1
|
Gao MY, Wang M, Wang YT, Zhang ZL. Enhanced catalytic efficiency of nanozymes with a V-structured chip for microfluidic biosensing of S. typhimurium. J Mater Chem B 2025; 13:4471-4483. [PMID: 40111428 DOI: 10.1039/d5tb00172b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Nanozymes, nanomaterials with enzyme-like characteristics which exhibit lower cost, easier synthesis and functionalization, and better stability compared with natural enzymes, have been widely developed for biosensing, disease therapy and environmental governance. However, the lack of catalytic efficiency of nanozymes compared to natural enzymes makes it difficult for them to completely replace natural enzymes to achieve higher sensitivity and lower detection limits in biosensing. Herein, magnetism-controlled technology was used to form a nanozyme array consisting of stacked Fe3O4/Au NPs at the bottom of the microchannel as a spatially confined microreactor for the catalytic reaction. By enhancing the mass transfer process of the substrate towards nanozymes mediated by the corresponding V-structure, a higher local concentration of the substrate and more efficient utilization of active sites of nanozymes were achieved to increase the catalytic efficiency (kcat/KM) of the nanozyme array consisting of Fe3O4/Au NPs by 95.2%, which was two orders of magnitude higher than that of the open reactor. Based on this, a colorimetric method on an integrated microfluidic platform was proposed for sensitive biosensing of Salmonella typhimurium. The entire detection could be completed within 30 minutes, yielding a linear range from 102 to 107 CFU mL-1 and a detection limit as low as 5.6 CFU mL-1.
Collapse
Affiliation(s)
- Ming-Yue Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Meng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yong-Tao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
2
|
Zong X, Xu X, Pang DW, Huang X, Liu AA. Fine-Tuning Electron Transfer for Nanozyme Design. Adv Healthc Mater 2025; 14:e2401836. [PMID: 39015050 DOI: 10.1002/adhm.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Indexed: 07/18/2024]
Abstract
Nanozymes, with their versatile composition and structural adaptability, present distinct advantages over natural enzymes including heightened stability, customizable catalytic activity, cost-effectiveness, and simplified synthesis process, making them as promising alternatives in various applications. Recent advancements in nanozyme research have shifted focus from serendipitous discovery toward a more systematic approach, leveraging machine learning, theoretical calculations, and mechanistic explorations to engineer nanomaterial structures with tailored catalytic functions. Despite its pivotal role, electron transfer, a fundamental process in catalysis, has often been overlooked in previous reviews. This review comprehensively summarizes recent strategies for modulating electron transfer processes to fine-tune the catalytic activity and specificity of nanozymes, including electron-hole separation and carrier transfer. Furthermore, the bioapplications of these engineered nanozymes, including antimicrobial treatments, cancer therapy, and biosensing are also introduced. Ultimately, this review aims to offer invaluable insights for the design and synthesis of nanozymes with enhanced performance, thereby advancing the field of nanozyme research.
Collapse
Affiliation(s)
- Xia Zong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinran Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Singh KB, Bora J, Basumatary B, Bora S, Pal AR. P-type doping in edge-enriched MoS 2-x nanostructures via RF-generated nitrogen plasma. NANOSCALE 2025; 17:2345-2353. [PMID: 39688165 DOI: 10.1039/d4nr03612c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this work, we report an intuitive magnetron sputtering technique for the synthesis of vertically aligned MoS2 (v-MS) nanostructures. The morphology and orientation of the as-synthesized nanostructures can be modified by altering the parameters of the sputtering process. This work emphasizes the versatility of magnetron sputtering to synthesize edge-enriched vertically aligned 2D nanostructures. These structures have diverse applications, such as those in optoelectronics, hydrogen evolution, sensing, energy storage and catalysis. The vertically aligned nanostructure of MoS2 was confirmed using the field emission scanning electron microscopy and Raman spectroscopy techniques. Furthermore, we studied the plasma-based nitrogen doping process with minimal damage for introducing nitrogen atoms into 2D nanomaterials. A plasma discharged into a nitrogen environment, assisted by a simple radio frequency (RF) power supply, was employed for p-type doping in v-MS. The successful doping of nitrogen was investigated by Raman spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy images confirmed the little surface damage resulting from the nitrogen doping technique. The change in work function resulting from doping was examined by Kelvin probe force microscopy and ultraviolet photoelectron spectroscopy. Optical emission spectroscopy (OES) study revealed the role of nitrogen plasma ions in doping with minimal surface damaging. This work demonstrates the effective alteration of the work function of the MoS2 nanomaterial via plasma treatment.
Collapse
Affiliation(s)
- Khomdram Bijoykumar Singh
- Plasma Nanotechnology Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jyotisman Bora
- Plasma Nanotechnology Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, India.
| | - Bablu Basumatary
- Plasma Nanotechnology Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, India.
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Shakyadeep Bora
- Plasma Nanotechnology Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Ratan Pal
- Plasma Nanotechnology Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati-781035, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Li Y, Liu Y, Zhang Y, Dong M, Cao L, Jiang K. A simple Ag-MoS 2 hybrid nanozyme-based sensor array for colorimetric identification of biothiols and cancer cells. RSC Adv 2024; 14:31560-31569. [PMID: 39372043 PMCID: PMC11450700 DOI: 10.1039/d4ra05409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
The intracellular levels of biothiols are associated with various diseases including cancer, and biothiols are regarded as tumor biomarker. Due to the similarity of the molecular structure of biothiols, the development of simple, rapid, efficient, and sensitive colorimetric sensor arrays holds great promise for clinical cancer diagnosis. Here, we developed a simple Ag-MoS2 hybrid nanozyme-based sensor array for colorimetric identification of biothiols and cancer cells. The novel Ag-MoS2 nanoprobe was synthesized in a simple and efficient way through the in situ self-reduction reaction between MoS2 and noble metal precursor. Benefiting from to the formation of heterogeneous metal structures, the peroxidase (POD)-like catalytic activity of the synthesized Ag-MoS2 hybrid nanocomposites is significantly enhanced compared to MoS2 alone. Moreover, the catalytic activity of Ag-MoS2 nanozyme was correlated with the pH of the reaction solution and the inhibitory effects of the three biothiols on the nanozyme-triggered chromogenic system differed in the specific pH environments. Therefore, each sensing unit of this electronic tongue generated differential colorimetric fingerprints of different biothiols. After principal component analysis (PCA), the developed novel colorimetric sensor array can accurately discriminate biothiols between different types, various concentrations, and different mixture proportions. Further, the sensor array was used for the colorimetric identification of real serum and cellular samples, demonstrating its great potential in tumor diagnostic applications.
Collapse
Affiliation(s)
- Yin Li
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yumeng Liu
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yueqin Zhang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Mengmeng Dong
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou China
| | - Lidong Cao
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- College of Mechanical Engineering, Zhejiang University Hangzhou China
| | - Kai Jiang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| |
Collapse
|
5
|
Li L, Zhang Y, Liu Y, Wu Y, Wang X, Cao L, Feng X. Synthesis of Pt-MoS 2 with enhanced photothermal and peroxidase-like properties and its antibacterial application. RSC Adv 2024; 14:29428-29438. [PMID: 39297038 PMCID: PMC11409452 DOI: 10.1039/d4ra05487c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Despite tremendous efforts, bacterial infection and contamination remain a major clinical challenge to modern humans. Nanozyme materials with stimuli-responsive properties are expected to be powerful tools for the next generation of antibacterial therapy. Here, MoS2 nanosheet was firstly prepared by liquid phase exfoliation method, and Pt-MoS2 hybrid biomaterial was then successfully synthesized by a simple self-reduction method. The Pt decoration significantly improves the photothermal effect of MoS2 nanosheet under 808 nm NIR laser irradiation. Besides, benefiting from the formation of heterogeneous structure, the Pt-MoS2 has significantly enhanced peroxidase mimetic catalytic activity, which can kill bacteria through catalysis of H2O2 to generate antimicrobial hydroxyl radicals. Moreover, the temperature rise brought about by NIR laser stimulation further amplifies the nanozyme activity of the composites. After treatment by the synergistic platform, both Staphylococcus aureus and Escherichia coli can be effectively inhibited, demonstrating its broad-spectrum antibacterial properties. In addition, the developed antibacterial Pt-MoS2 nanozyme have the excellent biocompatibility, which makes them well suited for infection elimination in biological systems. Overall, this work shows great potential for rationally combining the multiple functions of MoS2-based nanomaterials for synergistic antibacterial therapy. In the future, the Pt-MoS2 nanozyme may find wider applications in areas such as personal healthcare or surface disinfection treatment of medical devices.
