1
|
Long L, Ma X, Zhang H, Lan C. Novel preparation of laponite based theranostic silver nanocomposite for drug delivery, radical scavenging and healing efficiency for wound care management after surgery. Regen Ther 2025; 28:235-245. [PMID: 39839846 PMCID: PMC11745969 DOI: 10.1016/j.reth.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques. The UV-Vis and XRD results report that the nanocomposite has shown Surface Plasmon Resonance (SPR) peak at 415 nm for AgNPs particles and provide the strong intensity peak along with 48 nm particle size, respectively. The HR-TEM image showed that the LAP/PLA-PEG/PEI/Ag nanocomposite has shown crystal lattice with spherical morphology. In addition, the synthesized nanocomposite requested in the swelling along with degradation, radial scavenging activity and drug releasing behaviour by in vitro method. The anti-bacterial analysis results showed that the nanocomposite have greater bacterial inhibition. Moreover, In vitro cell model and In vivo wound healing studies confirmed that nanocomposite have significant biocompatibility and healing properties. Importantly, in vivo histological analyses confirmed the effective wound healing effect of nanocomposite by complete re-epithelialization, formation of new granulation tissue and blood vessels. These observations provide strong evidences to use this novel nanoformulation for wound healing application with anti-microbial action.
Collapse
Affiliation(s)
- Lizhen Long
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
- Department of Spinal Orthopedic Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
| | - Xiaoan Ma
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
- Department of Spinal Orthopedic Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
| | - Hua Zhang
- Department of Respiratory Medicine, Haiyang People’s Hospital, No. 73, Haiyang Road, Haiyang, 2651000, Shandong Province, China
| | - Changgong Lan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
- Department of Spinal Orthopedic Surgery, Affiliated Hospital of Youjiang Ethnic Medical University, Baise, 533000, China
| |
Collapse
|
2
|
Stan D, Mirica AC, Mocanu S, Stan D, Podolean I, Candu N, El Fergani M, Stefan LM, Seciu-Grama AM, Aricov L, Brincoveanu O, Moldovan C, Bocancia-Mateescu LA, Coman SM. Hybrid Hydrogel Supplemented with Algal Polysaccharide for Potential Use in Biomedical Applications. Gels 2024; 11:17. [PMID: 39851988 PMCID: PMC11764639 DOI: 10.3390/gels11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Hydrogels are a viable option for biomedical applications due to their biocompatibility, biodegradability, and ability to incorporate various healing agents while maintaining their biological efficacy. This study focused on the preparation and characterization of novel hybrid hydrogels enriched with the natural algae compound Ulvan for potential use in wound dressings. The characterization of the hydrogel membranes involved multiple methods to assess their structural, mechanical, and chemical properties, such as pH measurements, swelling, moisture content and uptake, gel fraction, hydrolytic degradation, protein adsorption and denaturation tests, rheological measurements, SEM, biocompatibility testing, and scratch wound assay. The hydrogel obtained with a higher concentration of Ulvan (1 mg/mL) exhibited superior mechanical properties, a swelling index of 264%, a water content of 55%, and a lower degradation percentage. In terms of rheological properties, the inclusion of ULV in the hydrogel composition enhanced gel strength, and the Alginate + PVA + 1.0ULV sample demonstrated the greatest resistance to deformation. All hydrogels exhibited good biocompatibility, with cell viability above 70% and no obvious morphological modifications. The addition of Ulvan potentiates the regenerative effect of hydrogel membranes. Subsequent studies will focus on encapsulating bioactive compounds, investigating their release behavior, and evaluating their active biological effects.
Collapse
Affiliation(s)
- Dana Stan
- DDS Diagnostic, 031427 Bucharest, Romania; (D.S.); (A.-C.M.); (S.M.); (D.S.)
| | | | - Sorin Mocanu
- DDS Diagnostic, 031427 Bucharest, Romania; (D.S.); (A.-C.M.); (S.M.); (D.S.)
| | - Diana Stan
- DDS Diagnostic, 031427 Bucharest, Romania; (D.S.); (A.-C.M.); (S.M.); (D.S.)
- ENT Department, “Maria Sklodowska Curie” Children’s Emergency Hospital, 077120 Bucharest, Romania
| | - Iunia Podolean
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania; (I.P.); (N.C.); (M.E.F.)
| | - Natalia Candu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania; (I.P.); (N.C.); (M.E.F.)
| | - Magdi El Fergani
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania; (I.P.); (N.C.); (M.E.F.)
| | - Laura Mihaela Stefan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (L.M.S.); (A.-M.S.-G.)
| | - Ana-Maria Seciu-Grama
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (L.M.S.); (A.-M.S.-G.)
| | - Ludmila Aricov
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies, 126 A Erou Iancu Nicolae, 077190 Voluntari City, Romania; (O.B.); (C.M.)
| | - Carmen Moldovan
- National Institute for Research and Development in Microtechnologies, 126 A Erou Iancu Nicolae, 077190 Voluntari City, Romania; (O.B.); (C.M.)
| | | | - Simona M. Coman
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania; (I.P.); (N.C.); (M.E.F.)
