1
|
Ye Y, Huang H, Li H, Wu G. Role of chemical groups in regulating membrane tension of mBMSCs under stretch stimulation. Colloids Surf B Biointerfaces 2025; 252:114644. [PMID: 40132336 DOI: 10.1016/j.colsurfb.2025.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
As a crucial mechanobiological regulator, the tension of the cell membrane plays a vital role in governing cellular adhesion, proliferation, and differentiation processes. Additionally, it displayed a dynamic response to mechanical microenvironmental changes. This research systematically examines the mechanoresponsive behaviors of mouse bone marrow mesenchymal stem cells (mBMSCs) that are cultured on poly(dimethylsiloxane) (PDMS) substrates which are functionalized with methyl (-CH3), amino (-NH2), and carboxyl (-COOH) groups. Under both static and stretching conditions, it is found that compared with the -CH3 surface, static culture on the -NH2 and -COOH functionalized surfaces significantly promotes the proliferation of mBMSCs and upregulates the expression of extracellular matrix adhesion-related genes, especially focal adhesion kinase (FAK) and integrin β1. Morphometric analysis reveals that there are concomitant increases in the cell spreading area and the number of pseudopods on these modified surfaces. Mechanical stretching stimulation not only amplifies these cellular responses but also leads to more uniform FAK distribution. The assessment by atomic force microscopy (AFM) shows that both chemical functionalization (-NH2/-COOH) and stretch stimulation reduce the deformability of the cell membrane, and the -NH2 modification exhibits a greater membrane-stiffening effect than -COOH.
Collapse
Affiliation(s)
- Yunqing Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Haoyang Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Urbán CT, Bakhshi Sichani S, Ueda Modaffore G, Glorieux C, Gruber J, Yongabi D, Lettinga MP, Wagner P. Spontaneous Cell Detachment from Temperature Gradients: Getting the Method Ready for Antimicrobial Drug Testing at Cell Culture Level. SENSORS (BASEL, SWITZERLAND) 2025; 25:2902. [PMID: 40363339 PMCID: PMC12074233 DOI: 10.3390/s25092902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Spontaneous cell detachment describes an effect in which eukaryotic cells first sediment onto a heated chip and then detach from it spontaneously and collectively after a sharply defined dwell time td. This behavior is triggered by the temperature gradient between the chip and the colder supernatant liquid. Notably, td allows distinguishing between different yeast strains and cancer-cell lines. At the same time, it also varies in the presence of nutrients and cytotoxins, suggesting an added value of this method for pharmacological studies. In the present work, we study the role of fluid convection on the detachment of yeast cells experimentally and by simulations using a sample compartment with a variable aspect ratio. Hereby, we found that the absolute chip temperature, the strength of the temperature gradient and the number of cells inside the sample compartment all affect the dwell time td. To demonstrate the concept, we show that the spontaneous-detachment method can measure the impact of an antibiotic and an antiseptic drug on yeast cultures and corroborate this with reference assays.
Collapse
Affiliation(s)
- Csongor Tibor Urbán
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (C.T.U.); (M.P.L.)
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (C.T.U.); (M.P.L.)
| | - Gabriela Ueda Modaffore
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (C.T.U.); (M.P.L.)
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Prof. Lineu Prestes Ave., 748, São Paulo 05508-000, SP, Brazil;
| | - Christ Glorieux
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (C.T.U.); (M.P.L.)
| | - Jonas Gruber
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Prof. Lineu Prestes Ave., 748, São Paulo 05508-000, SP, Brazil;
| | - Derick Yongabi
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (C.T.U.); (M.P.L.)
| | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (C.T.U.); (M.P.L.)
- Biomolecular Systems and Processes IBI-4, Institute of Biological Information Processing, Research Center Jülich, Wilhelm-Johnen-Strasse, D-52428 Jülich, Germany
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (C.T.U.); (M.P.L.)
| |
Collapse
|
3
|
Burčík D, Macko J, Podrojková N, Demeterová J, Stano M, Oriňak A. Role of Cell Adhesion in Cancer Metastasis Formation: A Review. ACS OMEGA 2025; 10:5193-5213. [PMID: 39989825 PMCID: PMC11840620 DOI: 10.1021/acsomega.4c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Intercellular adhesion is accompanied by several physical quantities and actions. In this review, we tried to collect information about the influence of surface energy and its impact on cell-cell adhesion. It still undergoes development for cancer treatment. Data on receptor-ligand interactions that occur on circulating tumor cells (CTCs) are described, and adhesion receptors as therapeutic targets are collected. Additionally, the impact of surface roughness on the interactions between CTC cells and the surface was monitored. The effects of different cell adhesion molecules (CAMs) on cell adhesion, growth, and proliferation were investigated. This review offers general principles of cell adhesion, through the blockade of adhesion with blocking drugs and inhibitors like computational models that describe the process of adhesion. Some theoretical models based on the minimum of the total free energy of interaction between CAMs and selected organic molecules have been presented. The final aim was to find information on how modulation of the surface of CTCs (by medicals or physically) inhibits cancer metastases formation.