Collapse
Affiliation(s)
- Liangyu Li
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Yueqin Zhang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yumeng Liu
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yaojuan Wu
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Xiao Wang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Lidong Cao
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- College of Mechanical Engineering, Zhejiang University Hangzhou China
| | - Xia Feng
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| |
Collapse
|
6
|
Shen C, Wang Y. Recent Progress on Peroxidase Modification and Application. Appl Biochem Biotechnol 2024; 196:5740-5764. [PMID: 38180646 DOI: 10.1007/s12010-023-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Peroxdiase is one of the member of oxireductase super family, which has a broad substrate range and a variety of reaction types, including hydroxylation, epoxidation or halogenation of unactivated C-H bonds, and aromatic group or biophenol compounds. Here, we summarized the recently discovered enzymes with peroxidation activity, and focused on the special structures, sites, and corresponding strategies that can change the peroxidase catalytic activity, stability, and substrate range. The comparison of the structural differences between these natural enzymes and the mimic enzymes of binding nanomaterials and polymer materials is helpful to expand the application of peroxidase in industry. In addition, we also reviewed the catalytic application of peroxidase in the synthesis of important organic molecules and the degradation of pollutants.
Collapse
Affiliation(s)
- Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, 050018, China.
| | - Yongfa Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China
| |
Collapse
|
7
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Jesuraj R, Perumal P. A highly effective peroxidase-mimic nanozyme of S, N-carbon dot-decorated cerium organic framework-based colorimetric detection of Hg 2+ ion and thiophanate methyl. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3562-3576. [PMID: 38780406 DOI: 10.1039/d4ay00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, we proposed a colorimetric probe as S, N-carbon dot-decorated Ce-MOF (S, N-CD@Ce-MOF) for the dual detection of mercury and thiophanate methyl (TM), which are simultaneously present pollutants in the environment and foodstuffs. These pollutants cause serious threats to human health, such as carcinogenicity and neurovirulence. Herein, we synthesized S, N-CD@Ce-MOF using the hydrothermal method and applied it to a "turn-off-on" probe to detect mercury and TM using the colorimetric method in water and food samples. S, N-CD@Ce-MOF shows excellent peroxidase activity by catalyzing the chromogenic substrate of 3,3',5,5'-tetramethylbenzidine (TMB), resulting in deep blue-colored oxidized TMB product (ox TMB) in the presence of H2O2 with a UV absorption wavelength at 654 nm. However, the addition of Hg(II) ions prohibits the oxidation of TMB by an electron transfer effect and easily binds with -S, -N-containing sites on the surface of carbon dots, obstructing the catalytic active sites and decreasing catalytic efficiency with weak UV absorption at 654 nm as a "turn-off". Subsequently, the addition of TM to the above sensing solution as a "turn-on" was triggered by the TM-Hg complex formation and permitted TMB oxidation with a strong absorption peak at 654 nm. Furthermore, this proposed sensor demonstrates a superior linear response to mercury ions and TM in the ranges from 0 to 15 μM and 0 to 14 μM, respectively. The developed colorimetric assay exhibits good sensitivity and selectivity against various possible interferences. Furthermore, we found that the limits of detection for Hg2+ and TM were as low as 0.01 μM and 0.03 μM, respectively. The developed sensor provides various benefits, such as cost-effectiveness, simplicity without a complex detection process, and naked-eye detection. Consequently, our proposed colorimetric technique worked well for the detection of Hg2+ in real water samples and TM in real apple and tomato juice.
Collapse
Affiliation(s)
- Rajakumari Jesuraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Wang Y, Sun Y, Wu F, Zou G, Gaumet JJ, Li J, Fernandez C, Wang Y, Peng Q. Nitrogen-Anchored Boridene Enables Mg-CO 2 Batteries with High Reversibility. J Am Chem Soc 2024; 146:9967-9974. [PMID: 38441882 DOI: 10.1021/jacs.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Nanoscale defect engineering plays a crucial role in incorporating extraordinary catalytic properties in two-dimensional materials by varying the surface groups or site interactions. Herein, we synthesized high-loaded nitrogen-doped Boridene (N-Boridene (Mo4/3(BnN1-n)2-mTz), N-doped concentration up to 26.78 at %) nanosheets by chemical exfoliation followed by cyanamide intercalation. Three different nitrogen sites are observed in N-Boridene, wherein the site of boron vacancy substitution mainly accounts for its high chemical activity. Attractively, as a cathode for Mg-CO2 batteries, it delivers a long-term lifetime (305 cycles), high-energy efficiency (93.6%), and ultralow overpotential (∼0.09 V) at a high current of 200 mA g-1, which overwhelms all Mg-CO2 batteries reported so far. Experimental and computational studies suggest that N-Boridene can remarkably change the adsorption energy of the reaction products and lower the energy barrier of the rate-determining step (*MgCO2 → *MgCO3·xH2O), resulting in the rapid reversible formation/decomposition of new MgCO3·5H2O products. The surging Boridene materials with defects provide substantial opportunities to develop other heterogeneous catalysts for efficient capture and converting of CO2.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yong Sun
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fengqi Wu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jean-Jacques Gaumet
- Laboratoire de Chimie et Physique, Approche Multi-échelles des Milieux Complexes, Institute Jean Barriol, Université de Lorraine, Metz 57070, France
| | - Jinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB107GJ, U.K
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
11
|
Chen Y, Zhang J, Li J, Hu Y, Ge K, Li G, Liu S. Bifunctional Mo 2N Nanoparticles with Nanozyme and SERS Activity: A Versatile Platform for Sensitive Detection of Biomarkers in Serum Samples. Anal Chem 2024. [PMID: 38335969 DOI: 10.1021/acs.analchem.3c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The combined application of nanozymes and surface-enhanced Raman scattering (SERS) provides a promising approach to obtain label-free detection. However, developing nanomaterials with both highly efficient enzyme-like activity and excellent SERS sensitivity remains a huge challenge. Herein, we proposed one-step synthesis of Mo2N nanoparticles (NPs) as a "two-in-one" substrate, which exhibits both excellent peroxidase (POD)-like activity and high SERS activity. Its mimetic POD activity can catalyze the 3,3',5,5'-tetramethylbenzidine (TMB) molecule to SERS-active oxidized TMB (ox-TMB) with high efficiency. Furthermore, combining experimental profiling with theory, the mechanism of POD-like activity and SERS enhancement of Mo2N NPs was explored in depth. Benefiting from the outstanding properties of Mo2N NPs, a versatile platform for indirect SERS detection of biomarkers was developed based on the Mo2N NPs-catalyzed product ox-TMB, which acts as the SERS signal readout. The feasibility of this platform was validated using glutathione (GSH) and target antigens alpha-fetoprotein antigen (AFP) and carcinoembryonic antigen (CEA) as representatives of small molecules with a hydroxyl radical (·OH) scavenging effect and proteins with a low Raman scattering cross-section, respectively. The limits of detection of GSH, AFP, and CEA were as low as 0.1 μmol/L, 89.1, and 74.6 pg/mL, respectively. Significantly, it also showed application in human serum samples with recoveries ranging from 96.0 to 101%. The acquired values based on this platform were compared with the standard electrochemiluminescence method, and the relative error was less than ±7.3. This work not only provides a strategy for developing highly active bifunctional nanomaterials but also manifests their widespread application for multiple biomarkers analysis.
