1
|
Liu F, Christou A, Dahiya AS, Dahiya R. From Printed Devices to Vertically Stacked, 3D Flexible Hybrid Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411151. [PMID: 39888128 PMCID: PMC11899526 DOI: 10.1002/adma.202411151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/17/2024] [Indexed: 02/01/2025]
Abstract
The pursuit of miniaturized Si electronics has revolutionized computing and communication. During recent years, the value addition in electronics has also been achieved through printing, flexible and stretchable electronics form factors, and integration over areas larger than wafer size. Unlike Si semiconductor manufacturing which takes months from tape-out to wafer production, printed electronics offers greater flexibility and fast-prototyping capabilities with lesser resources and waste generation. While significant advances have been made with various types of printed sensors and other passive devices, printed circuits still lag behind Si-based electronics in terms of performance, integration density, and functionality. In this regard, recent advances using high-resolution printing coupled with the use of high mobility materials and device engineering, for both in-plane and out-of-plane integration, raise hopes. This paper focuses on the progress in printed electronics, highlighting emerging printing technologies and related aspects such as resource efficiency, environmental impact, integration scale, and the novel functionalities enabled by vertical integration of printed electronics. By highlighting these advances, this paper intends to reveal the future promise of printed electronics as a sustainable and resource-efficient route for realizing high-performance integrated circuits and systems.
Collapse
Affiliation(s)
- Fengyuan Liu
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
- Microsystems Technology UnitCentre for Sensors & DevicesFondazione Bruno Kessler (FBK)Via Sommarive, 18Trento38123Italy
| | - Adamos Christou
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
| | - Abhishek Singh Dahiya
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
| | - Ravinder Dahiya
- Bendable Electronics and Sustainable Technologies (BEST) GroupDepartment of Electrical and Computer EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
2
|
Hooshmand S, Kassanos P, Keshavarz M, Duru P, Kayalan CI, Kale İ, Bayazit MK. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. SENSORS (BASEL, SWITZERLAND) 2023; 23:8648. [PMID: 37896744 PMCID: PMC10611361 DOI: 10.3390/s23208648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges.
Collapse
Affiliation(s)
- Sara Hooshmand
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Panagiotis Kassanos
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pelin Duru
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - İzzet Kale
- Applied DSP and VLSI Research Group, Department of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK;
| | - Mustafa Kemal Bayazit
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| |
Collapse
|
3
|
Lee JY, Shin J, Kim K, Ju JE, Dutta A, Kim TS, Cho YU, Kim T, Hu L, Min WK, Jung HS, Park YS, Won SM, Yeo WH, Moon J, Khang DY, Kim HJ, Ahn JH, Cheng H, Yu KJ, Rogers JA. Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low-Cost Flexible Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302597. [PMID: 37246255 DOI: 10.1002/smll.202302597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Ultrathin crystalline silicon is widely used as an active material for high-performance, flexible, and stretchable electronics, from simple passive and active components to complex integrated circuits, due to its excellent electrical and mechanical properties. However, in contrast to conventional silicon wafer-based devices, ultrathin crystalline silicon-based electronics require an expensive and rather complicated fabrication process. Although silicon-on-insulator (SOI) wafers are commonly used to obtain a single layer of crystalline silicon, they are costly and difficult to process. Therefore, as an alternative to SOI wafers-based thin layers, here, a simple transfer method is proposed for printing ultrathin multiple crystalline silicon sheets with thicknesses between 300 nm to 13 µm and high areal density (>90%) from a single mother wafer. Theoretically, the silicon nano/micro membrane can be generated until the mother wafer is completely consumed. In addition, the electronic applications of silicon membranes are successfully demonstrated through the fabrication of a flexible solar cell and flexible NMOS transistor arrays.