Collapse
Affiliation(s)
- Denis Burčík
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Ján Macko
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Natália Podrojková
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Jana Demeterová
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Michal Stano
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Andrej Oriňak
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| |
Collapse
|
4
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
5
|
López Marzo AM. Techniques for characterizing biofunctionalized surfaces for bioanalysis purposes. Biosens Bioelectron 2024; 263:116599. [PMID: 39111251 DOI: 10.1016/j.bios.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Surface biofunctionalization is an essential stage in the preparation of any bioassay affecting its analytical performance. However, a complete characterization of the biofunctionalized surface, considering studies of coverage density, distribution and orientation of biomolecules, layer thickness, and target biorecognition efficiency, is not met most of the time. This review is a critical overview of the main techniques and strategies used for characterizing biofunctionalized surfaces and the process in between. Emphasis is given to scanning force microscopies as the most versatile and suitable tools to evaluate the quality of the biofunctionalized surfaces in real-time dynamic experiments, highlighting the helpful of atomic force microscopy, Kelvin probe force microscopy, electrochemical atomic force microscopy and photo-induced force microscopy. Other techniques such as optical and electronic microscopies, quartz crystal microbalance, X-ray photoelectron spectroscopy, contact angle, and electrochemical techniques, are also discussed regarding their advantages and disadvantages in addressing the whole characterization of the biomodified surface. Scarce reviews point out the importance of practicing an entire characterization of the biofunctionalized surfaces. This is the first review that embraces this topic discussing a wide variety of characterization tools applied in any bioanalysis platform developed to detect both clinical and environmental analytes. This survey provides information to the analysts on the applications, strengths, and weaknesses of the techniques discussed here to extract fruitful insights from them. The aim is to prompt and help the analysts to accomplish an entire assessment of the biofunctionalized surface, and profit from the information obtained to enhance the bioanalysis output.
Collapse
Affiliation(s)
- Adaris M López Marzo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Spain; Universitat Autònoma de Barcelona (UAB), Carrer dels Til·lers s/n, Campus de la UAB, 08193, Bellaterra, Spain.
| |
Collapse
|
6
|
Özsoylu D, Aliazizi F, Wagner P, Schöning MJ. Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion. Biosens Bioelectron 2024; 261:116491. [PMID: 38879900 DOI: 10.1016/j.bios.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the "real" bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an "imprinting factor" of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D).
Collapse
Affiliation(s)
- Dua Özsoylu
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany
| | - Fereshteh Aliazizi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001, Leuven, Belgium
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001, Leuven, Belgium
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Biological Information Processing (IBI-3), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
7
|
Guldorum Y, Ayran M, Bulut B, Ilgar S, Ulag S, Kanli Z, Aydin B, Gulhan R, Bedir T, Gunduz O, Narayan RJ. Ethosuximide-loaded bismuth ferrite nanoparticles as a potential drug delivery system for the treatment of epilepsy disease. PLoS One 2024; 19:e0305335. [PMID: 39312534 PMCID: PMC11419348 DOI: 10.1371/journal.pone.0305335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/29/2024] [Indexed: 09/25/2024] Open
Abstract
Encapsulating antiepileptic drugs (AEDs), including ethosuximide (Etho), into nanoparticles shows promise in treating epilepsy. Nanomedicine may be the most significant contributor to addressing this issue. It presents several advantages compared to traditional drug delivery methods and is currently a prominent area of focus in cancer research. Incorporating Etho into bismuth ferrite (BFO) nanoparticles within diverse controlled drug delivery systems is explored to enhance drug efficacy. This approach is primarily desired to aid in targeted drug delivery to the brain's deepest regions while limiting transplacental permeability, reducing fetal exposure, and mitigating associated adverse effects. In this investigation, we explored Etho, an antiepileptic drug commonly employed for treating absence seizures, as the active ingredient in BFO nanoparticles at varying concentrations (10 and 15 mg). Characterization of the drug-containing BFO nanoparticles involved scanning electron microscopy (SEM) and elemental analysis. The thermal properties of the drug-containing BFO nanoparticles were evaluated via differential scanning calorimetry (DSC) analysis. Cytotoxicity evaluations using the MTT assay were conducted on all nanoparticles, and human neuroblastoma cell line cultures (SH-SY5Y) were treated with each particle over multiple time intervals. Cell viability remained at 135% after 7 days when exposed to 15 mg of Etho in BFO nanoparticles. Additionally, in vitro drug release kinetics for Etho revealed sustained release lasting up to 5 hours with a drug concentration of 15 mg.
Collapse
Affiliation(s)
- Yeliz Guldorum
- Department of Biomedical Engineering, Electrical and Electronics Faculty, Yıldız Technical University, Istanbul, Turkey
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
| | - Musa Ayran
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Institute of Pure and Applied Sciences, Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
| | - Burcak Bulut
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
| | - Sule Ilgar
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Zehra Kanli
- Department of Biophysics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Banu Aydin
- Department of Biophysics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rezzan Gulhan
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
- Epilepsy Research and Implementation Center, Marmara University, Istanbul, Turkey
| | - Tuba Bedir
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
8
|
Lin HH, Liang HI, Luo SC. Modulating Surface Cation Concentration via Tuning the Molecular Structures of Ethylene Glycol-Functionalized PEDOT for Improved Alkaline Hydrogen Evolution Reaction. JACS AU 2024; 4:3070-3083. [PMID: 39211622 PMCID: PMC11350742 DOI: 10.1021/jacsau.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The sluggish catalytic kinetics of nonprecious metal-based electrocatalysts often hinder them from achieving efficient hydrogen evolution reactions (HERs). Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been promising materials for various electrochemical applications. Nevertheless, previous studies have demonstrated that PEDOT coatings can be detrimental to HER performance. In this study, we investigated the alkaline HER efficiency of nickel foam coated with three types of ethylene glycol (EG)-functionalized EDOT. Specifically, EDOT derivatives bearing hydroxyl (-OH) and methoxy (-OCH3) end groups on the EG side chain and molecules containing two EDOT units are interconnected via EG moieties. EG groups are selected due to their strong interaction with alkali metal cations. Intriguingly, improved HER performance is observed on all electrodes coated with EG-functionalized EDOTs. Electrochemical impedance spectroscopy, electrochemical quartz crystal microbalance with dissipation, and XPS analysis are employed to explore the origin of enhanced HER efficiency. The results suggest the EG moieties can induce locally concentrated ions near the electrode surface and facilitate water dissociation through noncovalent interactions. The influence of EG chain length is systematically investigated by synthesizing molecules with di-EG, tetra-EG, and hexa-EG functionalities. This study highlights the importance of molecular design in modifying electrode surface properties to promote alkaline HER.