Collapse
Affiliation(s)
- Ying Chen
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ji Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiayi Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Kun Ge
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sichen Liu
- Department of Neurosurgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
12
|
Zhao K, Chang X, Zhang J, Yuan F, Liu X. Electronic Modulation of MoS 2 Nanosheets by N-Doping for Highly Sensitive NO 2 Detection at Room Temperature. ACS Sens 2024; 9:388-397. [PMID: 38147687 DOI: 10.1021/acssensors.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Transition metal dichalcogenide (TMD) materials hold great promise for gas sensors working at room temperature (RT). But the low response and slow dynamics derived from pristine TMDs remain a challenge toward their real applications. In this work, we report an efficient N-doping strategy to modulate the electronic structure of MoS2 nanosheets (N-MoS2) to achieve improved detection toward NO2. The effect of N-doping on the sensor properties, which has been rarely investigated, is elucidated by both experimental and computational studies. Due to N-doping, the Fermi level of N-MoS2 decreased from -5.29 to -5.33 eV and the band gap was reduced from 1.79 to 1.65 eV. The smaller band gap indicated the reduced resistance of N-MoS2 compared to that of original MoS2. As a result, the response of the MoS2 sensor to 10 ppm of NO2 was improved from 1.23 to 2.31 at RT. The sensor also has a limit of detection (LOD) of 62.5 ppb. To explain the effect of N-doping, density functional theory (DFT) calculations were conducted to figure out the important roles played by N-doping. This work demonstrates a pathway to modulate the chemical and electronic structures of TMD materials for advanced sensors.
Collapse
Affiliation(s)
- Kai Zhao
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xiao Chang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Feng Yuan
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Wang XJ, Long Y, Wei CW, Gao SQ, Lin YW. Peroxidase activity of a Cu-Fe bimetallic hydrogel and applications for colorimetric detection of ascorbic acid. Phys Chem Chem Phys 2024; 26:1077-1085. [PMID: 38098362 DOI: 10.1039/d3cp05403a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A Cu-Fe bimetallic hydrogel (2-QF-CuFe-G) was constructed through a simple method. The 2-QF-CuFe-G metallohydrogel possesses excellent peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic mechanism was confirmed by the addition of •OH radical scavenger isopropyl alcohol (IPA), tert-butyl alcohol (TBA) and ˙OH trapping agent terephthalic acid (TA). Remarkably, the resultant blue ox-TMB system can be used to selectively and sensitively detect ascorbic acid (AA) with an LOD of 0.93 μM in the range of 4-36 μM through the colorimetric method. Moreover, the assay based on the 2-QF-CuFe-G metallohydrogel can be successfully applied to detect AA in fresh fruits.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yan Long
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
Kumari A, Sahoo J, De M. 2D-MoS 2-supported copper peroxide nanodots with enhanced nanozyme activity: application in antibacterial activity. NANOSCALE 2023; 15:19801-19814. [PMID: 38051093 DOI: 10.1039/d3nr05458f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Peroxidase (POD)-like nanozymes are an upcoming class of new-generation antibiotics that are efficient for broad-spectrum antibacterial action. The POD-like activity employs the generation of reactive oxygen species (ROS), which have been utilized for bactericidal action. However, their intrinsic low catalytic activity and stability limit their bactericidal properties. In this study, we prepared a MoS2-based nanocomposite with copper peroxide nanodots (MoS2@CP) to achieve pH-dependent light-induced nanozyme-based antibacterial action. It has shown superior peroxidase and antibacterial activity at low pH. The mechanism behind the enhanced POD-like activity and high antibacterial activity was established. The mechanistic pathway involves estimating ROS generation, membrane depolarization, inner membrane permeabilization, metal ion release, and the effect of NIR on photothermal and photodynamic activities. Overall, our work highlighted the combinatorial approach for eradicating bacterial infections using enzyme-based antibacterial agents.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
15
|
Dirersa WB, Kan TC, Getachew G, Wibrianto A, Ochirbat S, Rasal A, Chang J, Chang JY. Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO x-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55258-55275. [PMID: 38013418 DOI: 10.1021/acsami.3c10733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In recent studies, iron-containing Fenton nanocatalysts have demonstrated significant promise for clinical use due to their effective antitumor activity and low cytotoxicity. A new approach was reported in this work utilizing cation exchange synthesis to fabricate FeMnOx nanoparticles (NPs) that boost Fenton reactions and responses to the tumor microenvironment (TME) for chemodynamic therapy (CDT) and chemotherapy (CT). Within the TME, the redox metal pair of Fe2+/Mn2+ helps break down endogenous hydrogen peroxide (H2O2) into very harmful hydroxyl radicals (•OH) while simultaneously deactivating glutathione (GSH) to boost CDT performance. To further enhance the therapeutic potential, FeMnOx NPs were encapsulated with thioketal-linked camptothecin (CPT-TK-COOH), a reactive oxygen species (ROS)-responsive prodrug, achieving a high CPT-loading capacity of up to 51.1%. Upon ROS generation through the Fenton reaction, the prodrug TK linkage was disrupted, releasing 80% of the CPT payload within 48 h. Notably, FeMnOx@CPT exhibited excellent dual-modal imaging capabilities, enabling magnetic resonance and fluorescence imaging for image-guided therapy. In vitro studies showed the cytocompatibility of FeMnOx NPs using MDA-Mb-231 and 4T1 cells, but in the presence of H2O2, they induced significant cytotoxicity, resulting in 80% cell death through CDT and CT effects. Upon intravenous administration, FeMnOx@CPT displayed remarkable tumor accumulation, which enhanced tumor suppression in xenografts through improved CDT and CT effects. Moreover, no significant adverse effects were observed in the FeMnOx NP-treated animals. In the current study, the FeMnOx@CPT anticancer platform, with its boosted •OH-producing capability and ROS-cleavable drug release, has been validated utilizing in vitro and animal studies, suggesting its capacity as a viable strategy for clinical trials.
Collapse
Affiliation(s)
- Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Akash Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
16
|
Mehta D, Sharma P, Singh S. ATP-triggered, selective superoxide radical generating oxidase-mimetic cerium oxide nanozyme exhibiting efficient antibacterial activity at physiological pH. Colloids Surf B Biointerfaces 2023; 231:113531. [PMID: 37742363 DOI: 10.1016/j.colsurfb.2023.113531] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Bacterial infections are considered as one of the major health threats to the global population. The advent of bacterial species with antibiotic resistance has attracted significant efforts to develop novel materials and strategies to effectively avoid the resistance with enhanced antibacterial potential. In this work, we have developed oxidase-mimetic cerium oxide nanoparticles (CeO2 NPs), which exhibit nanozyme activity at physiological pH in the presence of adenosine triphosphate (ATP). The oxidase-mimetic activity was confirmed to involve superoxide radicals using p-benzoquinone and dihydroethidium. Using indole propionic acid, ethanol, and terephthalic acid, it was confirmed that the oxidase-mimetic activity of CeO2 NPs with ATP does not involve the formation of hydroxyl radicals. CeO2 NPs with ATP produced a strong antibacterial activity against Staphylococcus aureus and Escherichia coli within 3 - 6 hrs. The bacterial cell morphology analysis suggested that superoxide radicals generated during the oxidase-mimetic activity of CeO2 NPs with ATP cause distortion of paired and tetrad arrangement (Staphylococcus aureus), loss of cytoplasmic content, damage, and pore formation in the cell wall (Escherichia coli) that led to the death of bacteria. Further, the live/dead assay also concludes the time-dependent death of bacterial cells with the highest death in the cell population exposed to CeO2 NPs and ATP. Thus, the antibacterial activity at physiological pH by superoxide radical generating oxidase-mimetic CeO2 NPs could be further extended to other pathogenic bacterial species.
Collapse
Affiliation(s)
- Divya Mehta
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Paresh Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
17
|
Han J, Gu Y, Yang C, Meng L, Ding R, Wang Y, Shi K, Yao H. Single-atom nanozymes: classification, regulation strategy, and safety concerns. J Mater Chem B 2023; 11:9840-9866. [PMID: 37822275 DOI: 10.1039/d3tb01644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.
