1
|
Grab K, Fido M, Spiewla T, Warminski M, Jemielity J, Kowalska J. Aptamer-based assay for high-throughput substrate profiling of RNA decapping enzymes. Nucleic Acids Res 2024; 52:e100. [PMID: 39445825 PMCID: PMC11602136 DOI: 10.1093/nar/gkae919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Recent years have led to the identification of a number of enzymes responsible for RNA decapping. This has provided a basis for further research to identify their role, dependency and substrate specificity. However, the multiplicity of these enzymes and the complexity of their functions require advanced tools to study them. Here, we report a high-throughput fluorescence intensity assay based on RNA aptamers designed as substrates for decapping enzymes. Using a library of differently capped RNA probes we generated a decapping susceptibility heat map, which confirms previously reported substrate specificities of seven tested hydrolases and uncovers novel. We have also demonstrated the utility of our assay for evaluating inhibitors of viral decapping enzymes and performed kinetic studies of the decapping process. The assay may accelerate the characterization of new decapping enzymes, enable high-throughput screening of inhibitors and facilitate the development of molecular tools for a better understanding of RNA degradation pathways.
Collapse
Affiliation(s)
- Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Mateusz Fido
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Lukaszewicz M. Application of Mammalian Nudix Enzymes to Capped RNA Analysis. Pharmaceuticals (Basel) 2024; 17:1195. [PMID: 39338357 PMCID: PMC11434898 DOI: 10.3390/ph17091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Following the success of mRNA vaccines against COVID-19, mRNA-based therapeutics have now become a great interest and potential. The development of this approach has been preceded by studies of modifications found on mRNA ribonucleotides that influence the stability, translation and immunogenicity of this molecule. The 5' cap of eukaryotic mRNA plays a critical role in these cellular functions and is thus the focus of intensive chemical modifications to affect the biological properties of in vitro-prepared mRNA. Enzymatic removal of the 5' cap affects the stability of mRNA in vivo. The NUDIX hydrolase Dcp2 was identified as the first eukaryotic decapping enzyme and is routinely used to analyse the synthetic cap at the 5' end of RNA. Here we highlight three additional NUDIX enzymes with known decapping activity, namely Nudt2, Nudt12 and Nudt16. These enzymes possess a different and some overlapping activity towards numerous 5' RNA cap structures, including non-canonical and chemically modified ones. Therefore, they appear as potent tools for comprehensive in vitro characterisation of capped RNA transcripts, with special focus on synthetic RNAs with therapeutic activity.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Möhler M, Jäschke A. Future Perspectives for the Identification and Sequencing of Nicotinamide Adenine Dinucleotide-Capped RNAs. Acc Chem Res 2023; 56:3000-3009. [PMID: 37852615 PMCID: PMC10634297 DOI: 10.1021/acs.accounts.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 10/20/2023]
Abstract
Ribonucleic acid (RNA) is composed primarily of four canonical building blocks. In addition, more than 170 modifications contribute to its stability and function. Metabolites like nicotinamide adenine dinucleotide (NAD) were found to function as 5'-cap structures of RNA, just like 7-methylguanosine (m7G). The identification of NAD-capped RNA sequences was first made possible by NAD captureSeq, a multistep protocol for the specific targeting, purification, and sequencing of NAD-capped RNAs, developed in the authors' laboratory in the year 2015. In recent years, a number of NAD-RNA identification protocols have been developed by researchers around the world. They have enabled the discovery and identification of NAD-RNAs in bacteria, archaea, yeast, plants, mice, and human cells, and they play a key role in studying the biological functions of NAD capping. We introduce the four parameters of yield, specificity, evaluability, and throughput and describe to the reader how an ideal NAD-RNA identification protocol would perform in each of these disciplines. These parameters are further used to describe and analyze existing protocols that follow two general methodologies: the capture approach and the decapping approach. Capture protocols introduce an exogenous moiety into the NAD-cap structure in order to either specifically purify or sequence NAD-capped RNAs. In decapping protocols, the NAD cap is digested to 5'-monophosphate RNA, which is then specifically targeted and sequenced. Both approaches, as well as the different protocols within them, have advantages and challenges that