Collapse
Affiliation(s)
- Hsun-Hao Lin
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-I Liang
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Reviakine I. Quartz crystal microbalance in soft and biological interfaces. Biointerphases 2024; 19:010801. [PMID: 38416603 DOI: 10.1116/6.0003312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
Applications of quartz crystal microbalance with dissipation to studying soft and biological interfaces are reviewed. The focus is primarily on data analysis through viscoelastic modeling and a model-free approach focusing on the acoustic ratio. Current challenges and future research and development directions are discussed.
Collapse
|
10
|
Wei J, Shao Y, Qiao S, Li A, Hou S, Zhang WB. Biomacromolecular Characterizations Using State-of-the-Art Quartz Crystal Microbalance with Dissipation. Anal Chem 2023; 95:16435-16446. [PMID: 37921449 DOI: 10.1021/acs.analchem.3c02499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Biomolecular characterization is essential in fields such as drug discovery, glycomics, and cell biology. This feature article focuses on the experimental use of quartz crystal microbalance with dissipation (QCM-D) as a powerful analytical technique to probe biological events ranging from biomacromolecular interactions and conformational changes of biomacromolecules to surface immobilization of biomacromolecules and cell morphological changes.
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shixin Qiao
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Aaron Li
- China Biolin Scientific AB, Shanghai 201203, P. R. China
| | - Shaogang Hou
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
11
|
Wang B, Sun Y, Su Z, Lin Y, Jin Y. Real-Time Evaluation of Adhesion Processes and Glucose Response of Cancer Cells onto Phenylboronic Acid-Functionalized Films Monitored by Quartz Crystal Microbalance with Dissipation. Anal Chem 2023; 95:16481-16488. [PMID: 37910865 DOI: 10.1021/acs.analchem.3c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Understanding the interactions between cancer cells and smart substrates is of great benefit to physiology and pathology. Herein, we successfully fabricated two phenylboronic acid (PBA)-functionalized films with different surface topographies using a PBA homopolymer (PBAH) and self-assembled nanoparticles (PBAS) via a layer-by-layer assembly technique. We used a quartz crystal microbalance with dissipation (QCM-D) to monitor the entire cell adhesion process and figured out the adhesion kinetics of HepG2 cells on the two PBA-functionalized films. As seen from the QCM-D data, the HepG2 cells displayed distinctly different adhesion behaviors on the two PBA-functionalized films (PBAS and PBAH films). The results showed that the PBAS film promoted cell adhesion and cell spreading owing to its specific physicochemical properties. Likewise, the slope changes in the D-f plots clearly revealed the evolution of the cell adhesion process, which could be classified into three stages during cell adhesion on the PBA-functionalized films. In addition, compared with the PBAH film, the PBAS film could also control cell detachment behavior in the presence of glucose based on the molecular recognition between the PBA group and the cell membrane. Such a glucose-responsive PBAS film is promising for biological applications, including cell-based diagnostics and tissue engineering. In addition, the QCM-D proved to be a useful tool for in situ and real-time monitoring and analysis of interactions between cells and surfaces of supporting substrates.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yingjuan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
12
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
13
|
Liao Y, Fatehi P, Liao B. Microalgae cell adhesions on hydrophobic membrane substrates using quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 2023; 230:113514. [PMID: 37598610 DOI: 10.1016/j.colsurfb.2023.113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Microalgal cell adhesion and biofilm formation are affected by interactions between microalgae strains and membrane materials. Variations of surface properties of microalgae and membrane materials are expected to affect cell-membranes and cell-cell interactions and thus initial microalgal cell adhesion and biofilm formation rates. Hence, it should be possible to identify the dominant mechanisms controlling microalgal cell adhesion and biofilm formation. The effects of surface properties of three different microalgal strains and three different types of membrane materials on microalgal cell adhesion and biofilm formation were systematically investigated in real time by monitoring changes in the oscillation frequency and dissipation of the quartz crystal resonator (QCM-D). The results revealed that in general a higher surface free energy, more negative zeta potential, and higher surface roughness of membrane materials positively correlated with a larger quantity of microalgae cell deposition, while a more hydrophilic microalgae with a larger negative zeta potential preferred to attach to a more hydrophobic membrane material. The adhered microalgal layers exhibited viscoelastic properties. The relative importance of these mechanisms in controlling microalgae cell attachment and biofilm formation might vary, depending on the properties of specific microalgae species and hydrophobic membrane materials used.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
14
|
Özdabak Sert A, Bittrich E, Uhlmann P, Kok FN, Kılıç A. Monitoring Cell Adhesion on Polycaprolactone-Chitosan Films with Varying Blend Ratios by Quartz Crystal Microbalance with Dissipation. ACS OMEGA 2023; 8:17017-17027. [PMID: 37214735 PMCID: PMC10193393 DOI: 10.1021/acsomega.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A detailed understanding of the cell adhesion on polymeric surfaces is required to improve the performance of biomaterials. Quartz crystal microbalance with dissipation (QCM-D) as a surface-sensitive technique has the advantage of label-free and real-time monitoring of the cell-polymer interface, providing distinct signal patterns for cell-polymer interactions. In this study, QCM-D was used to monitor human fetal osteoblastic (hFOB) cell adhesion onto polycaprolactone (PCL) and chitosan (CH) homopolymer films as well as their blend films (75:25 and 25:75). Complementary cell culture assays were performed to verify the findings of QCM-D. The thin polymer films were successfully prepared by spin-coating, and relevant properties, i.e., surface morphology, ζ-potential, wettability, film swelling, and fibrinogen adsorption, were characterized. The adsorbed amount of fibrinogen decreased with an increasing percentage of chitosan in the films, which predominantly showed an inverse correlation with surface hydrophilicity. Similarly, the initial cell sedimentation after 1 h resulted in lesser cell deposition as the chitosan ratio increased in the film. Furthermore, the QCM-D signal patterns, which were measured on the homopolymer and blend films during the first 18 h of cell adhesion, also showed an influence of the different interfacial properties. Cells fully spread on pure PCL films and had elongated morphologies as monitored by fluorescence microscopy and scanning electron microscopy (SEM). Corresponding QCM-D signals showed the highest frequency drop and the highest dissipation. Blend films supported cell adhesion but with lower dissipation values than for the PCL film. This could be the result of a higher rigidity of the cell-blend interface because the cells do not pass to the next stages of spreading after secretion of their extracellular matrix (ECM) proteins. Variations in the QCM-D data, which were obtained at the blend films, could be attributed to differences in the morphology of the films. Pure chitosan films showed limited cell adhesion accompanied by low frequency drop and low dissipation.