Collapse
Affiliation(s)
- Jiping Han
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yaohua Gu
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Changyi Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lingchen Meng
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Runmei Ding
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yifan Wang
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Huiqin Yao
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
18
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Zhang Y, Yu W, Chen M, Zhang B, Zhang L, Li P. The applications of nanozymes in cancer therapy: based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. NANOSCALE 2023; 15:12137-12156. [PMID: 37377098 DOI: 10.1039/d3nr01722b] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanozymes are nanomaterials with catalytic properties similar to those of natural enzymes, and they have recently been collectively identified as a class of innovative artificial enzymes. Nanozymes are widely used in various fields, such as biomedicine, due to their high catalytic activity and stability. Nanozymes can trigger changes in reactive oxygen species (ROS) levels in cells and the activation of inflammasomes, leading to the programmed cell death (PCD), including the pyroptosis, ferroptosis, and autophagy, of tumor cells. In addition, some nanozymes consume glucose, starving cancer cells and thus accelerating tumor cell death. In addition, the electric charge of the structure and the catalytic activity of nanozymes are sensitive to external factors such as light and electric and magnetic fields. Therefore, nanozymes can be used with different therapeutic methods, such as chemodynamic therapy (CDT), photodynamic therapy (PDT) and sonodynamic therapy (SDT), to achieve highly efficient antitumor effects. Many cancer therapies induce tumor cell death via the pyroptosis, ferroptosis, and autophagy of tumor cells mediated by nanozymes. We review the mechanisms of pyroptosis, ferroptosis, and autophagy in tumor development, as well as the potential application of nanozymes to regulate pyroptosis, ferroptosis, and autophagy in tumor cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Mengmeng Chen
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Bingqiang Zhang
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
20
|
Wu Y, Fang W, Hu Y, Dang J, Xin S, Li M, Li Z, Zhao H. Optimization of the tandem enzyme activity of V-MOF and its derivatives for highly sensitive nonenzymatic detection of cholesterol in living cells. J Colloid Interface Sci 2023; 649:601-615. [PMID: 37364460 DOI: 10.1016/j.jcis.2023.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
It remains a great challenge to properly design and synthesize single-component artificial tandem enzymes for specific substrates with high selectivity. Herein, V-MOF is synthesized by solvothermal method and its derivatives are constructed via pyrolyzing V-MOF in nitrogen atmosphere at different temperatures, which are denoted as V-MOF-y (y = 300, 400, 500, 700 and 800). V-MOF and V-MOF-y possess tandem enzyme-like activity, i.e. cholesterol oxidase-like and peroxidase-like activity. Among them, V-MOF-700 shows the strongest tandem enzyme activity for V-N bonds. Based on the cascade enzyme activity of V-MOF-700, the nonenzymatic detection platform for cholesterol by fluorescent assay can be established in the presence of o-phenylenediamine (OPD) for the first time. The detection mechanism is that V-MOF-700 catalyzes cholesterol to generate hydrogen peroxide and further form hydroxyl radical (•OH), which can oxidize OPD to obtain oxidized OPD (oxOPD) with yellow fluorescence. The linear detection of cholesterol ranges of 2-70 μM and 70-160 μM with a lower detection limit of 0.38 μM (S/N = 3) are obtained. This method is used to detect cholesterol in human serum successfully. Especially, it can be applied to the rough quantification of membrane cholesterol in living tumor cells, indicating that it has the potential for clinical application.
Collapse
Affiliation(s)
- Ying Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenhui Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ye Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiaqi Dang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shixian Xin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Min Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zengxi Li
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Hong Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China; Binzhou Institute of Technology, Binzhou 256601, China.
| |
Collapse
|
21
|
Dirersa WB, Getachew G, Wibrianto A, Rasal AS, Gurav VS, Zakki Fahmi M, Chang JY. Molybdenum-oxo-sulfide quantum dot-based nanocarrier: Efficient generation of reactive oxygen species via photo/chemodynamic therapy and stimulus-induced drug release. J Colloid Interface Sci 2023:S0021-9797(23)00890-1. [PMID: 37230831 DOI: 10.1016/j.jcis.2023.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The fabrication of multifunctional nano-therapies has increased gradually to strengthen the therapeutic performance and minimize adverse effects of traditional cancer treatment strategies. Currently, we have designed a facile preparation drug-loaded nanocarrier for multimodal cancer therapy upon external stimuli. First, defect-rich molybdenum oxo-sulfide (MoOxS2-x) quantum dots (QDs) was synthesized via rapid biomineralization techniques with superior optical quantum yield reaching upto 37.28%. The presence of the Fenton ion, Mo+IV/+VI, enables MoOxS2-x QDs to efficiently catalyze peroxide solutions to produce •OH radicals for chemodynamic treatment (CDT) and also deactivate the intracellular glutathione (GSH) enzymes through redox reaction for boosted reactive oxygen species (ROS)-mediated therapies. In addition, upon laser combination, MoOxS2-x QDs generate ROS for photodynamic therapy (PDT). Also, due to a large amount of sulfide content, MoOxS2-x QDs showed excellent H2S gas release in acidic pH for cancer gas therapy. Then, MoOxS2-x QDs was further conjugated with ROS-responsive thioketal linked Camptothecin (CPT-TK-COOH) drug, forming a multitargeted MoOxS2-xCPT anticancer agent with better drug-loading efficiency (38.8%). After triggering the ROS generation through the CDT and PDT mechanisms, the thioketal linkage was disrupted, releasing up to 79% of the CPT drug in 48 h. Besides, in vitro experiments verified that MoOxS2-x QDs possess higher biocompatibility with 4T1 and HeLa cells but also showed considerable toxicity in the presence of laser/H2O2, resulting in 84.45% cell death through PDT/CDT and chemotherapeutic effects. Therefore, the designed MoOxS2-xCPT exhibited outstanding therapeutic benefits for image-guided cancer therapy.
Collapse
Affiliation(s)
- Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Vivek S Gurav
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | | | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China.
| |
Collapse
|
22
|
Abdolmohammad-Zadeh H, Ahmadian F. A chemiluminescence biosensor based on the peroxidase-like property of molybdenum disulfide/zirconium metal-organic framework nanocomposite for diazinon monitoring. Anal Chim Acta 2023; 1253:341055. [PMID: 36965997 DOI: 10.1016/j.aca.2023.341055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Organophosphorus pesticides are widely used in agriculture owing to their high effectiveness as insecticides. Among these, diazinon is a common environmental contaminant that acts as an acetylcholinesterase (AChE) enzyme inhibitor. As the current methods are too expensive and time-consuming for routine analysis of diazinon, its trace monitoring by rapid and sensitive methods is critical to protect the environment and human health. RESULTS A biosensor was introduced for the indirect detection of diazinon using a molybdenum disulfide/zirconium metal-organic framework (MoS2@MIP-202(Zr)) nanocomposite. The probe is based on the peroxidase mimic of the prepared nanocomposite on NaHCO3-H2O2 chemiluminescence system as well as the inhibitory effect of diazinon on the enzymatic activity of AChE. The chemiluminescence signal is gradually decreased with an increase in diazinon concentration, and there is a linear relationship between the analytical signal and diazinon concentration. Under the optimum conditions, the calibration plot is linear in the concentration range of 0.5-300.0 nmol L-1. The limit of detection and quantification limit of the method are 0.12 and 0.40 nmol L-1, respectively. The inter-day and intra-day relative standard deviations (% RSD n = 5, diazinon concentration; 100 nmol L-1) are 3.66 and 1.35%, respectively. The method was used for diazinon detection in real water samples, and the high relative recovery values for the spiked samples along with satisfactory results of a certified reference material analysis confirmed that the method is accurate and free from the matrix effect. SIGNIFICANCE AND NOVELTY A nano-probe based on the peroxidase-like property of MoS2@MIP-202(Zr) nanocomposite was developed for the first time for indirect detection of residue levels of diazinon in water samples. The high stability of the nanocomposite makes it a good alternative for natural peroxidase enzymes such as horseradish peroxidase with low stability.