| |
Collapse
|
3
|
Chen S, Xie Y, Ma K, Wei Z, Ran X, Fu X, Zhang C, Zhao C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact Mater 2024; 42:478-518. [PMID: 39308550 PMCID: PMC11415839 DOI: 10.1016/j.bioactmat.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Electrospun nanofibrous membranes (eNFMs) have been extensively developed for bio-applications due to their structural and compositional similarity to the natural extracellular matrix. However, the emergence of antibiotic resistance in bacterial infections significantly impedes the further development and applications of eNFMs. The development of antibacterial nanomaterials substantially nourishes the engineering design of antibacterial eNFMs for combating bacterial infections without relying on antibiotics. Herein, a comprehensive review of diverse fabrication techniques for incorporating antibacterial nanomaterials into eNFMs is presented, encompassing an exhaustive introduction to various nanomaterials and their bactericidal mechanisms. Furthermore, the latest achievements and breakthroughs in the application of these antibacterial eNFMs in tissue regenerative therapy, mainly focusing on skin, bone, periodontal and tendon tissues regeneration and repair, are systematically summarized and discussed. In particular, for the treatment of skin infection wounds, we highlight the antibiotic-free antibacterial therapy strategies of antibacterial eNFMs, including (i) single model therapies such as metal ion therapy, chemodynamic therapy, photothermal therapy, and photodynamic therapy; and (ii) multi-model therapies involving arbitrary combinations of these single models. Additionally, the limitations, challenges and future opportunities of antibacterial eNFMs in biomedical applications are also discussed. We anticipate that this comprehensive review will provide novel insights for the design and utilization of antibacterial eNFMs in future research.
Collapse
Affiliation(s)
- Shengqiu Chen
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingwu Ran
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Endocrinology and Metabolism, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Devi SG, Kanagalakshmi M, Subasini S, Pius A. Optimized production of carboxymethyl cellulose/guar gum based durable hydrogel for in vitro performance assessment. Int J Biol Macromol 2024; 279:135121. [PMID: 39197601 DOI: 10.1016/j.ijbiomac.2024.135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
An important objective of researchers is to develop a perfect wound dressing that can effectively treat different kinds of wounds. Natural substances with beneficial qualities, such as plant extracts and biopolymers are an ideal aid for wound care. Hydrogels based on biopolymers offer a lot of promising applications for topical use and are biocompatible, hydrophilic and non-toxic. When employed alone or in conjunction with other active agents, herbal extracts have a great deal of use in the healing of wounds. This study comprises Ruellia tuberosa extract loaded with carboxymethyl cellulose and guar gum hydrogels that have potential anti-bacterial, antioxidant, anti-inflammatory and hemocompatibility. Using mouse fibroblast cells (L929), the MTT (3- (4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) test was conducted to assess the biocompatibility. Furthermore, the scratch wound assay using the L929 fibroblast cell line of mouse was employed to assess the in vitro wound healing potential of the synthesised composite hydrogels.
Collapse
Affiliation(s)
- S Gopika Devi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - M Kanagalakshmi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - S Subasini
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India.
| |
Collapse
|
5
|
Huang Z, Xu L, Liu P, Peng J. Transparent, mechanically robust, conductive, self-healable, and recyclable ionogels for flexible strain sensors and electroluminescent devices. RSC Adv 2024; 14:28234-28243. [PMID: 39234525 PMCID: PMC11372454 DOI: 10.1039/d4ra05446f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
A mechanically robust, self-healable, and recyclable PVP-based ionogel was achieved through a simple one-pot photoinitiated polymerization process. This ionogel exhibits a combination of excellent properties, including transparency, high mechanical strength, good ionic conductivity, self healability, and recyclability. A wearable resistive strain sensor based on the ionogel is successfully assembled and demonstrated accurate response to human motion. Moreover, a flexible electroluminescent device has been fabricated based on our ionogel, which can maintain optimal luminescence functionality even when subjected to bending. Considering the simple preparation method and excellent applications, we believe that our PVP-based ionogel has promising applications in many fields such as in wearable devices, electronic skin, implantable materials, robotics and human-machine interfaces.
Collapse
Affiliation(s)
- Zhenkai Huang
- School of Materials and Energy, Foshan University Foshan 528000 China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic Foshan 528333 China
| | - Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology Guangzhou 510610 China
| | - Jianping Peng
- School of Environmental and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
6
|
Chen X, Zhao G, Yang X, Liu F, Wang S, Zhao X. Preparation and characterization of ι-carrageenan nanocomposite hydrogels with dual anti-HPV and anti-bacterial activities. Int J Biol Macromol 2024; 254:127941. [PMID: 37951438 DOI: 10.1016/j.ijbiomac.2023.127941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Sexually transmitted diseases (STDs) are usually caused by co-infections of bacteria and viruses. However, there is a lack of products that possess both antibacterial and antiviral activities without using chemical drugs. Here, we developed a carrageenan silver nanoparticle composite hydrogel (IC-AgNPs-Gel) based on the antiviral activity of iota carrageenan (IC) and the antibacterial effect of silver nanoparticles (AgNPs) to prevent STDs. IC-AgNPs-Gel showed excellent biocompatibility, hemostasis, antibacterial and antiviral effects. IC-AgNPs-Gel not only effectively prevented S. aureus, E. coli, P. aeruginosa, and C. albicans without using antibiotics, but also significantly inhibited human papilloma virus (HPV)-16 and HPV-6 without using chemotherapy drugs. Moreover, IC-AgNPs-Gel showed the effects of accelerating infected wound healing and reducing inflammation in a rat wound model infected with S. aureus. Therefore, the multifunctional hydrogel shows great potential application prospect in preventing STDs.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Guiyuan Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Xiaohan Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Fei Liu
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China.
| |
Collapse
|
7
|
Bhattacharya S, Bhattacharyya T, Khanra S, Banerjee R, Dash J. Nucleoside-Derived Metallohydrogel Induces Cell Death in Leishmania Parasites. ACS Infect Dis 2023; 9:1676-1684. [PMID: 37606735 DOI: 10.1021/acsinfecdis.2c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Self-assembled hydrogels by virtue of their unique 3D network and tunability have extensively been explored for bio-medical applications like tissue engineering, delivery and release of therapeutic agents, etc. Herein, we demonstrate for the first-time nucleoside-based biocompatible hydrogels with a remarkable leishmanicidal effect against both Leishmania major promastigotes and amastigotes and no cytotoxic effect on the macrophage cell line. In this work, a series of biocompatible hydrogels have been synthesized by silver ion-driven self-assembly of natural nucleoside and nucleotide-like cytidine and 5'-GMP. The supramolecular metallogel obtained from the assembly of cytidine and boronic acid is capable of inducing apoptotic-like cell death of protozoan parasite by causing damage to the membrane as well as DNA. These hydrogels could find promising applications in combating cutaneous leishmaniasis by topical treatment.