Collapse
Affiliation(s)
- Ayşe
Buse Özdabak Sert
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| | - Eva Bittrich
- Leibniz-Institut
für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut
für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Fatma Nese Kok
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| | - Abdulhalim Kılıç
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
15
|
Levien M, Nasri Z, Weltmann KD, Fricke K. Study on the Interaction of Plasma-Polymerized Hydrogel Coatings with Aqueous Solutions of Different pH. Gels 2023; 9:gels9030237. [PMID: 36975686 PMCID: PMC10048005 DOI: 10.3390/gels9030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Amphiphilic hydrogels from mixtures of 2-hydroxyethyl methacrylate and 2-(diethylamino)ethyl methacrylate p(HEMA-co-DEAEMA) with specific pH sensitivity and hydrophilic/hydrophobic structures were designed and polymerized via plasma polymerization. The behavior of plasma-polymerized (pp) hydrogels containing different ratios of pH-sensitive DEAEMA segments was investigated concerning possible applications in bioanalytics. In this regard, the morphological changes, permeability, and stability of the hydrogels immersed in solutions of different pHs were studied. The physico-chemical properties of the pp hydrogel coatings were analyzed using X-ray photoelectron spectroscopy, surface free energy measurements, and atomic force microscopy. Wettability measurements showed an increased hydrophilicity of the pp hydrogels when stored in acidic buffers and a slightly hydrophobic behavior after immersion in alkaline solutions, indicating a pH-dependent behavior. Furthermore, the pp (p(HEMA-co-DEAEMA) (ppHD) hydrogels were deposited on gold electrodes and studied electrochemically to investigate the pH sensitivity of the hydrogels. The hydrogel coatings with a higher ratio of DEAEMA segments showed excellent pH responsiveness at the studied pHs (pH 4, 7, and 10), demonstrating the importance of the DEAEMA ratio in the functionality of pp hydrogel films. Due to their stability and pH-responsive properties, pp (p(HEMA-co-DEAEMA) hydrogels are conceivable candidates for functional and immobilization layers for biosensors.
Collapse
Affiliation(s)
- Monique Levien
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Zahra Nasri
- Center for Innovation Competence Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Katja Fricke
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| |
Collapse
|
16
|
Donnadio A, Paul G, Barbalinardo M, Ambrogi V, Pettinacci G, Posati T, Bisio C, Vivani R, Nocchetti M. Immobilization of Alendronate on Zirconium Phosphate Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:742. [PMID: 36839110 PMCID: PMC9965588 DOI: 10.3390/nano13040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Different amounts of sodium-alendronate (ALN) were loaded into layered zirconium phosphates of alpha and gamma type (αZP and γZP) by means of topotactic exchange reactions of phosphate with ALN. In order to extend the exchange process to the less accessible interlayer regions, ALN solutions were contacted with colloidal dispersions of the layered solids previously exfoliated in single sheets by means of intercalation reaction of propylamine (for αZP) or acetone (for γZP). The ALN loading degree was determined by liquid P-nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP), and it was reported as ALN/Zr molar ratios (Rs). The maximum R obtained for γZP was 0.34, while αZP was able to load a higher amount of ALN, reaching Rs equal to 1. The synthesized compounds were characterized by X-ray powder diffractometry, scanning electron microscopy (SEM), solid-state NMR, and infrared spectroscopy. The way the grafted organo-phosphonate groups were bonded to the layers of the host structure was suggested. The effect of ZP derivatives was assessed on cell proliferation, and the results showed that after 7 days of incubation, none of the samples showed a decrease in cell proliferation.