Collapse
Affiliation(s)
- Hossein Abdolmohammad-Zadeh
- Analytical Spectroscopy Research Lab., Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz, 5375171379, Iran.
| | - Farzaneh Ahmadian
- Analytical Spectroscopy Research Lab., Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz, 5375171379, Iran
| |
Collapse
|
23
|
Yang G, Chen Y, Shi R, Chen R, Gao S, Zhang X, Rao Y, Lu Y, Peng Y, Qing Z, Song C. Platinum Nanoparticles Loaded Graphitic Carbon Nitride Nanosheets with Enhanced Peroxidase-like Activity for H 2O 2 and Oxidase-Based Sensing. Molecules 2023; 28:molecules28093736. [PMID: 37175146 PMCID: PMC10179752 DOI: 10.3390/molecules28093736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Platinum nanoparticles (PtNPs) are classical peroxidase-like nanozyme; self-agglomeration of nanoparticles leads to the undesirable reduction in stability and catalytic activity. Herein, a hybrid peroxidase-like nanocatalyst consisting of PtNPs in situ growing on g-C3N4 nanosheets with enhanced peroxidase-mimic catalytic activity (PtNP@g-C3N4 nanosheets) was prepared for H2O2 and oxidase-based colorimetric assay. g-C3N4 nanosheets can be used as carriers to solve the problem of poor stability of PtNPs. We observed that the catalytic ability could be maintained for more than 90 days. PtNP@g-C3N4 nanosheets could quickly catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), and the absorbance of blue color oxidized TMB (oxTMB) showed a robust linear relationship with the concentration of H2O2 (the detection limit (LOD): 3.33 μM). By utilizing H2O2 as a mediator, this strategy can be applied to oxidase-based biomolecules (glucose, organophosphorus, and so on, that generate or consume hydrogen peroxide) sensing. As a proof of concept, a sensitive assay of cholesterol that combined PtNP@g-C3N4 nanosheets with cholesterol oxidase (ChOx) cascade catalytic reaction was constructed with an LOD of 9.35 μM in a widespread range from 10 to 800 μM (R2 = 0.9981). In addition, we also verified its ability to detect cholesterol in fetal bovine serum. These results showed application prospect of PtNP@g-C3N4 nanosheets-based colorimetry in sensing and clinical medical detection.
Collapse
Affiliation(s)
- Gege Yang
- Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha 410114, China
| | - Ying Chen
- Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
| | - Rui Shi
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Rongrong Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Shanshan Gao
- Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Rao
- Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
| | - Ying Lu
- Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
| | - Yuancheng Peng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha 410114, China
| | - Chunxia Song
- Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
24
|
Peng D, Yang Y, Que M, Ding Y, Wu M, Deng X, He Q, Ma X, Li X, Qiu H. Partially oxidized MoS 2 nanosheets with high water-solubility to enhance the peroxidase-mimic activity for sensitive detection of glutathione. Anal Chim Acta 2023; 1250:340968. [PMID: 36898817 DOI: 10.1016/j.aca.2023.340968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Surface oxidation engineering is an effective strategy to construct nanomaterials with enhanced biocatalytic activity. In this study, a facile one-pot oxidation strategy was proposed to synthesize partially oxidized molybdenum disulfide nanosheets (ox-MoS2 NSs), which exhibit good water solubility and can be used as an excellent peroxidase substitute. Under the oxidation process, Mo-S bonds are partially broke and S atoms are replaced by excess oxygen atoms, and the released abundant heat and gases efficiently expended the interlayer distance and weaken the van der Waals forces between adjacent layers. Porous ox-MoS2 NSs can be easily exfoliated by further sonication, and the nanosheets exhibits excellent water dispersibility and no obvious sediment appear even after store for months. Benefiting from the desirable affinity property with enzyme substrates, optimized electronic structure and prominent electron transfer efficiency, the ox-MoS2 NSs exhibit enhanced peroxidase-mimic activity. Furthermore, the ox-MoS2 NSs catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) oxidation reaction could be inhibited by the redox reaction that take place between glutathione (GSH) as well as the direct interaction between GSH and ox-MoS2 NSs. Thus, a colorimetric sensing platform was constructed for GSH detection with good sensitivity and stability. This work provides a facile strategy for engineering structure of nanomaterials and improving enzyme-mimic performance.
Collapse
Affiliation(s)
- Dong Peng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yuhong Yang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Mingming Que
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Ying Ding
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Mingzhu Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiulong Deng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Qifang He
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| | - Hongdeng Qiu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Liu J, Shen J, Wang Y, Dong C, Liu J, Yi Y, Liu H, Bao Y, Hui A, Wang A. MoS 2/PDA@Cu composite as a peroxidase-mimicking enzyme with high-effect antibacterial and anticancer activity. Biomater Sci 2023; 11:2898-2911. [PMID: 36883448 DOI: 10.1039/d2bm01935c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Since nanozymes were proposed, their applications have become more and more extensive. As a research hotspot in recent years, MoS2 also shows many enzyme-like properties. However, as a novel peroxidase, MoS2 has the disadvantage of a low maximum reaction rate. In this study, the MoS2/PDA@Cu nanozyme was synthesized by a wet chemical method. The modification of PDA on the surface of MoS2 achieved the uniform growth of small-sized Cu Nps. The obtained MoS2/PDA@Cu nanozyme displayed excellent peroxidase-like activity and antibacterial properties. The minimum inhibitory concentration (MIC) of the MoS2/PDA@Cu nanozyme against S. aureus reached 25 μg mL-1. Furthermore, it showed a more pronounced inhibitory effect on bacterial growth with the addition of H2O2. The maximum reaction rate (Vmax) of the MoS2/PDA@Cu nanozyme is 29.33 × 10-8 M s-1, which is significantly higher as compared to that of HRP. It also exhibited excellent biocompatibility, hemocompatibility and potential anticancer properties. When the concentration of the nanozyme was 160 μg mL-1, the viabilities of 4T1 cells and Hep G2 cells were 45.07% and 32.35%, respectively. This work indicates that surface regulation and electronic transmission control are good strategies for improving peroxidase-like activity.
Collapse
Affiliation(s)
- Junli Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Jiahao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Yile Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Chenfeng Dong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Jin Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Yunxiao Yi
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science& Technology, Xi'an, 710021, PR China.
| | - Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - AiPing Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
26
|
Yang L, Xu W, Shi X, Wu M, Yan Z, Zheng Q, Feng G, Zhang L, Shao R. Investigating the thermal conductivity and flame-retardant properties of BN/MoS2/PCNF composite film containing low BN and MoS2 nanosheets loading. Carbohydr Polym 2023; 311:120621. [PMID: 37028866 DOI: 10.1016/j.carbpol.2023.120621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Cellulose has attracted considerable attention as a potential substitute for plastics. However, the flammability and high thermal insulation properties of cellulose contradict the unique requirements for highly integrated and miniaturized electronics i.e., rapid thermal dissipation and efficient flame retardancy. In this work, cellulose was first phosphorylated to achieve intrinsic flame-retardant properties, and subsequently treated with MoS2 and BN, ensuring efficient dispersion throughout the material. Via chemical crosslinking, a sandwich-like unit was formed, in the order of BN, MoS2, and phosphorylated cellulose nanofibers (PCNF). The sandwich-like units were further self-assembled, layer-by-layer, to successfully create BN/MoS2/PCNF composite films exhibiting excellent thermal conductivity and flame retardancy, and comprised a low MoS2 and BN loading. The thermal conductivity of the BN/MoS2/PCNF composite film containing 5 wt% BN nanosheets was higher than that of neat PCNF film. The combustion characterization of BN/MoS2/PCNF composite films revealed highly desirable properties that were far more superior than the BN/MoS2/TCNF (TCNF, TEMPO-oxidized cellulose nanofibers) composite films. Moreover, the toxic volatiles that escaped from flaming BN/MoS2/PCNF composite films were significantly reduced compared to that of the BN/MoS2/TCNF composite film alternative. The thermal conductivity and flame retardancy of BN/MoS2/PCNF composite films have promising application prospects in highly integrated and eco-friendly electronics.