Collapse
Affiliation(s)
- Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tanima Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Supriya Khanra
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Rahul Banerjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
9
|
Sheikh-Oleslami S, Tao B, D'Souza J, Butt F, Suntharalingam H, Rempel L, Amiri N. A Review of Metal Nanoparticles Embedded in Hydrogel Scaffolds for Wound Healing In Vivo. Gels 2023; 9:591. [PMID: 37504470 PMCID: PMC10379627 DOI: 10.3390/gels9070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration into wound dressings, there has been increasing focus dedicated to investigating the physical, mechanical, and biological characteristics of these nanoparticles as well as their incorporation into biocomposite materials, such as hydrogel scaffolds for use in lieu of antibiotics as well as to accelerate and ameliorate healing. Though rigorously tested and applied in both medical and non-medical applications, further investigations have not been carried out to bring metal nanoparticle-hydrogel composites into clinical practice. In this review, we provide an up-to-date, comprehensive review of advancements in the field, with emphasis on implications on wound healing in in vivo experiments.
Collapse
Affiliation(s)
- Sara Sheikh-Oleslami
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brendan Tao
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jonathan D'Souza
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Fahad Butt
- Faculty of Science, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Hareshan Suntharalingam
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Lucas Rempel
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nafise Amiri
- International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
10
|
Yaşayan G, Nejati O, Ceylan AF, Karasu Ç, Kelicen Ugur P, Bal-Öztürk A, Zarepour A, Zarrabi A, Mostafavi E. Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. APPLIED MATERIALS TODAY 2023; 32:101829. [DOI: 10.1016/j.apmt.2023.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Xu W, Zhang M, Du W, Ling G, Yuan Y, Zhang P. Engineering a naturally-derived wound dressing based on bio-ionic liquid conjugation. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
12
|
Athamneh T, Hajnal A, Al-Najjar MAA, Alshweiat A, Obeidat R, Awad AA, Al-Alwany R, Keitel J, Wu D, Kieserling H, Rohn S, Keil C, Gurikov P. In vivo tests of a novel wound dressing based on agar aerogel. Int J Biol Macromol 2023; 239:124238. [PMID: 37003386 DOI: 10.1016/j.ijbiomac.2023.124238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Aerogels, especially bio-based ones, present a promising option for wound dressing; specifically, because of their low toxicity, high stability, bio-compatibility, and good biological performance. In this study, agar aerogel was prepared and evaluated as novel wound dressing material in an in vivo rat study. Agar hydrogel was prepared by thermal gelation, after that the water inside the gel was exchanged with ethanol, and finally the alcogel was dried by supercritical CO2. The textural and rheological properties of the prepared aerogel were characterized, showing that the prepared agar aerogels possess high porosity (97-98 %), high surface area (250-330 m2g-1) as well as good mechanical properties and easiness of removal from the wound site. The results of the in vivo experiments macroscopically demonstrate the tissue compatibility of the aerogels in dorsal interscapular injured rat tissue and a shorter wound healing time comparable to that of gauze-treated animals. The histological analysis underpins the reorganisation and healing of the tissue for the injured skin of rats treated with agar aerogel wound dressing within the studied time frame.
Collapse
Affiliation(s)
- Tamara Athamneh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Anja Hajnal
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - Mohammad A A Al-Najjar
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman 11931, Jordan
| | - Areen Alshweiat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Rana Obeidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Alaa Abu Awad
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman 11931, Jordan
| | - Ruaa Al-Alwany
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman 11931, Jordan
| | - Julia Keitel
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Helena Kieserling
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany.
| |
Collapse
|
13
|
Singh B, Kumari A, Sharma D, Dhiman A, Kumar S. Fabricating gum polysaccharides based nano-composites for drug delivery uses via sustainable green approach. Int J Biol Macromol 2023; 235:123856. [PMID: 36870665 DOI: 10.1016/j.ijbiomac.2023.123856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Recent advancements in development of natural polymer nono-composites led to exploration of potential of gum acacia (GA) and tragacanth gum (TG) for design of silver nanoparticles (AgNPs) impregnated grafted copolymers via green approach for use in drug delivery (DD). The formation of copolymers was confirmed by UV-Vis spectroscopy, TEM, SEM, AFM, XPS, XRD, FTIR,TGA and DSC. UV-Vis spectra indicated the formation of AgNPs using GA as reducing agent. TEM, SEM, XPS and XRD revealed impregnation of AgNPs inside the copolymeric network hydrogels. TGA inferred thermal stability of polymer enhanced by grafting and incorporation of AgNPs. The non-Fickian diffusion of antibiotic drug meropenem was revealed from drug encapsulated GA-TG-(AgNPs)-cl-poly(AAm) network which were also pH responsive and release profile was fitted in Korsmeyer-Peppas kinetic model. Sustained release was due to polymer-drug interaction. The polymer-blood interaction demonstrated biocompatible characteristics of polymer. Mucoadhesive property exhibited by copolymers because of supra-molecular interactions. Antimicrobial characteristics were shown by copolymers against bacteria S. flexneri, P. auroginosa, and B. cereus.