Collapse
Affiliation(s)
- Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Geo Paul
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | | | - Valeria Ambrogi
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
| | - Gabriele Pettinacci
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
| | | | - Chiara Bisio
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
- CNR-Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
17
|
Zhao X, Yang S, He F, Liu H, Mai K, Huang J, Yu G, Feng Y, Li J. Light-dimerization telechelic alginate-based amphiphiles reinforced Pickering emulsion for 3D printing. Carbohydr Polym 2023; 299:120170. [PMID: 36876785 DOI: 10.1016/j.carbpol.2022.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Functional Pickering emulsions that depend on the interparticle interactions hold promise for building template materials. A novel coumarin-grafting alginate-based amphiphilic telechelic macromolecules (ATMs) undergoing photo-dimerization enhanced particle-particle interactions and changed the self-assembly behavior in solutions. The influence of self-organization of polymeric particles on the droplet size, microtopography, interfacial adsorption and viscoelasticity of Pickering emulsions were further determined by multi-scale methodology. Results showed that stronger attractive interparticle interactions of ATMs (post-UV) endowed Pickering emulsion with small droplet size (16.8 μm), low interfacial tension (9.31 mN/m), thick interfacial film, high interfacial viscoelasticity and adsorption mass, and well stability. The high yield stress, outstanding extrudability (n1 < 1), high structure maintainability, and well shape retention ability, makes them ideal inks for direct 3D printing without any additions. The ATMs provides an increased capacity to produce stable Pickering emulsions with tailoring their interfacial performances and, providing a platform for fabricating and developing alginate-based Pickering emulsion-templated materials.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Haifang Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Keyang Mai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
18
|
Wang Q, Miao Q, Wang X, Wang T, Xu Q. Role of surface physicochemical properties of pipe materials on bio-clogging in leachate collection systems from a thermodynamic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158263. [PMID: 36030876 DOI: 10.1016/j.scitotenv.2022.158263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Bio-clogging in pipes poses a significant threat to the operation of leachate collection systems. Bio-clogging formation is influenced by the pipe materials. However, the relationship between bio-clogging and the physicochemical properties of different pipe materials has not been clarified yet, especially from a thermodynamic aspect. In this study, the dynamic bio-clogging processes in pipes of different materials (high-density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene (PE)) were compared, and their correlation with the physicochemical properties was investigated. Results showed that the bio-clogging in HDPE and PVC pipes was more severe than that in PP and PE pipes. In bio-clogging development, the predominant factor changed from the surface roughness to the electron donator parameter (γ-). In the initial phase, the most severe bio-clogging was observed in the HDPE pipe, which exhibited the highest roughness (432 ± 76 nm). In the later phase, the highest γ- (2.2 mJ/m2) and protein content (2623.1 ± 33.2 μg/cm2) were observed in the PVC simultaneously. Moreover, the interaction energy indicated that the bacteria could irreversibly and reversibly adhere to the HDPE, whereas irreversible adhesion was observed in the PVC, PP, and PE cases. The findings clarify the thermodynamic mechanism underlying bio-clogging behaviors and provide novel insights into the bio-clogging behaviors in pipes of different materials, which can facilitate the development of effective bio-clogging control strategies.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Xinwei Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Tong Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
19
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
20
|
Smart surface-based cell sheet engineering for regenerative medicine. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Naranda J, Bračič M, Vogrin M, Maver U, Trojner T. Practical Use of Quartz Crystal Microbalance Monitoring in Cartilage Tissue Engineering. J Funct Biomater 2022; 13:jfb13040159. [PMID: 36278628 PMCID: PMC9590066 DOI: 10.3390/jfb13040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Quartz crystal microbalance (QCM) is a real-time, nanogram-accurate technique for analyzing various processes on biomaterial surfaces. QCM has proven to be an excellent tool in tissue engineering as it can monitor key parameters in developing cellular scaffolds. This review focuses on the use of QCM in the tissue engineering of cartilage. It begins with a brief discussion of biomaterials and the current state of the art in scaffold development for cartilage tissue engineering, followed by a summary of the potential uses of QCM in cartilage tissue engineering. This includes monitoring interactions with extracellular matrix components, adsorption of proteins onto biomaterials, and biomaterial–cell interactions. In the last part of the review, the material selection problem in tissue engineering is highlighted, emphasizing the importance of surface nanotopography, the role of nanofilms, and utilization of QCM as a “screening” tool to improve the material selection process. A step-by-step process for scaffold design is proposed, as well as the fabrication of thin nanofilms in a layer-by-layer manner using QCM. Finally, future trends of QCM application as a “screening” method for 3D printing of cellular scaffolds are envisioned.
Collapse
Affiliation(s)
- Jakob Naranda
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
- Department of Orthopaedics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Correspondence: (J.N.); (M.B.); Tel.: +386-2-321-1541 (J.N.); +386-2-220-7929 (M.B.)
| | - Matej Bračič
- Laboratory for Characterisation and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
- Correspondence: (J.N.); (M.B.); Tel.: +386-2-321-1541 (J.N.); +386-2-220-7929 (M.B.)
| | - Matjaž Vogrin
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
- Department of Orthopaedics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Teodor Trojner
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
22
|
Yongabi D, Khorshid M, Losada‐Pérez P, Bakhshi Sichani S, Jooken S, Stilman W, Theßeling F, Martens T, Van Thillo T, Verstrepen K, Dedecker P, Vanden Berghe P, Lettinga MP, Bartic C, Lieberzeit P, Schöning MJ, Thoelen R, Fransen M, Wübbenhorst M, Wagner P. Synchronized, Spontaneous, and Oscillatory Detachment of Eukaryotic Cells: A New Tool for Cell Characterization and Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200459. [PMID: 35780480 PMCID: PMC9403630 DOI: 10.1002/advs.202200459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Despite the importance of cell characterization and identification for diagnostic and therapeutic applications, developing fast and label-free methods without (bio)-chemical markers or surface-engineered receptors remains challenging. Here, we exploit the natural cellular response to mild thermal stimuli and propose a label- and receptor-free method for fast and facile cell characterization. Cell suspensions in a dedicated sensor are exposed to a temperature gradient, which stimulates synchronized and spontaneous cell-detachment with sharply defined time-patterns, a phenomenon unknown from literature. These patterns depend on metabolic activity (controlled through temperature, nutrients, and drugs) and provide a library of cell-type-specific indicators, allowing to distinguish several yeast strains as well as cancer cells. Under specific conditions, synchronized glycolytic-type oscillations are observed during detachment of mammalian and yeast-cell ensembles, providing additional cell-specific signatures. These findings suggest potential applications for cell viability analysis and for assessing the collective response of cancer cells to drugs.