Collapse
|
27
|
Xiao Y, Zou G, Huo J, Sun T, Feng B, Liu L. Locally Thinned, Core-Shell Nanowire-Integrated Multi-gate MoS 2 Transistors for Active Control of Extendable Logic. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1563-1573. [PMID: 36560862 DOI: 10.1021/acsami.2c17788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Field-effect transistor (FET) devices with multi-gate coupled structures usually exhibit special electrical properties and are suitable for fabricating multifunctional devices. Among them, the 1D nanowire gate configuration has become a promising gate design to tailor 2D FET performances. However, due to possible short circuiting induced by nanowire contact and the high requirement for precision manipulation, the integration of multi-nanowires as gates in a single 2D electronic system remains a grand challenge. Herein, local laser--thinned multiple core-shell SiC@SiO2 nanowires are successfully integrated into MoS2 transistors as multi-gates for active control of extendable logic applications. Nanowire gates (NGs) locally enhance the carrier transportation, and the use of multiple NGs can achieve designed band structures to tune the performance of the device. For core-shell structures, a semiconducting core is used to introduce a gate bias, and the insulating shell provides protection against short circuiting between NGs, facilitating nanowire assembly. Furthermore, a global control gate is introduced to co-tune the overall electrical characteristics, while active control of logic devices and extendable inputs are achieved based on this model. This work proposes a novel nanowire multi-gate configuration, which provides possibilities for localized, precise control of band structures and the fabrication of highly integrated, multifunctional, and controllable nano-devices.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
28
|
The peroxidase-like catalytic activity of in situ prepared cobalt carbonate and its applications in colorimetric detection of hydrogen peroxide, glucose and ascorbic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Peony-like 3D-MoS2/graphene nanostructures with enhanced mimic peroxidase performance for colorimetric determination of dopamine. Talanta 2022; 247:123553. [DOI: 10.1016/j.talanta.2022.123553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 12/25/2022]
|
30
|
Smartphone-assisted Colorimetric Sensor based on Nanozyme for On-Site Glucose Monitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Feng L, Zhang L, Chu S, Zhang S, Chen X, Gong Y, Du Z, Mao G, Wang H. One-pot fabrication of nanozyme with 2D/1D heterostructure by in-situ growing MoS2 nanosheets onto single-walled carbon nanotubes with enhanced catalysis for colorimetric detection of glutathione. Anal Chim Acta 2022; 1221:340083. [DOI: 10.1016/j.aca.2022.340083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
|
32
|
Fluorescence sensing platform for sarcosine analysis based on nitrogen-doping copper nanosheets and gold nanoclusters. Anal Chim Acta 2022; 1223:340188. [DOI: 10.1016/j.aca.2022.340188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
|
33
|
Yan C, Waitt C, Akintola I, Lee G, Easa J, Clarke R, Geng F, Poirier D, Otor HO, Rivera-Castro G, Go DB, O’Brien CP, Hicks JC, Schneider WF, Ma H. Recent Advances in Plasma Catalysis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Yan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Craig Waitt
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ibukunoluwa Akintola
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Garam Lee
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Justin Easa
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Russell Clarke
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Feiyang Geng
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Deanna Poirier
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hope O. Otor
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gerardo Rivera-Castro
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David B. Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Casey P. O’Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jason C. Hicks
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hanyu Ma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
34
|
Lyu Z, Ding S, Du D, Qiu K, Liu J, Hayashi K, Zhang X, Lin Y. Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv Drug Deliv Rev 2022; 185:114269. [PMID: 35398244 DOI: 10.1016/j.addr.2022.114269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
Significant progress has been made in developing two-dimensional (2D) nanomaterials owing to their ultra-thin structure, high specific surface area, and many other advantages. Recently, 2D nanomaterials with enzyme-like properties, especially peroxidase (POD)-like activity, are highly desirable for many biomedical applications. In this review, we first classify the types of 2D POD-like nanomaterials and then summarize various strategies for endowing 2D nanomaterials with POD-like properties. Representative examples of biomedical applications are reviewed, emphasizing in antibacterial, biosensing, and cancer therapy. Last, the future challenges and prospects of 2D POD-like nanomaterials are discussed. This review is expected to provide an in-depth understanding of 2D POD-like materials for biomedical applications.
Collapse
|
35
|
Luo Q, Li J, Wang W, Li Y, Li Y, Huo X, Li J, Wang N. Transition Metal Engineering of Molybdenum Disulfide Nanozyme for Biomimicking Anti-Biofouling in Seawater. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14218-14225. [PMID: 35289595 DOI: 10.1021/acsami.2c00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nature has evolved diverse strategies to battle surface biofouling colonization and thus provides us novel insights into designing and developing advanced nontoxic antibiofouling materials and technologies. Mimicking the defense mechanisms of natural haloperoxidases in marine algae in response to biofilm colonization, here we show that the less active MoS2 shows efficient haloperoxidase-mimicking activity through judicious transition metal engineering. Cobalt-doped MoS2 (Co-MoS2) displays an excellent haloperoxidase-mimicking performance in catalyzing the Br- oxidation into germicidal HOBr, roughly 2 and 23 times higher than the nickel-doped MoS2 and pristine MoS2, respectively. Accordingly, Co-MoS2 shows an outstanding antimicrobial effect against drug-resistant bacteria and antibiofouling performance in real field tests in marine environments. The realization of robust haloperoxidase-mimicking activity of MoS2 via metal engineering may open a new avenue to design highly active transition metal dichalcogenides for antibacterial and antibiofouling applications.
Collapse
Affiliation(s)
- Qiang Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Jinyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Wei Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Yunhong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Yilan Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Xiaobing Huo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Jianbao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
36
|
Wang D, Dang X, Tan B, Zhang Q, Zhao H. 3D V 2O 5-MoS 2/rGO nanocomposites with enhanced peroxidase mimicking activity for sensitive colorimetric determination of H 2O 2 and glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120750. [PMID: 34929623 DOI: 10.1016/j.saa.2021.120750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In this work, we reported a novel nanozyme (3D V2O5-MoS2/rGO) by decorating MoS2 nano-flowers and V2O5 nanoparticles on reduced graphene oxide (rGO). The 3D V2O5-MoS2/rGO nanocomposites exhibited intrinsic peroxidase mimicking activity and catalyzed the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to produce a blue colored product in the presence of H2O2. Compared with horseradish peroxidase (HRP), 3D V2O5-MoS2/rGO nanocomposites displayed high catalytic velocity (Vmax) and affinity (Km) for substrates (H2O2 and TMB). The study of the catalytic mechanism showed that the reduction of V5+ and the oxidation of S2- in the 3D V2O5-MoS2/rGO nanocomposites accelerate electron transfer between H2O2 and TMB, which enhanced the peroxidase mimicking activity of 3D V2O5-MoS2/rGO nanocomposites. The as-synthetized 3D V2O5-MoS2/rGO could be used for the colorimetric detection of H2O2 in the range of 20.00-800.00 μM with the LOD of 12.40 μM (3σ/S). Moreover, the 3D V2O5-MoS2/rGO could also be used for the detection of glucose in the range of 4.00-300.00 μM with the LOD of 3.99 μM (3σ/S). In addition, the as-synthetized novel peroxidase mimics has good applicability for sensitive colorimetric determination of glucose in human blood samples and artificial urine samples, and has broad application prospects as a multi-functional sensing platform in clinical diagnosis.
Collapse
Affiliation(s)
- Denghao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xueming Dang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bing Tan
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qi Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
37
|
Cai Y, Niu L, Liu X, Zhang Y, Zheng Z, Zeng L, Liu A. Hierarchical porous MoS 2 particles: excellent multi-enzyme-like activities, mechanism and its sensitive phenol sensing based on inhibition of sulfite oxidase mimics. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128053. [PMID: 34915296 DOI: 10.1016/j.jhazmat.2021.128053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 05/14/2023]
Abstract
It is important to exploit highly efficient methods for detecting pollutants selectively and sensitively. Artificial enzymes are promising to replace natural enzymes with diverse functions for sustainable developments and various applications. However, it remains the challenge to develop novel mimic enzymes or multi-enzyme mimics for pollutant detection. Herein we report hierarchical porous MoS2 particles prepared by a simple hydrothermal method, which demonstrated excellent sulfite oxidase (SuOx)-, nicotinamide adenine dinucleotide (NADH) oxidase- and superoxide dismutase-mimicking activities. In addition, the catalytic conditions for SuOx-like and NADH oxidase-like activities of MoS2 were optimized. The catalytic mechanism of the NADH oxidase mimics is that O2 involves in the oxidation of NADH, to generate O2.- intermediate and finally turn to H2O2, while SuOx mimics comes from that MoS2 particles can effectively catalyze sulfite to reduce [Fe(CN)6]3-. Based on the excellent SuOx-like activity of MoS2 particles, while phenol can inhibit the oxidation of sulfite, a phenol colorimetric sensor was explored with the dynamic range of 2-1000 μM and the limit of detection of 0.72 μM, applicable to detect phenol in effluents. Therefore, MoS2 particles with the SuOx-like, NADH oxidase-like and SOD-like activities has broad application prospects in environmental monitoring and bio-analysis.