Collapse
Affiliation(s)
- Ju Young Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Jeong Eun Ju
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tae Soo Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, South Korea
| | - Young Uk Cho
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Taemin Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Luhing Hu
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Won Kyung Min
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Hyun-Suh Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Young Sun Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Seongbuk-gu, Suwon, 16419, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- IEN Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Dahl-Young Khang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyun Jae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ki Jun Yu
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea
- YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
4
|
Shabbir B, Yu JC, Warnakula T, Ayyubi RAW, Pollock JA, Hossain MM, Kim JE, Macadam N, Ng LWT, Hasan T, Vak D, Kitchen MJ, Jasieniak JJ. Printable Perovskite Diodes for Broad-Spectrum Multienergy X-Ray Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210068. [PMID: 36852617 DOI: 10.1002/adma.202210068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/13/2023] [Indexed: 05/19/2023]
Abstract
Multienergy X-ray detection is critical to effectively differentiate materials in a variety of diagnostic radiology and nondestructive testing applications. Silicon and selenium X-ray detectors are the most common for multienergy detection; however, these present poor energy discrimination across the broad X-ray spectrum and exhibit limited spatial resolution due to the high thicknesses required for radiation attenuation. Here, an X-ray detector based on solution-processed thin-film metal halide perovskite that overcomes these challenges is introduced. By harnessing an optimized n-i-p diode configuration, operation is achieved across a broad range of soft and hard X-ray energies stemming from 0.1 to 10's of keV. Through detailed experimental and simulation work, it is shown that optimized Cs0.1 FA0.9 PbI3 perovskites effectively attenuate soft and hard X-rays, while also possessing excellent electrical properties to result in X-ray detectors with high sensitivity factors that exceed 5 × 103 µ C G y Vac - 1 cm - 2 $\mu {\rm{C}}\;{{\bf Gy}}_{{\rm{Vac}}}^{ - 1}\;{\rm{c}}{{\rm{m}}^{ - 2}}$ and 6 × 104 µC Gy-1 cm-2 within soft and hard X-ray regimes, respectively. Harnessing the solution-processable nature of the perovskites, roll-to-roll printable X-ray detectors on flexible substrates are also demonstrated.
Collapse
Affiliation(s)
- Babar Shabbir
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Jae Choul Yu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Tharindu Warnakula
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria, 3800, Australia
| | - R A W Ayyubi
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James A Pollock
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - M Mosarof Hossain
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Jueng-Eun Kim
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Nasiruddin Macadam
- Cambridge Graphene Centre, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Leonard W T Ng
- Cambridge Graphene Centre, University of Cambridge, CB3 0FA, Cambridge, UK
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Doojin Vak
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacek J Jasieniak
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
5
|
Khandelwal G, Deswal S, Dahiya R. Triboelectric Nanogenerators as Power Sources for Chemical Sensors and Biosensors. ACS OMEGA 2022; 7:44573-44590. [PMID: 36530315 PMCID: PMC9753505 DOI: 10.1021/acsomega.2c06335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The recent advances of portable sensors in flexible and wearable form factors are drawing increasing attention worldwide owing to their requirement applications ranging from health monitoring to environment monitoring. While portability is critical for these applications, real-time data gathering also requires a reliable power supply-which is largely met with batteries. Besides the need for regular charging, the use of toxic chemicals in batteries makes it difficult to rely on them, and as a result different types of energy harvesters have been explored in recent years. Among these, triboelectric nanogenerators (TENGs) provide a promising platform for harnessing ambient energy and converting it into usable electric signals. The ease of fabrication and possibility to develop TENGs with a diverse range of easily available materials also make them attractive. This review focuses on the TENG technology and its efficient use as a power source for various types of chemical sensors and biosensors. The paper describes the underlying mechanism, various modes of working of TENGs, and representative examples of their utilization as power sources for sensing a multitude of analytes. The challenges associated with their adoption for commercial solutions are also discussed to stimulate further advances and innovations.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Swati Deswal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ravinder Dahiya
- Bendable Electronics
and Sustainable Technologies Group, Electrical and Computer
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Neto J, Chirila R, Dahiya AS, Christou A, Shakthivel D, Dahiya R. Skin-Inspired Thermoreceptors-Based Electronic Skin for Biomimicking Thermal Pain Reflexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201525. [PMID: 35876394 PMCID: PMC9507360 DOI: 10.1002/advs.202201525] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Indexed: 05/27/2023]
Abstract
Electronic systems possessing skin-like morphology and functionalities (electronic skins [e-skins]) have attracted considerable attention in recent years to provide sensory or haptic feedback in growing areas such as robotics, prosthetics, and interactive systems. However, the main focus thus far has been on the distributed pressure or force sensors. Herein a thermoreceptive e-skin with biological systems like functionality is presented. The soft, distributed, and highly sensitive miniaturized (≈700 µm2 ) artificial thermoreceptors (ATRs) in the e-skin are developed using an innovative fabrication route that involves dielectrophoretic assembly of oriented vanadium pentoxide nanowires at defined locations and high-resolution electrohydrodynamic printing. Inspired from the skin morphology, the ATRs are embedded in a thermally insulating soft nanosilica/epoxy polymeric layer and yet they exhibit excellent thermal sensitivity (-1.1 ± 0.3% °C-1 ), fast response (≈1s), exceptional stability (negligible hysteresis for >5 h operation), and mechanical durability (up to 10 000 bending and twisting loading cycles). Finally, the developed e-skin is integrated on the fingertip of a robotic hand and a biological system like reflex is demonstrated in response to temperature stimuli via localized learning at the hardware level.