Collapse
Affiliation(s)
- Derick Yongabi
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Patricia Losada‐Pérez
- Faculté des SciencesExperimental Soft Matter and Thermal Physics (EST)Université Libre de BruxellesBoulevard du Triomphe ACC.2BrusselsB‐1050Belgium
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Stijn Jooken
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Wouter Stilman
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Florian Theßeling
- Laboratory for Systems BiologyVIB Center for MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenGaston Geenslaan 1HeverleeB‐3001Belgium
| | - Tobie Martens
- Laboratory for Enteric Neuroscience (LENS)Department of Chronic Diseases Metabolism and AgeingKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Toon Van Thillo
- BiochemistryMolecular and Structural BiologyKU LeuvenCelestijnenlaan 200 GLeuvenB‐3001Belgium
| | - Kevin Verstrepen
- Laboratory for Systems BiologyVIB Center for MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenGaston Geenslaan 1HeverleeB‐3001Belgium
| | - Peter Dedecker
- BiochemistryMolecular and Structural BiologyKU LeuvenCelestijnenlaan 200 GLeuvenB‐3001Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS)Department of Chronic Diseases Metabolism and AgeingKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Minne Paul Lettinga
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
- Biomacromolecular Systems and Processes (IBI‐4)Research Center Jülich GmbHLeo‐Brandt‐StraßeD‐52425JülichGermany
| | - Carmen Bartic
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Peter Lieberzeit
- Faculty of ChemistryDepartment of Physical ChemistryUniversity of ViennaWähringer, Straße 38ViennaA‐1090Austria
| | - Michael J. Schöning
- Institute of Nano‐ and Biotechnologies INBAachen University of Applied SciencesHeinrich‐Mußmann‐Straße 1D‐52428JülichGermany
| | - Ronald Thoelen
- Institute for Materials ResearchHasselt UniversityWetenschapspark 1DiepenbeekB‐3590Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular CommunicationDepartment of Cellular and Molecular MedicineKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Michael Wübbenhorst
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| |
Collapse
|
23
|
Hao Y, Chen T, Huang S, Liu Z, Zhou B. Novel quartz crystal microbalance cytosensor for real-time monitoring of polystyrene nanospheres effect on cell apoptosis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Wang Q, Liu F, Xu Q. Insight into the effect of calcium on bio-clogging behavior via quartz crystal microbalance with dissipation monitoring. CHEMOSPHERE 2022; 292:133547. [PMID: 34998841 DOI: 10.1016/j.chemosphere.2022.133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Bio-clogging of leachate collection systems has attracted much attention because of its threat to landfill slope stability and landfill landslide events. Calcium in leachate plays a vital role in the formation of bio-clogging. However, the influence of calcium on bio-clogging remains unclear. This study examined the effects of calcium concentration on bio-clogging, including 0, 1.25, 5, 25, and 75 mM CaCl2 groups. A technique involving quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to evaluate the bacteria adhesion behaviors in real time. The results showed that the presence of Ca2+ accelerated the bacterial attachment and increased the viscoelasticity of deposited layers. The deposition mass for 75 mM CaCl2 was 1442 ± 260 ng/cm2, which is 1.5 times that for 1.25 mM CaCl2. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory could explain the bacterial adhesion behaviors in low calcium concentrations (<25 mM). In comparison, the effect of calcium bridge was shown in high calcium concentrations (>25 mM). The development of biofilms was a dynamic process, and the Ca2+ concentration was positively related to the amount of biofilm generated. In low CaCl2 concentration (less than 5 mM) groups, the degree of bio-clogging increased from the exponential growth phase to the decline phase; in contrast, in high CaCl2 concentration (above 25 mM) groups, the degree of bio-clogging increased and later declined. Therefore, the calcium concentration should be controlled at a low level in leachate to mitigate bio-clogging in LCSs.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Feng Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
25
|
Tailoring ZE21B Alloy with Nature-Inspired Extracellular Matrix Secreted by Micro-Patterned Smooth Muscle Cells and Endothelial Cells to Promote Surface Biocompatibility. Int J Mol Sci 2022; 23:ijms23063180. [PMID: 35328601 PMCID: PMC8950948 DOI: 10.3390/ijms23063180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Delayed surface endothelialization is a bottleneck that restricts the further application of cardiovascular stents. It has been reported that the nature-inspired extracellular matrix (ECM) secreted by the hyaluronic acid (HA) micro-patterned smooth muscle cells (SMC) and endothelial cells (EC) can significantly promote surface endothelialization. However, this ECM coating obtained by decellularized method (dECM) is difficult to obtain directly on the surface of degradable magnesium (Mg) alloy. In this study, the method of obtaining bionic dECM by micro-patterning SMC/EC was further improved, and the nature-inspired ECM was prepared onto the Mg-Zn-Y-Nd (ZE21B) alloy surface by self-assembly. The results showed that the ECM coating not only improved surface endothelialization of ZE21B alloy, but also presented better blood compatibility, anti-hyperplasia, and anti-inflammation functions. The innovation and significance of the study is to overcome the disadvantage of traditional dECM coating and further expand the application of dECM coating to the surface of degradable materials and materials with different shapes.