Collapse
Affiliation(s)
- Yuanyuan Cai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lingxi Niu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xuan Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yujiao Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
38
|
Tian H, Liu J, Guo J, Cao L, He J. L-Cysteine functionalized graphene oxide nanoarchitectonics: A metal-free Hg 2+ nanosensor with peroxidase-like activity boosted by competitive adsorption. Talanta 2022; 242:123320. [PMID: 35182838 DOI: 10.1016/j.talanta.2022.123320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/09/2021] [Accepted: 02/13/2022] [Indexed: 01/23/2023]
Abstract
Developing non-noble metal, even metal-free chemical sensors for the detection of toxic heavy metal ions is significantly desirable for economically and environmentally sustainable application but has heretofore remained elusive. Herein, a L-cysteine functionalized graphene oxide nanosheet (CGO) nanoarchitectonics, greenly synthesized by a very simple method at room temperature, was utilized to realize the simultaneous enrichment and colorimetric detection of trace mercury ions (Hg2+). It was discovered that CGO, as a nanozyme mimic exhibited greatly enhanced peroxidase-like catalytic activity than the pristine graphene oxide. By exploring the interactions of CGO nanozyme with colorimetric substrate, 3,3',5,5'-tetramethylbenzidine (TMB) and target Hg2+ ions, we found that the sensing principle was based mainly on the competitive adsorption between Hg2+ ions and TMB over CGO. The pre-capture of Hg2+ ions hindered the TMB binding on CGO, resulting in the promoted oxidation of TMB by H2O2 to produce more colored oxidation products, from which the colorimetric sensing of Hg2+ was realized with a good detection effect on 5 μg L-1 solution. As an enrichment-sensing integration platform, this metal-free sensor is cost-effective and sensitive, and presents considerable anti-interference ability over other metal ions. Overall, this work not only expands the application of graphene-based materials in colorimetric detection but also provides a general sensing principle to construct highly sensitive sensors.
Collapse
Affiliation(s)
- Hua Tian
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingxin Liu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100144, China
| | - Jianrong Guo
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Leigang Cao
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100144, China.
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
39
|
Meng FY, Wu H, Qiao M, Zeng XF, Wang D, Wang JX. N-Doped MoS 2 Nanoflowers for Efficient Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1567-1577. [PMID: 35037464 DOI: 10.1021/acs.langmuir.1c03011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The removal of Cr(VI) has attracted extensive attention since it causes serious harm to public health. Herein, we report a two-step method to synthesize N-doped MoS2 nanoflowers (NFs) with controllable sizes, which are first utilized for Cr(VI) removal and display outstanding removal performance. The N-MoS2 NFs with an average size of 40 nm (N-MoS2 NFs-40 nm) can rapidly remove Cr(VI) in 15 min under optimal conditions. The maximum adsorption capacity of N-MoS2 NFs-40 nm can reach 787.41 mg·g-1, which is significantly larger than that of N-MoS2 NFs-150 and -400 nm (314.46 and 229.88 mg·g-1). Meanwhile, N-MoS2 NFs-400 nm have a higher maximum adsorption capacity than pure MoS2 NFs-400 nm (172.12 mg·g-1). In this adsorption/reduction process, N-MoS2 NFs have abundant adsorption sites due to a high surface area. N doping can generate more sulfur vacancy defects in the MoS2 NF structure to accelerate electron transfer and enhance the reduction of Cr(VI) to low-toxicity Cr(III). This study provides a facile approach to fabricating N-MoS2 nanoflowers and demonstrates their superior removal ability for Cr(VI).
Collapse
Affiliation(s)
- Fan-Yi Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
40
|
Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) hybrid nanomaterials as immunoassay label for low-density lipoprotein detection. Mikrochim Acta 2022; 189:72. [PMID: 35075569 DOI: 10.1007/s00604-022-05173-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023]
Abstract
Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) are demonstrated as superior peroxidase mimic antibody labels alternative to horseradish peroxidase (HRP) in an immunoassay, potentially overcoming some of the inherent disadvantages of HRP and other enzyme mimicking nanomaterials. They revealed efficient peroxidase-like activity and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to form the intense blue product (at 620 nm) in the presence of hydrogen peroxide (H2O2). Using low-density lipoprotein (LDL) as a model target, an ultra-low limit of detection (0.0051 mg/dL) and a linear range of 0.0625-0.750 mg/dL were achieved, exhibiting higher sensitivity than the HRP-based immunoassay. Thus, the proposed N-CDs/Ni-MnFe-LDHs can be used as HRP mimicking analogs for developing highly sensitive colorimetric immunosensors for detection of biomarkers, as well as trace chemical analysis.
Collapse
|
41
|
Jin H, Ye D, Shen L, Fu R, Tang Y, Jung JCY, Zhao H, Zhang J. Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Anal Chem 2022; 94:1499-1509. [PMID: 35014271 DOI: 10.1021/acs.analchem.1c04496] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.
Collapse
Affiliation(s)
- Huan Jin
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lihua Shen
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ruixue Fu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
42
|
Hu S, Shuai Q, Lin Y, Fu Y, Li M. Chiral Fe xCu ySe nanoparticles as peroxidase mimics for colorimetric detection of 3, 4-dihydroxy-phenylalanine enantiomers. NANOTECHNOLOGY 2022; 33:135503. [PMID: 34905735 DOI: 10.1088/1361-6528/ac4306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
L-3,4-dihydroxy-phenylalanine (L-dopa) is the most widely used drug in Parkinson's disease treatment. However, development of cost-effective and high-throughput sensors to accurate enantioselective discrimination of L-dopa and D-dopa remains challenging to date. Herein, on the basis of the peroxidase-mimic activity of chiral FexCuySe nanoparticles, we demonstrated a novel colorimetric sensor for determination of chiral dopa. The surface chiral ligand, L/D-histidine (L/D-His), endowed the nanozymes with enantioselectivity in catalyzing the oxidation of dopa enantiomers. According to the values ofkcat/Km, the efficiency of L-His modified nanoparticles (L-FexCuySe NPs) towards L-dopa was 1.56 times higher than that of D-dopa. While, D-His can facilely reverse the preference of the nanozyme to D-dopa. On the basis of high catalytic activity and enantioselectivity of L-FexCuySe NPs in oxidation of L-dopa, the L-FexCuySe NPs-based system can be utilized for detection of L-dopa. The linear ranges for L-dopa determination were 5μM-0.125 mM and 0.125 mM-1 mM with a detection limit of 1.02μM. Critically, the developed sensor has been successfully applied in the quality control of clinical used L-dopa tablets. Our work sheds light on developing simple and sensitive chiral nanomaterials-based sensors for drug analysis.
Collapse
Affiliation(s)
- Shuyang Hu
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qiuyan Shuai
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yulong Lin
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yan Fu
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Meng Li
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| |
Collapse
|
43
|
Presutti D, Agarwal T, Zarepour A, Celikkin N, Hooshmand S, Nayak C, Ghomi M, Zarrabi A, Costantini M, Behera B, Maiti TK. Transition Metal Dichalcogenides (TMDC)-Based Nanozymes for Biosensing and Therapeutic Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:337. [PMID: 35009484 PMCID: PMC8746279 DOI: 10.3390/ma15010337] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes, a type of nanomaterial with enzyme-like properties, are a promising alternative to natural enzymes. In particular, transition metal dichalcogenides (TMDCs, with the general formula MX2, where M represents a transition metal and X is a chalcogen element)-based nanozymes have demonstrated exceptional potential in the healthcare and diagnostic sectors. TMDCs have different enzymatic properties due to their unique nano-architecture, high surface area, and semiconducting properties with tunable band gaps. Furthermore, the compatibility of TMDCs with various chemical or physical modification strategies provide a simple and scalable way to engineer and control their enzymatic activity. Here, we discuss recent advances made with TMDC-based nanozymes for biosensing and therapeutic applications. We also discuss their synthesis strategies, various enzymatic properties, current challenges, and the outlook for future developments in this field.