Collapse
Affiliation(s)
- João Neto
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Radu Chirila
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
7
|
Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The demand for portable and wearable chemical or biosensors and their expeditious development in recent years has created a scientific challenge in terms of their continuous powering. As a result, mechanical energy harvesters such as piezoelectric and triboelectric generators (TEGs) have been explored recently either as sensors or harvesters to store charge in small, but long-life, energy-storage devices to power the sensors. The use of energy harvesters as sensors is particularly interesting, as with such multifunctional operations it is possible to reduce the number devices needed in a system, which also helps overcome the integration complexities. In this regard, TEGs are promising, particularly for energy autonomous chemical and biological sensors, as they can be developed with a wide variety of materials, and their mechanical energy to electricity conversion can be modulated by various analytes. This review focuses on this interesting dimension of TEGs and presents various self-powered active chemical and biological sensors. A brief discussion about the development of TEG-based physical, magnetic, and optical sensors is also included. The influence of environmental factors, various figures of merit, and the significance of TEG design are explained in context with the active sensing. Finally, the key applications, challenges, and future perspective of chemical and biological detection via TEGs are discussed with a view to drive further advances in the field of self-powered sensors.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
8
|
Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot 2022; 7:eabl7344. [PMID: 35675450 DOI: 10.1126/scirobotics.abl7344] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin). This could be attained through either innovative schemes for developing distributed electronics or repurposing the neuromorphic circuits developed for other sensory modalities such as vision and audio. This Review highlights the hardware implementations of various computational building blocks for e-skin and the ways they can be integrated to potentially realize human skin-like or peripheral nervous system-like functionalities. The neural-like sensing and data processing are discussed along with various algorithms and hardware architectures. The integration of ultrathin neuromorphic chips for local computation and the printed electronics on soft substrate used for the development of e-skin over large areas are expected to advance robotic interaction as well as open new avenues for research in medical instrumentation, wearables, electronics, and neuroprosthetics.
Collapse
Affiliation(s)
- Fengyuan Liu
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Sweety Deswal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | | | - Mohsen Kaboli
- Department of Research, New Technologies, Innovation, BMW Group, Parkring 19, 85748 Garching bei Munchen, Germany.,Cognitive Robotics and Tactile Intelligence Group, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
9
|
|
10
|
Shojaei Baghini M, Vilouras A, Douthwaite M, Georgiou P, Dahiya R. Ultra‐thin ISFET‐based sensing systems. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Mahdieh Shojaei Baghini
- Bendable Electronics and Sensing Technologies (BEST) Group School of Engineering University of Glasgow Glasgow UK
| | - Anastasios Vilouras
- Bendable Electronics and Sensing Technologies (BEST) Group School of Engineering University of Glasgow Glasgow UK
| | - Matthew Douthwaite
- Centre for Bio‐Inspired Technology Department of Electrical and Electronic Engineering Imperial College London London UK
| | - Pantelis Georgiou
- Centre for Bio‐Inspired Technology Department of Electrical and Electronic Engineering Imperial College London London UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group School of Engineering University of Glasgow Glasgow UK
| |
Collapse
|
11
|
Shojaei Baghini M, Vilouras A, Dahiya R. Ultra-Thin Chips With ISFET Array for Continuous Monitoring of Body Fluids Ph. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1174-1185. [PMID: 35007198 DOI: 10.1109/tbcas.2022.3141553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents ISFET array based pH-sensing system-on-ultra-thin-chip (SoUTC) designed and fabricated in 350 nm CMOS technology. The SoUTC with the proposed current-mode active-pixel ISFET circuit array is desined to operate at 2 V and consumes 6.28 μW per-pixel. The presented SoUTC exhibits low sensitivity to process, voltage, temperature and strain-induced (PVTS) variations. The silicon area occupancy of each active-pixel is 44.9 × 33.5 µm2 with an ion-sensing area of 576 µm2. The design of presented ISFET device is analysed with finite element modeling in COMSOL Multiphysics using compact model parameters of MOSFET in 350 nm CMOS technology. Owing to thin (∼30 µm) Si-substrate the presented SoUTC can conform to curvilinear surfaces, allowing intimate contact necessary for reliable data for monitoring of analytes in body fluids such as sweat. Further, it can operate either in a rolling shutter fashion or in a pseudo-random pixel selection mode allowing the simultaneous detection of pH from different skin regions. Finally, the circuits have been tested in aqueous Dulbecco's Modified Eagle Medium (DMEM) culture media with 5-9 pH values, which mimics cellular environments, to demonstrate their potential use for continuous monitoring of body-fluids pH.