Collapse
|
26
|
Influence of surface coatings on the adhesion of Shewanella oneidensis MR-1 to hematite. J Colloid Interface Sci 2022; 608:2955-2963. [PMID: 34844734 DOI: 10.1016/j.jcis.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
The adhesion of dissimilatory iron reducing bacteria (DIRB) to iron oxides is an important process to initiate direct extracellular electron transfer. Iron oxides in natural environments are often coated by organic matter or silica (SiO2) which alters their surface physicochemical properties. To investigate the influence of these surface coatings, we characterized the dynamic adhesion processes of Shewanella oneidensis MR-1 to bare hematite, humic acid-coated hematite (hematite-HA), and SiO2-coated hematite (hematite-SiO2) using Quartz Crystal Microbalance with Dissipation (QCM-D). The molecular-level process and mechanism were investigated using in situ Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) spectrometry. We found that MR-1 formed a rigid bacterial layer on bare hematite. Coating with HA or SiO2 decreased the surface cell density during the initial adhesion stage, and compromised the stability of the subsequent bacterial attachment. The FTIR combined with two-dimensional correlation spectroscopy (2D-COS) analysis showed that C-moieties of polysaccharides dominated interactions in initial adhesion on HA and SiO2-coated hematite. In the longer term, the HA coating hindered the adsorption of amide, but promoted the binding of polysaccharide C-moieties to hematite. We concluded that, in general, both the HA and SiO2 coatings reduced the attachment of MR-1 on hematite. These results advance our understanding of the roles of surface coatings on microbe-mineral interactions, which has significant implications for a series of biogeochemical processes in nature.
Collapse
|
27
|
Mohona TM, Dai N, Nalam PC. Comparative Degradation Kinetics Study of Polyamide Thin Films in Aqueous Solutions of Chlorine and Peracetic Acid Using Quartz Crystal Microbalance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14214-14227. [PMID: 34793175 DOI: 10.1021/acs.langmuir.1c02835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyamide thin film composite membranes are widely used in water reclamation. Peracetic acid (PAA) is an emerging wastewater disinfectant with a potential for membrane cleaning and disinfection; however, its interaction with polyamide remains poorly understood. This study employs quartz crystal microbalance with dissipation (QCM-D) to determine the PAA-induced degradation kinetics of polyamide thin films, in comparison with the conventional disinfectant-free chlorine (HOCl). Polyamide films showed a sorption phase followed by a degradation phase when exposed to PAA (1000 mg L-1) and HOCl (100 mg L-1) solutions. While the sorption phase in HOCl experiments was short (1.4-3.5 min) and followed a Boltzmann-sigmoidal model, it spanned over 3-33 h in PAA experiments and displayed a two-stage behavior. The latter kinetics are attributed to sequential processes of the physical sorption of PAA in polyamide films followed by PAA-induced polyamide oxidation. In the degradation phase, the HOCl-exposed films followed a rapid, two-step exponential decay reaching an equilibrium mass of ∼50% of the initial (wet) mass after ∼5 h of exposure. In contrast, the PAA-exposed films followed a Boltzmann-sigmoidal decay, with ∼80% of the initial (wet) mass remaining intact after >10 h of exposure. Fast force maps generated using atomic force microscopy showed a progressive increase in the morphological heterogeneity of the polyamide films in HOCl solution due to pitting, cracking, bulging, and eventual delamination under both flow and no-flow conditions. In contrast, PAA only formed small pits on the polyamide film under flow; in a stagnant PAA solution, the film had no visible changes even after ∼148 h of exposure. This is the first comparative study on the chemical and morphological changes in polyamide films induced by PAA and HOCl. The much higher compatibility of polyamide with PAA than with chlorine supports the potential of PAA being used as a halogen-free membrane cleaning/disinfecting agent.
Collapse
Affiliation(s)
- Tashfia M Mohona
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
28
|
Frączyk J, Magdziarz S, Stodolak-Zych E, Dzierzkowska E, Puchowicz D, Kamińska I, Giełdowska M, Boguń M. Chemical Modification as a Method of Improving Biocompatibility of Carbon Nonwovens. MATERIALS 2021; 14:ma14123198. [PMID: 34200740 PMCID: PMC8230386 DOI: 10.3390/ma14123198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022]
Abstract
It was shown that carbon nonwoven fabrics obtained from polyacrylonitrile fibers (PAN) by thermal conversion may be modified on the surface in order to improve their biological compatibility and cellular response, which is particularly important in the regeneration of bone or cartilage tissue. Surface functionalization of carbon nonwovens containing C–C double bonds was carried out using in situ generated diazonium salts derived from aromatic amines containing both electron-acceptor and electron-donor substituents. It was shown that the modification method characteristic for materials containing aromatic structures may be successfully applied to the functionalization of carbon materials. The effectiveness of the surface modification of carbon nonwoven fabrics was confirmed by the FTIR method using an ATR device. The proposed approach allows the incorporation of various functional groups on the nonwovens’ surface, which affects the morphology of fibers as well as their physicochemical properties (wettability). The introduction of a carboxyl group on the surface of nonwoven fabrics, in a reaction with 4-aminobenzoic acid, became a starting point for further modifications necessary for the attachment of RGD-type peptides facilitating cell adhesion to the surface of materials. The surface modification reduced the wettability (θ) of the carbon nonwoven by about 50%. The surface free energy (SFE) in the chemically modified and reference nonwovens remained similar, with the surface modification causing an increase in the polar component (ɣp). The modification of the fiber surface was heterogeneous in nature; however, it provided an attractive site of cell–materials interaction by contacting them to the fiber surface, which supports the adhesion process.
Collapse
Affiliation(s)
- Justyna Frączyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
- Correspondence: (J.F.); (M.B.)
| | - Sylwia Magdziarz
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Ewa Stodolak-Zych
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH-UST University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland; (E.S.-Z.); (E.D.)
| | - Ewa Dzierzkowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH-UST University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland; (E.S.-Z.); (E.D.)
| | - Dorota Puchowicz
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
| | - Irena Kamińska
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
| | - Małgorzata Giełdowska
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
| | - Maciej Boguń
- Łukasiewicz Research Network-Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland; (D.P.); (I.K.); (M.G.)