Collapse
Affiliation(s)
- Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Ankita Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Abhishek Dhiman
- Mahatma Gandhi Government Engineering College Kotla, Jeori, Rampur, Himachal Pradesh 172101, India
| | - Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
14
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Kushwaha R, Kumar S, Das A, Sukriti, Verma ML. Silver nanoparticle-based nanocomposite hydrogels for biomedical applications. FUNCTIONAL NANOCOMPOSITE HYDROGELS 2023:241-265. [DOI: 10.1016/b978-0-323-99638-9.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Iota carrageenan gold-silver NPs photothermal hydrogel for tumor postsurgical anti-recurrence and wound healing. Carbohydr Polym 2022; 298:120123. [DOI: 10.1016/j.carbpol.2022.120123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
|
17
|
New Nanosized Systems Doxorubicin-Amphiphilic Copolymers of N-Vinylpyrrolidone and (Di)methacrylates with Antitumor Activity. Pharmaceutics 2022; 14:pharmaceutics14122572. [PMID: 36559068 PMCID: PMC9784683 DOI: 10.3390/pharmaceutics14122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Nanosized systems of DOX with antitumor activity on the base of micelle-like particles of amphiphilic thermosensitive copolymers of N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM), and N-vinylpyrrolidone and methacrylic acid (MAA) with TEGDM were explored. They were investigated in aqueous solutions by electron absorption spectroscopy, dynamic light scattering and cyclic voltammetry. Experimental data and quantum-chemical modeling indicated the formation of a hydrogen bond between oxygen-containing groups of monomer units of the copolymers and H-atoms of OH and NH2 groups of DOX; the energies and H-bond lengths in the considered structures were calculated. A simulation of TDDFT spectra of DOX and its complexes with the VP and TEGDM units was carried out. Electrochemical studies in PBS have demonstrated that the oxidation of encapsulated DOX appeared to be easier than that of the free one, and its reduction was somewhat more difficult. The cytotoxicity of VP-TEGDM copolymer compositions containing 1, 5 and 15 wt% DOX was studied in vitro on HeLa cells, and the values of IC50 doses were determined at 24 and 72 h of exposure. The copolymer compositions containing 5 and 15 wt% DOX accumulated actively in cell nuclei and did not cause visual changes in cell morphology.
Collapse
|
18
|
Kędzierska M, Jamroży M, Drabczyk A, Kudłacik-Kramarczyk S, Bańkosz M, Gruca M, Potemski P, Tyliszczak B. Analysis of the Influence of Both the Average Molecular Weight and the Content of Crosslinking Agent on Physicochemical Properties of PVP-Based Hydrogels Developed as Innovative Dressings. Int J Mol Sci 2022; 23:ijms231911618. [PMID: 36232921 PMCID: PMC9569959 DOI: 10.3390/ijms231911618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels belong to the group of polymers with a three-dimensional crosslinked structure, and their crosslinking density strongly affects their physicochemical properties. Here, we verified the impact of both the average molecular weight of crosslinking agents used during the photopolymerization of hydrogels and that of their content on selected properties of these materials. First, PVP-based hydrogels modified with Aloe vera juice and L-ascorbic acid were prepared using UV radiation. Next, their surface morphology was characterized via optical scanning electron microscopy, whereas their chemical structure was investigated by FT-IR spectroscopy. Moreover, we verified the tendency of the hydrogels to degrade in selected physiological liquids, as well as their tensile strength, percentage of elongation, and swelling capability. We found that the more crosslinking agent in the hydrogel matrix, the higher its tensile strength and the less elongation. The hydrogels showed the highest stability during incubation in SBF and 2% hemoglobin solution. A sharp decrease in the pH of distilled water observed during the incubation of the hydrogels was probably due to the release of Aloe vera juice from the hydrogel matrices. This was additionally confirmed by the decrease in the intensity of the absorption band derived from the polysaccharides included in this additive and by the decrease in the swelling ratio after 48 h. Importantly, all hydrogels demonstrated swelling properties, and it was proven that the higher content of the crosslinking agent in hydrogels, the lower their swelling ability.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Mateusz Jamroży
- Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (M.J.); (S.K.-K.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (M.J.); (S.K.-K.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Mateusz Gruca
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
19
|
Supercritical solvent impregnation of sodium valproate nanoparticles on polymers: Characterization and optimization of the operational parameters. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Ganjali F, Eivazzadeh-Keihan R, Aghamirza Moghim Aliabadi H, Maleki A, Pouri S, Ahangari Cohan R, Hashemi SM, Mahdavi M. Biocompatibility and Antimicrobial Investigation of Agar-Tannic Acid Hydrogel Reinforced with Silk Fibroin and Zinc Manganese Oxide Magnetic Microparticles. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
One-Pot and Green Preparation of Phyllanthus emblica Extract/Silver Nanoparticles/Polyvinylpyrrolidone Spray-On Dressing. Polymers (Basel) 2022; 14:polym14112205. [PMID: 35683878 PMCID: PMC9183123 DOI: 10.3390/polym14112205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
A spray-on wound dressing has many benefits, including easy and quick administration to broad and uneven wounds, better interface with the wound site, adhesion without additional dressing, and multiple applications in a portable package. By limiting direct contact with the wound site, such a design can prevent wound damage during treatment. This study revealed a simple, one-pot synthesis of spray-on wound dressing relying on polyvinylpyrrolidone solution incorporating silver nanoparticles as a broad-spectrum antibacterial agent and wound-healing antioxidant Phyllanthus emblica extract. Silver nanoparticles were synthesized in situ using Phyllanthus emblica extract as a biogenic reducing agent. Polyvinylpyrrolidone was employed as a film-forming agent to create an adhesive hydrogel-based dressing matrix to provide moisture and establish a shielding barrier for the wound bed as well as to regulate the release of fruit extract. In vitro tests revealed that the produced dressing film had a controlled release of the fruit extract, high antioxidant activity, and a good antibacterial action against S. aureus, P. aeruginosa, E. coli, and MRSA. Additionally, a biocompatibility study has shown that both human fibroblasts and keratinocytes are unaffected by the dressing film. Based on established findings, the current spray-on solution might be a potential option for antibacterial wound dressing.