we evaluate based on the aforementioned parameters. In addition, we suggest improvements in order to meet the future needs of research on NAD-modified RNAs, which is beginning to emerge in the area of cell-type specific samples. A limiting factor of the capture approach is the need for large amounts of input RNA. Here we see a high potential for innovation within the key targeting step: The enzymatic modification reaction of the NAD-cap structure catalyzed by ADP-ribosyl cyclase (ADPRC) is a major contributor to the parameters of yield and specificity but has mostly seen minor changes since the pioneering protocol of NAD captureSeq and needs to be more stringently analyzed. The major challenge of the decapping approach remains the specificity of the decapping enzymes, many of which act on a variety of 5'-cap structures. Exploration of new decapping enzymes or engineering of already known enzymes could lead to improvements in NAD-specific protocols. The use of a curated set of decapping enzymes in a combinatorial approach could allow for the simultaneous detection of multiple 5'-caps. The throughput of both approaches could be greatly improved by early sample pooling. We propose that this could be achieved by introducing a barcode RNA sequence before or immediately after the NAD-RNA targeting steps. With increased processing capacity and a potential decrease in the cost per sample, protocols will gain the potential to analyze large numbers of samples from different growth conditions and treatments. This will support the search for biological roles of NAD-capped RNAs in all types of organisms.
Collapse
Affiliation(s)
- Marvin Möhler
- Institute of Pharmacy and
Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and
Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Lukaszewicz M, Mrozek AF, Bojarska E, Stelmach J, Stepinski J, Darzynkiewicz E. Contribution of Nudt12 enzyme to differentially methylated dinucleotides of 5'RNA cap structure. Biochim Biophys Acta Gen Subj 2023:130400. [PMID: 37301333 DOI: 10.1016/j.bbagen.2023.130400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Aleksandra-Ferenc Mrozek
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Elzbieta Bojarska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Stelmach
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Janusz Stepinski
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Wolfram-Schauerte M, Höfer K. NAD-capped RNAs - a redox cofactor meets RNA. Trends Biochem Sci 2023; 48:142-155. [PMID: 36068130 DOI: 10.1016/j.tibs.2022.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
RNA modifications immensely expand the diversity of the transcriptome, thereby influencing the function, localization, and stability of RNA. One prominent example of an RNA modification is the eukaryotic cap located at the 5' terminus of mRNAs. Interestingly, the redox cofactor NAD can be incorporated into RNA by RNA polymerase in vitro. The existence of NAD-modified RNAs in vivo was confirmed using liquid chromatography and mass spectrometry (LC-MS). In the past few years novel technologies and methods have characterized NAD as a cap-like RNA structure and enabled the investigation of NAD-capped RNAs (NAD-RNAs) in a physiological context. We highlight the identification of NAD-RNAs as well as the regulation and functions of this epitranscriptomic mark in all domains of life.
Collapse
Affiliation(s)
| | - Katharina Höfer
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, 35043, Hessen, Germany.
| |
Collapse
|
6
|
Senthilvelan A, Shanmugasundaram M, Kore AR. Solution‐Phase Chemical Synthesis of Modified RNA Dinucleotides. Curr Protoc 2022; 2:e583. [PMID: 36342272 DOI: 10.1002/cpz1.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article describes a simple, reliable, efficient, and improved solution-phase method for the gram-scale chemical synthesis of RNA dinucleotides such as pAm pA, pAm pG, and pAm pU that utilizes phosphoramidite chemistry. The overall synthetic strategy involves three steps. The first step involves the coupling reaction between 5'-O-MMT protected nucleoside-3'-O-phosphoramidite and a protected nucleoside containing a free 5'-OH group in the presence of tetrazole, followed by the oxidation of phosphite triester using tert-butyl hydroperoxide to give the corresponding protected Nm pN. Next, the 5'-O-MMT is cleaved under 3% trichloroacetic acid in dichloromethane conditions. Finally, the 5'-hydroxyl group is phosphorylated by the use of an activated bis(2-cyanoethyl)-N,N-diisopropyl phosphoramidite using tetrazole, followed by the oxidation of trivalent to pentavalent phosphorus using tert-butyl hydroperoxide and subsequent deprotection using ammonium hydroxide to afford the corresponding RNA dinucleotide, pNm pN, in good yields with high purity (>99.5%). © 2022 Wiley Periodicals LLC.