- Correspondence: (J.F.); (M.B.)
| |
Collapse
|
29
|
Chen Z, Zhou T, Hu J, Duan H. Quartz Crystal Microbalance with Dissipation Monitoring of Dynamic Viscoelastic Changes of Tobacco BY-2 Cells under Different Osmotic Conditions. BIOSENSORS 2021; 11:136. [PMID: 33925584 PMCID: PMC8145959 DOI: 10.3390/bios11050136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023]
Abstract
The plant cell mechanics, including turgor pressure and wall mechanical properties, not only determine the growth of plant cells, but also reflect the functional and structural changes of plant cells under biotic and abiotic stresses. However, there are currently no appropriate techniques allowing to monitor the complex mechanical properties of living plant cells non-invasively and continuously. In this work, quartz crystal microbalance with dissipation (QCM-D) monitoring technique with overtones (3-9) was used for the dynamic monitoring of adhesions of living tobacco BY-2 cells onto positively charged N,N-dimethyl-N-propenyl-2-propen-1-aminiumchloride homopolymer (PDADMAC)/SiO2 QCM crystals under different concentrations of mannitol (CM) and the subsequent effects of osmotic stresses. The cell viscoelastic index (CVIn) (CVIn = ΔD⋅n/ΔF) was used to characterize the viscoelastic properties of BY-2 cells under different osmotic conditions. Our results indicated that lower overtones of QCM could detect both the cell wall and cytoskeleton structures allowing the detection of plasmolysis phenomena; whereas higher overtones could only detect the cell wall's mechanical properties. The QCM results were further discussed with the morphological changes of the BY-2 cells by an optical microscopy. The dynamic changes of cell's generated forces or cellular structures of plant cells caused by external stimuli (or stresses) can be traced by non-destructive and dynamic monitoring of cells' viscoelasticity, which provides a new way for the characterization and study of plant cells. QCM-D could map viscoelastic properties of different cellular structures in living cells and could be used as a new tool to test the mechanical properties of plant cells.
Collapse
Affiliation(s)
- Zongxing Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Tiean Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Jiajin Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Haifeng Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (J.H.); (H.D.)
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| |
Collapse
|
30
|
Real-time and wide-field mapping of cell-substrate adhesion gap and its evolution via surface plasmon resonance holographic microscopy. Biosens Bioelectron 2021; 174:112826. [PMID: 33262060 DOI: 10.1016/j.bios.2020.112826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/17/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As one of the most common biological phenomena, cell adhesion plays a vital role in the cellular activities such as the growth and apoptosis, attracting tremendous research interests over the past decades. Taking the cell evolution under drug injection as an example, the dynamics of cell-substrate adhesion gap can provide valuable information in the fundamental research of cell contacts. A robust technique of monitoring the cell adhesion gap and its evolution in real time is highly desired. Herein, we develop a surface plasmon resonance holographic microscopy to achieve the novel functionality of real-time and wide-field mapping of the cell-substrate adhesion gap and its evolution in situ. The cell adhesion gap images of mouse osteoblast cells and human breast cancer cells have been effectively extracted in a dynamic and label-free manner. The proposed technique opens up a new avenue of revealing the cell-substrate interaction mechanism and renders the wide applications in the biosensing area.
Collapse
|
31
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
32
|
Yongabi D, Jooken S, Givanoudi S, Khorshid M, Deschaume O, Bartic C, Losada-Pérez P, Wübbenhorst M, Wagner P. Ionic strength controls long-term cell-surface interactions - A QCM-D study of S. cerevisiae adhesion, retention and detachment. J Colloid Interface Sci 2020; 585:583-595. [PMID: 33127054 DOI: 10.1016/j.jcis.2020.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Understanding microbial adhesion and retention is crucial for controlling many processes, including biofilm formation, antimicrobial therapy as well as cell sorting and cell detection platforms. Cell detachment is inextricably linked to cell adhesion and retention and plays an important part in the mechanisms involved in these processes. Physico-chemical and biological forces play a crucial role in microbial adhesion interactions and altering the medium ionic strength offers a potential means for modulating these interactions. Real-time studies on the effect of ionic strength on microbial adhesion are often limited to short-term bacterial adhesion. Therefore, there is a need, not only for long-term bacterial adhesion studies, but also for similar studies focusing on eukaryotic microbes, such as yeast. Hereby, we monitored, in real-time, S. cerevisiae adhesion on gold and silica as examples of surfaces with different surface charge properties to disclose long-term adhesion, retention and detachment as a function of ionic strength using quartz crystal microbalance with dissipation monitoring. Our results show that short- and long-term cell adhesion levels in terms of mass-loading increase with increasing ionic strength, while cells dispersed in a medium of higher ionic strength experience longer retention and detachment times. The positive correlation between the cell zeta potential and ionic strength suggests that zeta potential plays a role on cell retention and detachment. These trends are similar for measurements on silica and gold, with shorter retention and detachment times for silica due to strong short-range repulsions originating from a high electron-donicity. Furthermore, the results are comparable with measurements in standard yeast culture medium, implying that the overall effect of ionic strength applies for cells in nutrient-rich and nutrient-deficient media.
Collapse
Affiliation(s)
- Derick Yongabi
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.
| | - Stijn Jooken
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Stella Givanoudi
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Olivier Deschaume
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Carmen Bartic
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patricia Losada-Pérez
- Université Libre de Bruxelles (ULB), Experimental Soft Matter and Thermal Physics Group, Campus La Plaine, CP223, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Michael Wübbenhorst
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patrick Wagner
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|