Collapse
|
22
|
Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels 2022; 8:gels8060329. [PMID: 35735673 PMCID: PMC9222824 DOI: 10.3390/gels8060329] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023] Open
Abstract
The dressings containing nanoparticles of metals and metal oxides are promising types of materials for wound repair. In such dressings, biocompatible and nontoxic hydrophilic polymers are used as a matrix. In the present review, we take a look at the anti-microbial effect of the nanoparticle-modified wound dressings against various microorganisms and evaluate their healing action. A detailed analysis of 31 sources published in 2021 and 2022 was performed. Furthermore, a trend for development of modern antibacterial wound-healing nanomaterials was shown as exemplified in publications starting from 2018. The review may be helpful for researchers working in the areas of biotechnology, medicine, epidemiology, material science and other fields aimed at the improvement of the quality of life.
Collapse
|
23
|
Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:618. [PMID: 35214947 PMCID: PMC8878029 DOI: 10.3390/nano12040618] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Poor wound healing affects millions of people globally, resulting in increased mortality rates and associated expenses. The three major complications associated with wounds are: (i) the lack of an appropriate environment to enable the cell migration, proliferation, and angiogenesis; (ii) the microbial infection; (iii) unstable and protracted inflammation. Unfortunately, existing therapeutic methods have not solved these primary problems completely, and, thus, they have an inadequate medical accomplishment. Over the years, the integration of the remarkable properties of nanomaterials into wound healing has produced significant results. Nanomaterials can stimulate numerous cellular and molecular processes that aid in the wound microenvironment via antimicrobial, anti-inflammatory, and angiogenic effects, possibly changing the milieu from nonhealing to healing. The present article highlights the mechanism and pathophysiology of wound healing. Further, it discusses the current findings concerning the prospects and challenges of nanomaterial usage in the management of chronic wounds.
Collapse
Affiliation(s)
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Korea; (A.K.); (L.G.)
| |
Collapse
|
24
|
Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 2021; 192:298-322. [PMID: 34634326 DOI: 10.1016/j.ijbiomac.2021.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Today, chronic wound care and management can be regarded as a clinically critical issue. However, the limitations of current approaches for wound healing have encouraged researchers and physicians to develop more efficient alternative approaches. Advances in tissue engineering and regenerative medicine have resulted in the development of promising approaches that can accelerate wound healing and improve the skin regeneration rate and quality. The design and fabrication of scaffolds that can address the multifactorial nature of chronic wound occurrence and provide support for the healing process can be considered an important area requiring improvement. In this regard, polysaccharide-based scaffolds have distinctive properties such as biocompatibility, biodegradability, high water retention capacity and nontoxicity, making them ideal for wound healing applications. Their tunable structure and networked morphology could facilitate a number of functions, such as controlling their diffusion, maintaining wound moisture, absorbing a large amount of exudates and facilitating gas exchange. In this review, the wound healing process and the influential factors, structure and properties of carbohydrate polymers, physical and chemical crosslinking of polysaccharides, scaffold fabrication techniques, and the use of polysaccharide-based scaffolds in skin tissue engineering and wound healing applications are discussed.
Collapse
|
25
|
Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177769] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of wound-healing/dressing biomaterials is amongst the most promising approaches for wound repair through protection from pathogen invasion/contamination, maintaining moisture, absorbing exudates, modulating inflammation, and facilitating the healing process. A wide range of materials are used to fabricate wound-healing/dressing biomaterials. Active wound-healing/dressings are next-generation alternatives for passive biomaterials, which provide a physical barrier and induce different biological activities, such as antibacterial, antioxidant, and proliferative effects. Cellulose-based biomaterials are particularly promising due to their tunable physical, chemical, mechanical, and biological properties, accessibility, low cost, and biocompatibility. A thorough description and analysis of wound-healing/dressing structures fabricated from cellulose-based biomaterials is discussed in this review. We emphasize and highlight the fabrication methods, applied bioactive molecules, and discuss the obtained results from in vitro and in vivo models of cellulose-based wound-healing biomaterials. This review paper revealed that cellulose-based biomaterials have promising potential as the wound-dressing/healing materials and can be integrated with various bioactive agents. Overall, cellulose-based biomaterials are shown to be effective and sophisticated structures for delivery applications, safe and multi-customizable dressings, or grafts for wound-healing applications.
Collapse
|
26
|
Ahmed A, Adak B, Faruk MO, Mukhopadhyay S. Nanocellulose Coupled 2D Graphene Nanostructures: Emerging Paradigm for Sustainable Functional Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01830] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abbas Ahmed
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka 1000, Bangladesh
| | - Bapan Adak
- Product Development Department, Kusumgar Corporates Pvt. Ltd., Vapi, Valsad, Gujarat 396195, India
| | - Md. Omar Faruk
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
27
|
Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02681-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Zahid M, Lodhi M, Rehan ZA, Tayyab H, Javed T, Shabbir R, Mukhtar A, EL Sabagh A, Adamski R, Sakran MI, Siuta D. Sustainable Development of Chitosan/ Calotropis procera-Based Hydrogels to Stimulate Formation of Granulation Tissue and Angiogenesis in Wound Healing Applications. Molecules 2021; 26:3284. [PMID: 34072397 PMCID: PMC8198538 DOI: 10.3390/molecules26113284] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/31/2023] Open
Abstract
The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the Calotropis procera plant by using a freeze-thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications. Structural analysis through Fourier transform infrared (FTIR) spectroscopy confirmed the interaction between chitosan and Calotropis procera. Latex extract containing hydrogel showed slightly higher absorption than the control during water absorption analysis. Thermogravimetric analysis showed high thermal stability of the 60:40 combination of chitosan (CS) and Calotropis procera as compared to all other treatments and controls. A fabricated scaffold application on a chick chorioallantoic membrane (CAM) showed that all hydrogels containing latex extract resulted in a significant formation of blood vessels and regeneration of cells. Overall, the formation of connective tissues and blood capillaries and healing magnitude decreased in ascending order of concentration of extract.