Collapse
|
7
|
Senthilvelan A, Shanmugasundaram M, Kore AR. Efficient and Improved Solution-Phase Synthesis of Modified RNA Dinucleotides: Versatile Synthons in Cap 1 mRNA Therapeutics. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annamalai Senthilvelan
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Muthian Shanmugasundaram
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Anilkumar R. Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| |
Collapse
|
8
|
Depaix A, Grudzien-Nogalska E, Fedorczyk B, Kiledjian M, Jemielity J, Kowalska J. Preparation of RNAs with non-canonical 5' ends using novel di- and trinucleotide reagents for co-transcriptional capping. Front Mol Biosci 2022; 9:854170. [PMID: 36060251 PMCID: PMC9437278 DOI: 10.3389/fmolb.2022.854170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Many eukaryotic and some bacterial RNAs are modified at the 5' end by the addition of cap structures. In addition to the classic 7-methylguanosine 5' cap in eukaryotic mRNA, several non-canonical caps have recently been identified, including NAD-linked, FAD-linked, and UDP-glucose-linked RNAs. However, studies of the biochemical properties of these caps are impaired by the limited access to in vitro transcribed RNA probes of high quality, as the typical capping efficiencies with NAD or FAD dinucleotides achieved in the presence of T7 polymerase rarely exceed 50%, and pyrimidine derivatives are not incorporated because of promoter sequence limitations. To address this issue, we developed a series of di- and trinucleotide capping reagents and in vitro transcription conditions to provide straightforward access to unconventionally capped RNAs with improved 5'-end homogeneity. We show that because of the transcription start site flexibility of T7 polymerase, R1ppApG-type structures (where R1 is either nicotinamide riboside or riboflavin) are efficiently incorporated into RNA during transcription from dsDNA templates containing both φ 6.5 and φ 2.5 promoters and enable high capping efficiencies (∼90%). Moreover, uridine-initiated RNAs are accessible by transcription from templates containing the φ 6.5 promoter performed in the presence of R2ppUpG-type initiating nucleotides (where R2 is a sugar or phosphate moiety). We successfully employed this strategy to obtain several nucleotide-sugar-capped and uncapped RNAs. The capping reagents developed herein provide easy access to chemical probes to elucidate the biological roles of non-canonical RNA 5' capping.
Collapse
Affiliation(s)
- Anaïs Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, New York, NJ, United States
| | | | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, New York, NJ, United States
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Thiophosphate Analogs of Coenzyme A and Its Precursors—Synthesis, Stability, and Biomimetic Potential. Biomolecules 2022; 12:biom12081065. [PMID: 36008959 PMCID: PMC9405834 DOI: 10.3390/biom12081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Coenzyme A (CoA) is ubiquitous and essential for key cellular processes in any living organism. Primary degradation of CoA occurs by enzyme-mediated pyrophosphate hydrolysis intracellularly and extracellularly to form adenosine 3’,5’-diphosphate and 4’-phosphopantetheine (PPanSH). The latter can be recycled for intracellular synthesis of CoA. Impairments in the CoA biosynthetic pathway are linked to a severe form of neurodegeneration with brain iron accumulation for which no disease-modifying therapy is available. Currently, exogenous administration of PPanSH is examined as a therapeutic intervention. Here, we describe biosynthetic access to thiophosphate analogs of PPanSH, 3′-dephospho-CoA, and CoA. The stabilizing effect of thiophosphate modifications toward degradation by extracellular and peroxisomal enzymes was studied in vitro. Experiments in a CoA-deficient cell model suggest a biomimetic potential of the PPanSH thiophosphate analog PSPanSH (C1). According to our findings, the administration of PSPanSH may provide an alternative approach to support intracellular CoA-dependent pathways.