Collapse
|
12
|
Sinha S, Pal T. A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Soumendu Sinha
- CSIR – Central Electronics Engineering Research Institute (CEERI) Pilani Rajasthan India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Tapas Pal
- CSIR – Central Electronics Engineering Research Institute (CEERI) Pilani Rajasthan India
| |
Collapse
|
13
|
Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100899. [PMID: 34247412 PMCID: PMC11481680 DOI: 10.1002/adma.202100899] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The continuous operation of wearable electronics demands reliable sources of energy, currently met through Li-ion batteries and various energy harvesters. These solutions are being used out of necessity despite potential safety issues and unsustainable environmental impact. Safe and sustainable energy sources can boost the use of wearables systems in diverse applications such as health monitoring, prosthetics, and sports. In this regard, sweat- and sweat-equivalent-based studies have attracted tremendous attention through the demonstration of energy-generating biofuel cells, promising power densities as high as 3.5 mW cm-2 , storage using sweat-electrolyte-based supercapacitors with energy and power densities of 1.36 Wh kg-1 and 329.70 W kg-1 , respectively, and sweat-activated batteries with an impressive energy density of 67 Ah kg-1 . A combination of these energy generating, and storage devices can lead to fully energy-autonomous wearables capable of providing sustainable power in the µW to mW range, which is sufficient to operate both sensing and communication devices. Here, a comprehensive review covering these advances, addressing future challenges and potential solutions related to fully energy-autonomous wearables is presented, with emphasis on sweat-based energy storage and energy generation elements along with sweat-based sensors as applications.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) GroupJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Lu Yin
- Department of NanoengineeringCentre of Wearable SensorsUniversity of CaliforniaSan DiegoCA92093USA
| | - Arokia Nathan
- Darwin CollegeUniversity of CambridgeSilver StreetCambridgeCB3 9EUUK
| | - Joseph Wang
- Department of NanoengineeringCentre of Wearable SensorsUniversity of CaliforniaSan DiegoCA92093USA
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
14
|
Gold Nanoframe Array Electrode for Straightforward Detection of Hydrogen Peroxide. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nanostructuring of a sensing membrane is performed through colloidal nanosphere lithography (NSL) techniques with a tiny polystyrene nanobead template 100 nm in size. The solvent ratio adjustment has been proven to be effective in assisting the monolayer deposition of small templating particles with minimal defects. Two distinct structures, namely, a billowy gold nanostructure (BGN) where the nanobead template is left unetched and a gold nanoframe array (GNA) with a regular ring-like structure after template removal, are used for the extended-gate field-effect transistor (EGFET) electrodes. The GNA structure generates an electroactive surface area significantly (~20%) larger than its geometrical area as well as a greater surface roughness than the BGN. When integrated with the portable constant voltage–constant current (CVCC) FET circuitry for pH screening to determine the optimized measurement conditions for H2O2 sensing, the GNA sensing membrane also shows more improved Nernstian sensitivity at ~50 mV/pH than the BGN electrode. The more optimized sensitivity is then proven using the GNA in the detection of H2O2, the most common representative reactive oxygen species (ROS) involved in the environment, food, and neurodegenerative diseases, such as Parkinson´s and Alzheimer´s diseases. The GNA electrode has a sensitivity of 70.42 mV/log µM [H2O2] and a limit of detection (LoD) of 1.183 µM H2O2. The integrated ion sensing system employing unique, highly ordered gold array gate electrodes and a portable CVCC circuit system has shown a stable real-time output voltage signal, representing an alternative to bulky conventional FET devices for potential on-site H2O2 detection.
Collapse
|
15
|
Dahiya AS, Shakthivel D, Kumaresan Y, Zumeit A, Christou A, Dahiya R. High-performance printed electronics based on inorganic semiconducting nano to chip scale structures. NANO CONVERGENCE 2020; 7:33. [PMID: 33034776 PMCID: PMC7547062 DOI: 10.1186/s40580-020-00243-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
The Printed Electronics (PE) is expected to revolutionise the way electronics will be manufactured in the future. Building on the achievements of the traditional printing industry, and the recent advances in flexible electronics and digital technologies, PE may even substitute the conventional silicon-based electronics if the performance of printed devices and circuits can be at par with silicon-based devices. In this regard, the inorganic semiconducting materials-based approaches have opened new avenues as printed nano (e.g. nanowires (NWs), nanoribbons (NRs) etc.), micro (e.g. microwires (MWs)) and chip (e.g. ultra-thin chips (UTCs)) scale structures from these materials have been shown to have performances at par with silicon-based electronics. This paper reviews the developments related to inorganic semiconducting materials based high-performance large area PE, particularly using the two routes i.e. Contact Printing (CP) and Transfer Printing (TP). The detailed survey of these technologies for large area PE onto various unconventional substrates (e.g. plastic, paper etc.) is presented along with some examples of electronic devices and circuit developed with printed NWs, NRs and UTCs. Finally, we discuss the opportunities offered by PE, and the technical challenges and viable solutions for the integration of inorganic functional materials into large areas, 3D layouts for high throughput, and industrial-scale manufacturing using printing technologies.
Collapse
Affiliation(s)
- Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yogeenth Kumaresan
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ayoub Zumeit
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|