Collapse
Affiliation(s)
- Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Maria Lodhi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Zulfiqar Ahmad Rehan
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Hamna Tayyab
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.)
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.)
| | - Ahmed Mukhtar
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33156, Egypt;
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Mohamed I. Sakran
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
29
|
Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, Amin R. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules 2021; 26:619. [PMID: 33504080 PMCID: PMC7865423 DOI: 10.3390/molecules26030619] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Punjab, Pakistan
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU), 1954 Huashan Road, Shanghai 200030, China
| | - Saiful Izwan Abd Razak
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Wafa Shamsan Al Arjan
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (W.S.A.A.); (S.N.)
| | - Samina Nazir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (W.S.A.A.); (S.N.)
| | - T. Joseph Sahaya Anand
- Sustainable and Responsive Manufacturing Group, Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Melaka 76100, Malacca, Malaysia;
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Rafha Street, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia
| |
Collapse
|
30
|
Ghasemian Lemraski E, Jahangirian H, Dashti M, Khajehali E, Sharafinia S, Rafiee-Moghaddam R, Webster TJ. Antimicrobial Double-Layer Wound Dressing Based on Chitosan/Polyvinyl Alcohol/Copper: In vitro and in vivo Assessment. Int J Nanomedicine 2021; 16:223-235. [PMID: 33469282 PMCID: PMC7810733 DOI: 10.2147/ijn.s266692] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Today, the development of wounds and their side effects has become a problematic issue in medical science research. Hydrogel-based dressings are some of the best candidates for this purpose due to their ability to keep the wound bed clean, as well as provide proper moisture, tissue compatibility and an antimicrobial effect for wound healing. On the other hand, copper and its compounds have been used experimentally for many years in studies as an antimicrobial substance. Various studies have been performed determining the antimicrobial properties of this element, during which significant effects on infection have been shown. METHODS Chitosan/polyvinyl alcohol/copper nanofibers were successfully prepared by incorporating Cu onto a polymer electrospun using an electrospinning technique. A double-layer nanofiber composed of poly(vinyl alcohol) and chitosan incorporated with Cu nanoparticles as a protective layer and a second layer composed of polyvinylpyrrolidone (PVP) nanofibers which was adjacent to the damaged cells was prepared. The prepared nanofiber was characterized by TGA, FT-IR, TEM, SEM-EDS, and X-ray powder diffraction. The antimicrobial efficiency of the nanofibers was demonstrated through biological tests on some Gram-positive and Gram-negative bacteria. Finally, the prepared hydrogel formulations were prepared to evaluate their effect on the healing process of rat open wounds. RESULTS In this study, data from SEM, TEM, EDS, and XRD confirmed the formation of uniform fibers with nanodiameters and the presence of Cu nanoparticles onto the electrospun nanofibers. The antibacterial activity of copper was observed against all of the selected bacteria, but the Gram-positive bacteria were more sensitive compared to Gram-negative bacteria. CONCLUSION According to the obtained results, the hydrogel wound dressing prepared in this research can be effective in caring for open wounds in the early stages of wound healing and preventing the occurrence of prolonged open wounds.
Collapse
Affiliation(s)
| | - Hossein Jahangirian
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Maryam Dashti
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Elaheh Khajehali
- Department of Food Hygiene, Faculty of Veterinary Medicine, Ilam University, Ilam, Iran
| | - Soheila Sharafinia
- Department of Chemistry Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| |
Collapse
|
31
|
Silva VC, Silva AMGS, Basílio JAD, Xavier JA, do Nascimento TG, Naal RMZG, del Lama MP, Leonelo LAD, Mergulhão NLON, Maranhão FCA, Silva DMW, Owen R, Duarte IFB, Bulhões LCG, Basílio ID, Goulart MOF. New Insights for Red Propolis of Alagoas-Chemical Constituents, Topical Membrane Formulations and Their Physicochemical and Biological Properties. Molecules 2020; 25:E5811. [PMID: 33317120 PMCID: PMC7763695 DOI: 10.3390/molecules25245811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
The main objectives of this study were to evaluate the chemical constitution and allergenic potential of red propolis extract (RPE). They were evaluated, using high performance liquid chromatography (HPLC) and the release of β-hexosaminidase, respectively. A plethora of biologically active polyphenols and the absence of allergic responses were evinced. RPE inhibited the release of β-hexosaminidase, suggesting that the extract does not stimulate allergic responses. Additionally, the physicochemical properties and antibacterial activity of hydrogel membranes loaded with RPE were analyzed. Bio-polymeric hydrogel membranes (M) were obtained using 5% carboxymethylcellulose (M1 and M2), 1.0% of citric acid (M3) and 10% RPE (for all). Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenolic content, phenol release test and, antioxidant activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric Reducing Antioxidant Power (FRAP). The latter appointed to the similar antioxidant capacity of the M1, M2 and M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The incorporation of RPE into the matrices and the crosslinking of M3 were evinced by FTIR. There were differences in the release of phenolic compounds, with a higher release related to M1 and lower in the strongly crosslinked M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The antibacterial activity of the membranes was determined using the disc diffusion assay, in comparison with controls, obtained in the same way, without RPE. The membranes elicited antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis, with superior performance over M3. The hydrogel membranes loaded with RPE promote a physical barrier against bacterial skin infections and may be applied in the wound healing process.
Collapse
Affiliation(s)
- Valdemir C. Silva
- Laboratory of Pharmaceutical Technology, Research Program Post-Graduation in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, Alagoas 57072-970, Brazil; (V.C.S.); (A.M.G.S.S.); (T.G.d.N.); (N.L.O.N.M.); (I.F.B.D.); (L.C.G.B.)
