural manipulation and their photophysical properties provided guidance for further modification of cercosporin, which could be applied to more meaningful and challenging energy-transfer reactions.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Mingze Xia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Min Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qian Ping
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Huimin Yin
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shuping Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
13
|
Discovery and characterization of a novel perylenephotoreductant for the activation of aryl halides. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Regio-defined syntheses of tetra-brominated dibenzo[g,p]chrysene scaffolds with high solubility. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Merz J, Dietrich L, Nitsch J, Krummenacher I, Braunschweig H, Moos M, Mims D, Lambert C, Marder TB. Synthesis, Photophysical and Electronic Properties of Mono-, Di-, and Tri-Amino-Substituted Ortho-Perylenes, and Comparison to the Tetra-Substituted Derivative. Chemistry 2020; 26:12050-12059. [PMID: 32329914 PMCID: PMC7540539 DOI: 10.1002/chem.202001475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Indexed: 12/02/2022]
Abstract
We synthesized a series of new mono-, di-, tri- and tetra-substituted perylene derivatives with strong bis(para-methoxyphenyl)amine (DPA) donors at the uncommon 2,5,8,11-positions. The properties of our new donor-substituted perylenes were studied in detail to establish a structure-property relationship. Interesting trends and unusual properties are observed for this series of new perylene derivatives, such as a decreasing charge transfer (CT) character with increasing number of DPA moieties and individual reversible oxidations for each DPA moiety. Thus, (DPA)-Per possesses one reversible oxidation while (DPA)4 -Per has four. The mono- and di-substituted derivatives display unusually large Stokes shifts not previously reported for perylenes. Furthermore, transient absorption measurements of the new derivatives reveal an excited state with lifetimes of several hundred microseconds, which sensitizes singlet oxygen with quantum yields of up to 0.83.
Collapse
Affiliation(s)
- Julia Merz
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lena Dietrich
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jörn Nitsch
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Michael Moos
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - David Mims
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
16
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew Chem Int Ed Engl 2020; 59:2998-3027. [PMID: 31342599 PMCID: PMC7027897 DOI: 10.1002/anie.201904934] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Oxidative aromatic coupling occupies a fundamental place in the modern chemistry of aromatic compounds. It is a method of choice for the assembly of large and bewildering architectures. Considerable effort was also devoted to applications of the Scholl reaction for the synthesis of chiral biphenols and natural products. The ability to form biaryl linkages without any prefunctionalization provides an efficient pathway to many complex structures. Although the chemistry of this process is only now becoming fully understood, this reaction continues to both fascinate and challenge researchers. This is especially true for heterocoupling, that is, oxidative aromatic coupling with the chemoselective formation of a C-C bond between two different arenes. Analysis of the progress achieved in this field since 2013 reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted (cyclo)dehydrogenation, and developing new reagents.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Holger Butenschön
- Institut für Organische ChemieLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
17
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Syntheseanwendungen der oxidativen aromatischen Kupplung – von Biphenolen zu Nanographenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904934] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marek Grzybowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Bartłomiej Sadowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
18
|
Merz J, Steffen A, Nitsch J, Fink J, Schürger CB, Friedrich A, Krummenacher I, Braunschweig H, Moos M, Mims D, Lambert C, Marder TB. Synthesis, photophysical and electronic properties of tetra-donor- or acceptor-substituted ortho-perylenes displaying four reversible oxidations or reductions. Chem Sci 2019; 10:7516-7534. [PMID: 31588303 PMCID: PMC6761871 DOI: 10.1039/c9sc02420d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023] Open
Abstract
Via regioselective Ir-catalyzed C-H borylation and subsequent reactions (i.e., via Br4-Per or (BF3K)4-Per intermediates), we have introduced strong π-donors and acceptors at the 2,5,8,11-positions of perylene leading to unusual properties. Thus, incorporation of four donor diphenylamine (DPA) or four acceptor Bmes2 (mes = 2,4,6-Me3C6H2) moieties yields novel compounds which can be reversibly oxidized or reduced four times, respectively, an unprecedented behavior for monomeric perylene derivatives. Spectroelectrochemical measurements show NIR absorptions up to 3000 nm for the mono-cation radical of (DPA)4-Per and a strong electronic coupling over the perylene bridge was observed indicative of fully delocalized Robin-Day Class III behavior. Both (DPA)4-Per and (Bmes2)4-Per derivatives possess unusually long intrinsic singlet lifetimes (τ 0), e.g., 94 ns for the former one. The compounds are emissive in solution, thin films, and the solid state, with apparent Stokes shifts that are exceptionally large for perylene derivatives. Transient absorption measurements on (DPA)4-Per reveal an additional excited state, with a long lifetime of 500 μs, which sensitizes singlet oxygen effectively.
Collapse
Affiliation(s)
- Julia Merz
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Andreas Steffen
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Julian Fink
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Claudia B Schürger
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Alexandra Friedrich
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Ivo Krummenacher
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Holger Braunschweig
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Michael Moos
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - David Mims
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Christoph Lambert
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Todd B Marder
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| |
Collapse
|
19
|
Chen JP, Duan YM, Zheng WJ, Zhang Q, Zong Q, Chen S, Wang KP, Hu ZQ. Perylenequinone-based "turn on" fluorescent probe for hydrogen sulfide with high sensitivity in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:206-212. [PMID: 30995578 DOI: 10.1016/j.saa.2019.03.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/23/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is a kind of gaseous signal molecule in many physiological processes. In order to detect H2S, a novel "turn on" fluorescent probe 6,12-dihydroxyperylene-1,7-dione (DPD) was designed and synthesized. The probe DPD is fluorescence silence, while the addition of H2S induces an obvious green fluorescence with an obvious color change from dark blue to yellow-green. The probe shows excellent selectivity, fast response (2.5min) and linear curve (0-90μM) in wide effective pH range (4-10). Competition experiments are also revealed in corresponding studies and the detection limit is 3.6μM. The response mechanism is proved to be the reduction of the probe by H2S, which is confirmed by 1H NMR. Furthermore, through the fluorescence turn-on signal toward H2S in Hela cells, probe DPD was successfully applied to monitor H2S in living Hela cells.