Collapse
|
10
|
Shanmugasundaram M, Senthilvelan A, Kore AR. Recent Advances in Modified Cap Analogs: Synthesis, Biochemical Properties, and mRNA Based Vaccines. CHEM REC 2022; 22:e202200005. [PMID: 35420257 PMCID: PMC9111249 DOI: 10.1002/tcr.202200005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Indexed: 12/15/2022]
Abstract
The recent FDA approval of the mRNA vaccine for severe acute respiratory syndrome coronavirus (SARS-CoV-2) emphasizes the importance of mRNA as a powerful tool for therapeutic applications. The chemically modified mRNA cap analogs contain a unique cap structure, m7 G[5']ppp[5']N (where N=G, A, C or U), present at the 5'-end of many eukaryotic cellular and viral RNAs and several non-coding RNAs. The chemical modifications on cap analog influence orientation's nature, translational efficiency, nuclear stability, and binding affinity. The recent invention of a trinucleotide cap analog provides groundbreaking research in the area of mRNA analogs. Notably, trinucleotide cap analogs outweigh dinucleotide cap analogs in terms of capping efficiency and translational properties. This review focuses on the recent development in the synthesis of various dinucleotide cap analogs such as dinucleotide containing a triazole moiety, phosphorothiolate cap, biotinylated cap, cap analog containing N1 modification, cap analog containing N2 modification, dinucleotide containing fluorescence probe and TAT, bacterial caps, and trinucleotide cap analogs. In addition, the biological applications of these novel cap analogs are delineated.
Collapse
Affiliation(s)
| | - Annamalai Senthilvelan
- Life Sciences Solutions GroupThermo Fisher Scientific2130 Woodward StreetAustinTX 78744-1832US
| | - Anilkumar R. Kore
- Life Sciences Solutions GroupThermo Fisher Scientific2130 Woodward StreetAustinTX 78744-1832US
| |
Collapse
|
11
|
Depaix A, Mlynarska-Cieslak A, Warminski M, Sikorski PJ, Jemielity J, Kowalska J. RNA Ligation for Mono and Dually Labeled RNAs. Chemistry 2021; 27:12190-12197. [PMID: 34114681 DOI: 10.1002/chem.202101909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/27/2022]
Abstract
Labeled RNAs are invaluable probes for investigation of RNA function and localization. However, mRNA labeling remains challenging. Here, we developed an improved method for 3'-end labeling of in vitro transcribed RNAs. We synthesized novel adenosine 3',5'-bisphosphate analogues modified at the N6 or C2 position of adenosine with an azide-containing linker, fluorescent label, or biotin and assessed these constructs as substrates for RNA labeling directly by T4 ligase or via postenzymatic strain-promoted alkyne-azide cycloaddition (SPAAC). All analogues were substrates for T4 RNA ligase. Analogues containing bulky fluorescent labels or biotin showed better overall labeling yields than postenzymatic SPAAC. We successfully labeled uncapped RNAs, NAD-capped RNAs, and 5'-fluorescently labeled m7 Gp3 Am -capped mRNAs. The obtained highly homogenous dually labeled mRNA was translationally active and enabled fluorescence-based monitoring of decapping. This method will facilitate the use of various functionalized mRNA-based probes.