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (J.A.D.B.); (J.A.X.)
| | - Abiane M. G. S. Silva
- Laboratory of Pharmaceutical Technology, Research Program Post-Graduation in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, Alagoas 57072-970, Brazil; (V.C.S.); (A.M.G.S.S.); (T.G.d.N.); (N.L.O.N.M.); (I.F.B.D.); (L.C.G.B.)
| | - Jacqueline A. D. Basílio
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (J.A.D.B.); (J.A.X.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (J.A.D.B.); (J.A.X.)
| | - Ticiano G. do Nascimento
- Laboratory of Pharmaceutical Technology, Research Program Post-Graduation in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, Alagoas 57072-970, Brazil; (V.C.S.); (A.M.G.S.S.); (T.G.d.N.); (N.L.O.N.M.); (I.F.B.D.); (L.C.G.B.)
| | - Rose M. Z. G. Naal
- Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto. Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903, Brazil; (R.M.Z.G.N.); (M.P.d.L.); (L.A.D.L.)
| | - Maria Perpetua del Lama
- Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto. Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903, Brazil; (R.M.Z.G.N.); (M.P.d.L.); (L.A.D.L.)
| | - Laila A. D. Leonelo
- Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto. Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903, Brazil; (R.M.Z.G.N.); (M.P.d.L.); (L.A.D.L.)
| | - Naianny L. O. N. Mergulhão
- Laboratory of Pharmaceutical Technology, Research Program Post-Graduation in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, Alagoas 57072-970, Brazil; (V.C.S.); (A.M.G.S.S.); (T.G.d.N.); (N.L.O.N.M.); (I.F.B.D.); (L.C.G.B.)
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (J.A.D.B.); (J.A.X.)
| | - Fernanda C. A. Maranhão
- Institute of Biological Science and Health, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (F.C.A.M.); (D.M.W.S.)
| | - Denise M. W. Silva
- Institute of Biological Science and Health, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (F.C.A.M.); (D.M.W.S.)
| | - Robert Owen
- Division of Preventive Oncology, German Cancer Research Center, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany;
| | - Ilza F. B. Duarte
- Laboratory of Pharmaceutical Technology, Research Program Post-Graduation in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, Alagoas 57072-970, Brazil; (V.C.S.); (A.M.G.S.S.); (T.G.d.N.); (N.L.O.N.M.); (I.F.B.D.); (L.C.G.B.)
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (J.A.D.B.); (J.A.X.)
| | - Laisa C. G. Bulhões
- Laboratory of Pharmaceutical Technology, Research Program Post-Graduation in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, Alagoas 57072-970, Brazil; (V.C.S.); (A.M.G.S.S.); (T.G.d.N.); (N.L.O.N.M.); (I.F.B.D.); (L.C.G.B.)
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (J.A.D.B.); (J.A.X.)
| | - Irinaldo D. Basílio
- Laboratory of Pharmaceutical Technology, Research Program Post-Graduation in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, Alagoas 57072-970, Brazil; (V.C.S.); (A.M.G.S.S.); (T.G.d.N.); (N.L.O.N.M.); (I.F.B.D.); (L.C.G.B.)
| | - Marília O. F. Goulart
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas 57072-970, Brazil; (J.A.D.B.); (J.A.X.)
| |
Collapse
|
32
|
Gopinath V, MubarakAli D, Vadivelu J, Manjunath Kamath S, Syed A, Elgorban AM. Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Aliabadi M, Chee BS, Matos M, Cortese YJ, Nugent MJD, de Lima TAM, Magalhães WLE, de Lima GG. Yerba Mate Extract in Microfibrillated Cellulose and Corn Starch Films as a Potential Wound Healing Bandage. Polymers (Basel) 2020; 12:E2807. [PMID: 33260883 PMCID: PMC7761128 DOI: 10.3390/polym12122807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Microfibrillated cellulose films have been gathering considerable attention due to their high mechanical properties and cheap cost. Additionally, it is possible to include compounds within the fibrillated structure in order to confer desirable properties. Ilex paraguariensis A. St.-Hil, yerba mate leaf extract has been reported to possess a high quantity of caffeoylquinic acids that may be beneficial for other applications instead of its conventional use as a hot beverage. Therefore, we investigate the effect of blending yerba mate extract during and after defibrillation of Eucalyptus sp. bleached kraft paper by ultrafine grinding. Blending the extract during defibrillation increased the mechanical and thermal properties, besides being able to use the whole extract. Afterwards, this material was also investigated with high content loadings of starch and glycerine. The results present that yerba mate extract increases film resistance, and the defibrillated cellulose is able to protect the bioactive compounds from the extract. Additionally, the films present antibacterial activity against two known pathogens S. aureus and E. coli, with high antioxidant activity and increased cell proliferation. This was attributed to the bioactive compounds that presented faster in vitro wound healing, suggesting that microfibrillated cellulose (MFC) films containing extract of yerba mate can be a potential alternative as wound healing bandages.
Collapse
Affiliation(s)
- Meysam Aliabadi
- Department of Paper Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 00386, Iran;
| | - Bor Shin Chee
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (Y.J.C.); (M.J.D.N.); (T.A.M.d.L.)
| | - Mailson Matos
- Embrapa Florestas, Colombo 00319, Brazil; (M.M.); (W.L.E.M.)
| | - Yvonne J. Cortese
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (Y.J.C.); (M.J.D.N.); (T.A.M.d.L.)
| | - Michael J. D. Nugent
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (Y.J.C.); (M.J.D.N.); (T.A.M.d.L.)
| | - Tielidy A. M. de Lima
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (Y.J.C.); (M.J.D.N.); (T.A.M.d.L.)
| | | | - Gabriel Goetten de Lima
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Curitiba, Paraná 19011, Brazil
| |
Collapse
|
34
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
35
|
Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int J Biol Macromol 2020; 164:963-975. [PMID: 32707282 DOI: 10.1016/j.ijbiomac.2020.07.160] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The development of ideal wound dressing materials with excellent characteristics is currently a major demand in wound therapy. In recent years, carboxymethyl cellulose (CMC)-based wound dressing materials have been of immense attraction due to their noble properties, such as: biocompatibility, biodegradability, tissue resembling, low cost and non-toxic. It is used extensively, in a variety of applications in the biomedical and pharmaceutical fields. The hydrophilic nature of CMC, makes it possible to blend and cross-link with other materials, such as: synthetic polymers, natural polymers and inorganic materials and it enables the preparation of innovative wound dressing biomaterials. Hence, this review, focuses on the intrinsic characteristics of CMC-based wound dressing materials, including hydrogels, films, 3D printing, fibres, gauzes and their recent advancements in chronic wound healing.