Collapse
Affiliation(s)
- Ju-Peng Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yi-Meng Duan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wen-Jun Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qianshou Zong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
20
|
Li B, Peng W, Luo S, Jiang C, Guo J, Xie S, Hu Y, Zhang Y, Zeng Z. Diagonally π-Extended Perylene-Based Bis(heteroacene) for Chiroptical Activity and Integrating Luminescence with Carrier-Transporting Capability. Org Lett 2019; 21:1417-1421. [PMID: 30762373 DOI: 10.1021/acs.orglett.9b00152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis and characterization of a novel bis(heteroacene), in which four benzothiophene units diagonally fused to a twisted perylene and spatially arranged in a double helical-like structure. The described compound yielded chiroptically active atropisomers with a perfect CD response and furthermore circularly polarized luminescence with a glum of ∼1.09 × 10-3. The racemate showed strong photoluminescence both in solution (Φ f = 68%) and at the solid state (Φ f = 57%) and, meanwhile, possessed the charge-carrier transport property with a hole mobility (μh) up to 0.02 cm2 V-1 s-1 by the thin-film based OFET measurements. The integrated optoelectronic features are primarily associated with the specifically finetuned perylene-based π-extended structure.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Wangwang Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Shenglian Luo
- College of Environmental and Chemical Engineering , Nanchang Hangkong University , Nanchang 330063 , P. R. China
| | - Chuanling Jiang
- Department of Pharmacy , Clinic Medical College of Anhui Medical University , Hefei 230012 , P. R. China
| | - Jing Guo
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics , Hunan University , Changsha 410082 , P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Yuanyuan Hu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics , Hunan University , Changsha 410082 , P. R. China
| | - Yang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
21
|
Kushwaha K, Yu L, Stranius K, Singh SK, Hultmark S, Iqbal MN, Eriksson L, Johnston E, Erhart P, Müller C, Börjesson K. A Record Chromophore Density in High-Entropy Liquids of Two Low-Melting Perylenes: A New Strategy for Liquid Chromophores. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801650. [PMID: 30828534 PMCID: PMC6382313 DOI: 10.1002/advs.201801650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Indexed: 05/23/2023]
Abstract
Liquid chromophores constitute a rare but intriguing class of molecules that are in high demand for the design of luminescent inks, liquid semiconductors, and solar energy storage materials. The most common way to achieve liquid chromophores involves the introduction of long alkyl chains, which, however, significantly reduces the chromophore density. Here, strategy is presented that allows for the preparation of liquid chromophores with a minimal increase in molecular weight, using the important class of perylenes as an example. Two synergistic effects are harnessed: (1) the judicious positioning of short alkyl substituents, and (2) equimolar mixing, which in unison results in a liquid material. A series of 1-alkyl perylene derivatives is synthesized and it is found that short ethyl or butyl chains reduce the melting temperature from 278 °C to as little as 70 °C. Then, two low-melting derivatives are mixed, which results in materials that do not crystallize due to the increased configurational entropy of the system. As a result, liquid chromophores with the lowest reported molecular weight increase compared to the neat chromophore are obtained. The mixing strategy is readily applicable to other π-conjugated systems and, hence, promises to yield a wide range of low molecular weight liquid chromophores.
Collapse
Affiliation(s)
- Khushbu Kushwaha
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GothenburgSweden
| | - Liyang Yu
- Department of Chemistry and Chemical EngineeringChalmers University of Technology41296GothenburgSweden
| | - Kati Stranius
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GothenburgSweden
| | - Sandeep Kumar Singh
- Department of PhysicsMaterials and Surface Theory DivisionChalmers University of Technology41296GothenburgSweden
| | - Sandra Hultmark
- Department of Chemistry and Chemical EngineeringChalmers University of Technology41296GothenburgSweden
| | - Muhammad Naeem Iqbal
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | - Lars Eriksson
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | - Eric Johnston
- Sigrid Therapeutics ABSankt Göransgatan 159112 17StockholmSweden
| | - Paul Erhart
- Department of PhysicsMaterials and Surface Theory DivisionChalmers University of Technology41296GothenburgSweden
| | - Christian Müller
- Department of Chemistry and Chemical EngineeringChalmers University of Technology41296GothenburgSweden
| | - Karl Börjesson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GothenburgSweden
| |
Collapse
|
22
|
Giri G, Prodhan S, Pati YA, Ramasesha S. A Model Exact Study of the Properties of Low-Lying Electronic States of Perylene and Substituted Perylenes. J Phys Chem A 2018; 122:8650-8658. [DOI: 10.1021/acs.jpca.8b08656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geetanjali Giri
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Suryoday Prodhan
- Université de Mons-Hainaut, Place du Parc 20, 7000 Mons, Belgium
| | - Y. Anusooya Pati
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramasesha
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|