Collapse
Affiliation(s)
- Anaïs Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
12
|
SPAAC-NAD-seq, a sensitive and accurate method to profile NAD +-capped transcripts. Proc Natl Acad Sci U S A 2021; 118:2025595118. [PMID: 33753511 DOI: 10.1073/pnas.2025595118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nicotinamide adenine diphosphate (NAD+) is a novel messenger RNA 5' cap in Escherichia coli, yeast, mammals, and Arabidopsis Transcriptome-wide identification of NAD+-capped RNAs (NAD-RNAs) was accomplished through NAD captureSeq, which combines chemoenzymatic RNA enrichment with high-throughput sequencing. NAD-RNAs are enzymatically converted to alkyne-RNAs that are then biotinylated using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Originally applied to E. coli RNA, which lacks the m7G cap, NAD captureSeq was then applied to eukaryotes without extensive verification of its specificity for NAD-RNAs vs. m7G-capped RNAs (m7G-RNAs). In addition, the Cu2+ ion in the CuAAC reaction causes RNA fragmentation, leading to greatly reduced yield and loss of full-length sequence information. We developed an NAD-RNA capture scheme utilizing the copper-free, strain-promoted azide-alkyne cycloaddition reaction (SPAAC). We examined the specificity of CuAAC and SPAAC reactions toward NAD-RNAs and m7G-RNAs and found that both prefer the former, but also act on the latter. We demonstrated that SPAAC-NAD sequencing (SPAAC-NAD-seq), when combined with immunodepletion of m7G-RNAs, enables NAD-RNA identification with accuracy and sensitivity, leading to the discovery of new NAD-RNA profiles in Arabidopsis Furthermore, SPAAC-NAD-seq retained full-length sequence information. Therefore, SPAAC-NAD-seq would enable specific and efficient discovery of NAD-RNAs in prokaryotes and, when combined with m7G-RNA depletion, in eukaryotes.
Collapse
|
13
|
Doamekpor SK, Grudzien-Nogalska E, Mlynarska-Cieslak A, Kowalska J, Kiledjian M, Tong L. DXO/Rai1 enzymes remove 5'-end FAD and dephospho-CoA caps on RNAs. Nucleic Acids Res 2020; 48:6136-6148. [PMID: 32374864 PMCID: PMC7293010 DOI: 10.1093/nar/gkaa297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, the DXO/Rai1 enzymes can eliminate most of the incomplete and non-canonical NAD caps through their decapping, deNADding and pyrophosphohydrolase activities. Here, we report that these enzymes can also remove FAD and dephospho-CoA (dpCoA) non-canonical caps from RNA, and we have named these activities deFADding and deCoAping. The crystal structures of mammalian DXO with 3′-FADP or CoA and fission yeast Rai1 with 3′-FADP provide elegant insight to these activities. FAD and CoA are accommodated in the DXO/Rai1 active site by adopting folded conformations. The flavin of FAD and the pantetheine group of CoA contact the same region at the bottom of the active site tunnel, which undergoes conformational changes to accommodate the different cap moieties. We have developed FAD-capQ to detect and quantify FAD-capped RNAs and determined that FAD caps are present on short RNAs (with less than ∼200 nucleotides) in human cells and that these RNAs are stabilized in the absence of DXO.
Collapse
Affiliation(s)
- Selom K Doamekpor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Megerditch Kiledjian
- Dept. Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Appy L, Chardet C, Peyrottes S, Roy B. Synthetic Strategies for Dinucleotides Synthesis. Molecules 2019; 24:molecules24234334. [PMID: 31783537 PMCID: PMC6930578 DOI: 10.3390/molecules24234334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Dinucleoside 5′,5′-polyphosphates (DNPs) are endogenous substances that play important intra- and extracellular roles in various biological processes, such as cell proliferation, regulation of enzymes, neurotransmission, platelet disaggregation and modulation of vascular tone. Various methodologies have been developed over the past fifty years to access these compounds, involving enzymatic processes or chemical procedures based either on P(III) or P(V) chemistry. Both solution-phase and solid-support strategies have been developed and are reported here. Recently, green chemistry approaches have emerged, offering attracting alternatives. This review outlines the main synthetic pathways for the preparation of dinucleoside 5′,5′-polyphosphates, focusing on pharmacologically relevant compounds, and highlighting recent advances.