Collapse
Affiliation(s)
- Vimala Kanikireddy
- Department of Chemistry, Osmania University, Hyderabad 500 007, Telangana, India.
| | - Kokkarachedu Varaprasad
- Centro de Investigaciòn dePolìmeros Avanzados (CIPA), Edificio de Laboratorios, Avenida Collao 1202, Concepciòn, Chile.
| | - Tippabattini Jayaramudu
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad deTalca, 747, Talca, Chile
| | - Chandrasekaran Karthikeyan
- Centro de Investigaciòn dePolìmeros Avanzados (CIPA), Edificio de Laboratorios, Avenida Collao 1202, Concepciòn, Chile
| | - Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria 1083, South Africa
| |
Collapse
|
36
|
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Mol Pharm 2020; 18:550-575. [PMID: 32519875 DOI: 10.1021/acs.molpharmaceut.0c00346] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammad Javad Hajipour
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02912, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
37
|
More N, Ranglani D, Kharche S, Kapusetti G. Electrospun mat of thermal‐treatment‐induced nanocomposite hydrogel of polyvinyl alcohol and cerium oxide for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Namdev More
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Deepak Ranglani
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Shubham Kharche
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Govinda Kapusetti
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|
38
|
Franco P, De Marco I. The Use of Poly( N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel) 2020; 12:E1114. [PMID: 32414187 PMCID: PMC7285361 DOI: 10.3390/polym12051114] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/31/2022] Open
Abstract
Polyvinylpyrrolidone (PVP) is a hydrophilic polymer widely employed as a carrier in the pharmaceutical, biomedical, and nutraceutical fields. Up to now, several PVP-based systems have been developed to deliver different active principles, of both natural and synthetic origin. Various formulations and morphologies have been proposed using PVP, including microparticles and nanoparticles, fibers, hydrogels, tablets, and films. Its versatility and peculiar properties make PVP one of the most suitable and promising polymers for the development of new pharmaceutical forms. This review highlights the role of PVP in drug delivery, focusing on the different morphologies proposed for different polymer/active compound formulations. It also provides detailed information on active principles and used technologies, optimized process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy;
| |
Collapse
|
39
|
Stojkovska J, Zvicer J, Obradovic B. Preclinical functional characterization methods of nanocomposite hydrogels containing silver nanoparticles for biomedical applications. Appl Microbiol Biotechnol 2020; 104:4643-4658. [DOI: 10.1007/s00253-020-10521-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/04/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
|
40
|
Transparent chitosan based nanobiocomposite hydrogel: Synthesis, thermophysical characterization, cell adhesion and viability assay. Int J Biol Macromol 2020; 144:715-724. [PMID: 31862375 DOI: 10.1016/j.ijbiomac.2019.10.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/03/2023]
Abstract
This study designed to explore the characteristic features of the novel prepared hydrogel. This transparent nanocomposite hydrogel was formulated with employing environmental friendly biopolymer, "chitosan". To increase the hydrophilicity of chitosan, it was quaternized with triethyl amine. Also by incorporating click protocol, the triazole rings were inserted in the structure. After decoration with appropriate chemicals using efficient methods, functionalized chitosan and the corresponding hydrogel were investigated by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC) and dynamic-mechanical thermal analysis (DMTA). Swelling behavior of the synthesized hydrogel was assayed in both room temperature and 37 °C. Moreover, swelling kinetics were appraised and found that the experimental data fit the Schott's equation. To study the cell adhesion and proliferation, MTT assay was performed and the SEM images of 24, 48 and 72 h of direct cell culture on the surface of the scaffold were obtained. Morphological features of cultured cells were confirmed with Giemsa staining. The results displayed the potential capability of the synthesized scaffold for being used in bioapplications.
Collapse
|
41
|
Patra P, Patra N, Pal S. Opposite swelling characteristics through changing the connectivity in a biopolymeric hydrogel based on glycogen and glycine. Polym Chem 2020. [DOI: 10.1039/d0py00117a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycine, a biomolecule, has been functionalized through a simple condensation reaction with one of two functional groups (–COOH and –NH2) to prepare two vinylic monomers.
Collapse
Affiliation(s)
- Priyapratim Patra
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| | - Niladri Patra
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| | - Sagar Pal
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| |
Collapse
|
42
|
Liu S, Li J, Zhang S, Zhang X, Ma J, Wang N, Wang S, Wang B, Chen S. Template-Assisted Magnetron Sputtering of Cotton Nonwovens for Wound Healing Application. ACS APPLIED BIO MATERIALS 2019; 3:848-858. [DOI: 10.1021/acsabm.9b00942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shangpeng Liu
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaohua Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiying Zhang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, P. R. China
| | - Jianwei Ma
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Na Wang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shuang Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Bin Wang
- Department of Biochemistry and Microbiology, Qingdao University, Qingdao 266071, P. R. China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
43
|
Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MDF. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int J Mol Sci 2019; 20:E2747. [PMID: 31167476 PMCID: PMC6600223 DOI: 10.3390/ijms20112747] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Maria de Fatima Pina
- Medicines and Healthcare Regulatory Products Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, UK.
| |
Collapse
|