Collapse
|
15
|
Depaix A, Kowalska J. NAD Analogs in Aid of Chemical Biology and Medicinal Chemistry. Molecules 2019; 24:molecules24224187. [PMID: 31752261 PMCID: PMC6891637 DOI: 10.3390/molecules24224187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as an essential redox co-factor and mediator of multiple biological processes. Besides its well-established role in electron transfer reactions, NAD serves as a substrate for other biotransformations, which, at the molecular level, can be classified as protein post-translational modifications (protein deacylation, mono-, and polyADP-ribosylation) and formation of signaling molecules (e.g., cyclic ADP ribose). These biochemical reactions control many crucial biological processes, such as cellular signaling and recognition, DNA repair and epigenetic modifications, stress response, immune response, aging and senescence, and many others. However, the links between the biological effects and underlying molecular processes are often poorly understood. Moreover, NAD has recently been found to tag the 5′-ends of some cellular RNAs, but the function of these NAD-capped RNAs remains largely unrevealed. Synthetic NAD analogs are invaluable molecular tools to detect, monitor, structurally investigate, and modulate activity of NAD-related enzymes and biological processes in order to aid their deeper understanding. Here, we review the recent advances in the design and development of NAD analogs as probes for various cellular NAD-related enzymes, enzymatic inhibitors with anticancer or antimicrobial therapeutic potential, and other NAD-related chemical biology tools. We focus on research papers published within the last 10 years.
Collapse
|
16
|
Kwasnik A, Wang VYF, Krzyszton M, Gozdek A, Zakrzewska-Placzek M, Stepniak K, Poznanski J, Tong L, Kufel J. Arabidopsis DXO1 links RNA turnover and chloroplast function independently of its enzymatic activity. Nucleic Acids Res 2019; 47:4751-4764. [PMID: 30949699 PMCID: PMC6511851 DOI: 10.1093/nar/gkz100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023] Open
Abstract
The DXO family of proteins participates in eukaryotic mRNA 5'-end quality control, removal of non-canonical NAD+ cap and maturation of fungal rRNA precursors. In this work, we characterize the Arabidopsis thaliana DXO homolog, DXO1. We demonstrate that the plant-specific modification within the active site negatively affects 5'-end capping surveillance properties of DXO1, but has only a minor impact on its strong deNADding activity. Unexpectedly, catalytic activity does not contribute to striking morphological and molecular aberrations observed upon DXO1 knockout in plants, which include growth and pigmentation deficiency, global transcriptomic changes and accumulation of RNA quality control siRNAs. Conversely, these phenotypes depend on the plant-specific N-terminal extension of DXO1. Pale-green coloration of DXO1-deficient plants and our RNA-seq data reveal that DXO1 affects chloroplast-localized processes. We propose that DXO1 mediates the connection between RNA turnover and retrograde chloroplast-to-nucleus signaling independently of its deNADding properties.
Collapse
Affiliation(s)
- Aleksandra Kwasnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland,Correspondence may also be addressed to Aleksandra Kwasnik. Tel: +48 22 5922245; Fax: +48 22 6584176;
| | - Vivien Ya-Fan Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michal Krzyszton
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Gozdek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Zakrzewska-Placzek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Stepniak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Correspondence may also be addressed to Liang Tong. Tel: +1 212 854 5203; Fax: +1 212 865 8246;
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland,To whom correspondence should be addressed. Tel: +48 22 5922245; Fax: +48 22 6584176;
| |
Collapse
|
17
|
Wang L, Liu B, Liu Y, Sun Y, Liu W, Yu D, Zhao ZK. Escherichia coli Strain Designed for Characterizing in Vivo Functions of Nicotinamide Adenine Dinucleotide Analogues. Org Lett 2019; 21:3218-3222. [PMID: 30995052 DOI: 10.1021/acs.orglett.9b00935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An Escherichia coli strain was constructed for the efficient import of nicotinamide adenine dinucleotide (NAD) analogues into cells by limiting extracellular degradation while expressing an efficient NAD importer. In vivo functions of three NAD analogues were characterized. Nicotinamide hypoxanthine dinucleotide was identified as an inhibitor of NAD synthesis. Nicotinamide cytosine dinucleotide had excellent biocompatibility and was used for characterizing a growth-dependent degradation of in vivo nicotinamide cofactors.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Bin Liu
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Yuxue Liu
- Division of Biotechnology , Dalian Institute of Chemical Physics , CAS, Dalian 116023 , China
| | - Yue Sun
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Wujun Liu
- Institute of Cancer Stem Cell , Dalian Medical University , Dalian 116044 , China
| | - Dayu Yu
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Zongbao K Zhao
- Division of Biotechnology , Dalian Institute of Chemical Physics , CAS, Dalian 116023 , China
| |
Collapse
|