Collapse
Affiliation(s)
- Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (D.P.); (N.C.)
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; (A.Z.); (A.Z.)
| | - Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (D.P.); (N.C.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul 34956, Turkey;
| | - Chinmay Nayak
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur 768019, Odisha, India; (C.N.); (B.B.)
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; (A.Z.); (A.Z.)
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (D.P.); (N.C.)
| | - Birendra Behera
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur 768019, Odisha, India; (C.N.); (B.B.)
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| |
Collapse
|
44
|
Liao Z, Xia Y, Zuo J, Wang T, Hu D, Li M, Shao N, Chen D, Song K, Yu X, Zhang X, Gao W. Metal-Organic Framework Modified MoS 2 Nanozyme for Synergetic Combating Drug-Resistant Bacterial Infections via Photothermal Effect and Photodynamic Modulated Peroxidase-Mimic Activity. Adv Healthc Mater 2022; 11:e2101698. [PMID: 34549554 DOI: 10.1002/adhm.202101698] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial infections have become major threats to public health all over the world. With the emergence of antibiotic resistance, it is urgent to develop novel antimicrobial materials to efficiently overcome drug resistance with high bactericidal activity. In this work, UiO-66-NH-CO-MoS2 nanocomposites (UNMS NCs) are constructed through the amidation reaction. The UNMS NCs are positively charged which is beneficial for capturing and restricting bacteria. Significantly, UNMS NCs possess a synergistic bactericidal efficiency based on near-infrared irradiation (808 nm) regulated combination of photothermal, photodynamic, and peroxidase-like enzymatic activities. Both the photodynamic property and nanozymatic activity of UNMS NCs can lead to the generation of reactive oxygen species. The UNMS NCs show high catalytic activity in a wide pH range and exhibit excellent antibacterial ability against ampicillin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus with negligible cytotoxicity. Interestingly, due to the 808 nm irradiation-induced hyperthermia in the presence of UNMS NCs, the glutathione oxidation process can be accelerated, resulting in bacterial death more easily. Mice wound models are established to further manifest that UNMS NCs can promote wound healing with good biosafety in living systems.
Collapse
Affiliation(s)
- Zi‐Yang Liao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ya‐Mu Xia
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Jia‐Min Zuo
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Tao Wang
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Da‐Tong Hu
- College of Pharmacy Shan Dong University of Traditional Chinese Medicine Jinan 250355 China
| | - Ming‐Zhe Li
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ning‐Ning Shao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Dong Chen
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Kai‐Xin Song
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xuan Yu
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xin‐Yue Zhang
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Wei‐Wei Gao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 China
| |
Collapse
|
45
|
Zhang Y, Cai Y, Wang J, Niu L, Yang S, Liu X, Zheng Z, Zeng L, Liu A. Cobalt-doped MoS2 nanocomposite with NADH oxidase mimetic activity and its application in colorimetric biosensing of NADH. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Li N, Liu M, Ma Y, Chang Q, Wang H, Li Y, Zhang H, Liu B, Xue C, Hu S. Molybdenum Selenide/Porous Carbon Nanomaterial Heterostructures with Remarkably Enhanced Light-Boosting Peroxidase-like Activities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54274-54283. [PMID: 34730929 DOI: 10.1021/acsami.1c16569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozymes have emerged as a fascinating nanomaterial with enzyme-like characteristics for addressing the limitations of natural enzymes. Nevertheless, how to improve the relatively low catalytic activity still remains challenging. Herein, a facile recrystallizing salt template-assisted chemical vapor deposition method was utilized to synthesize MoSe2/PCN heterostructures. This heterostructure displays remarkably enhanced light boosting peroxidase-like activities. Notably, the maximal reaction velocity of this heterostructure attains 17.81 and 86.89 μM min-1 [for o-phenylenediamine (OPD) and 3,3'5,5'-tetramethylbenzidine (TMB), respectively]. Moreover, various characterization means were performed to explore the mechanism deeply. It is worth mentioning that the photoinduced electrons generated by the heterostructure directly react with H2O2 to yield plentiful •OH for the effective oxidation of OPD and TMB. Therefore, this work offers a promising approach for improving peroxidase-like activity by light stimulation and actuating the development of enzyme-based applications.
Collapse
Affiliation(s)
- Ning Li
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Ming Liu
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Yong Ma
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Qing Chang
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Huiqi Wang
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Ying Li
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Huinian Zhang
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Bin Liu
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Chaorui Xue
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Shengliang Hu
- School of Energy and Power Engineering & School of Material Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| |
Collapse
|
48
|
Liu L, Wu W, Fang Y, Liu H, Chen F, Zhang M, Qin Y. Functionalized MoS 2 Nanoflowers with Excellent Near-Infrared Photothermal Activities for Scavenging of Antibiotic Resistant Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2829. [PMID: 34835597 PMCID: PMC8622428 DOI: 10.3390/nano11112829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023]
Abstract
Presently, antibiotic resistant bacteria (ARB) have been commonly found in environment, such as air, soil and lakes. Therefore, it is urgent and necessary to prepare antimicrobial agents with excellent anti-antibiotic resistant bacteria. In our research, poly-ethylene glycol functionalized molybdenum disulfide nanoflowers (PEG-MoS2 NFs) were synthesized via a one-step hydrothermal method. As-prepared PEG-MoS2 NFs displayed excellent photothermal conversion efficiency (30.6%) and photothermal stability. Under 808 nm NIR laser irradiation for 10 min, the inhibition rate of tetracycline-resistant Bacillus tropicalis and Stenotrophomonas malphilia reached more than 95% at the concentration of 50 μg/mL. More interestingly, the photothermal effect of PEG-MoS2 NFs could accelerate the oxidation of glutathione, resulting in the rapid death of bacteria. A functionalized PEG-MoS2 NFs photothermal anti-antibiotic resistant system was constructed successfully.
Collapse
Affiliation(s)
- Lulu Liu
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (W.W.); (Y.F.); (H.L.); (F.C.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (W.W.); (Y.F.); (H.L.); (F.C.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (W.W.); (Y.F.); (H.L.); (F.C.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Haoqiang Liu
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (W.W.); (Y.F.); (H.L.); (F.C.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Fei Chen
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (W.W.); (Y.F.); (H.L.); (F.C.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (W.W.); (Y.F.); (H.L.); (F.C.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (L.L.); (W.W.); (Y.F.); (H.L.); (F.C.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| |
Collapse
|
49
|
Tripathi A, Harris KD, Elias AL. High surface area nitrogen-functionalized Ni nanozymes for efficient peroxidase-like catalytic activity. PLoS One 2021; 16:e0257777. [PMID: 34637444 PMCID: PMC8509884 DOI: 10.1371/journal.pone.0257777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Nitrogen-functionalization is an effective means of improving the catalytic performances of nanozymes. In the present work, plasma-assisted nitrogen modification of nanocolumnar Ni GLAD films was performed using an ammonia plasma, resulting in an improvement in the peroxidase-like catalytic performance of the porous, nanostructured Ni films. The plasma-treated nanozymes were characterized by TEM, SEM, XRD, and XPS, revealing a nitrogen-rich surface composition. Increased surface wettability was observed after ammonia plasma treatment, and the resulting nitrogen-functionalized Ni GLAD films presented dramatically enhanced peroxidase-like catalytic activity. The optimal time for plasma treatment was determined to be 120 s; when used to catalyze the oxidation of the colorimetric substrate TMB in the presence of H2O2, Ni films subjected to 120 s of plasma treatment yielded a much higher maximum reaction velocity (3.7⊆10-8 M/s vs. 2.3⊆10-8 M/s) and lower Michaelis-Menten coefficient (0.17 mM vs. 0.23 mM) than pristine Ni films with the same morphology. Additionally, we demonstrate the application of the nanozyme in a gravity-driven, continuous catalytic reaction device. Such a controllable plasma treatment strategy may open a new door toward surface-functionalized nanozymes with improved catalytic performance and potential applications in flow-driven point-of-care devices.
Collapse
Affiliation(s)
- Anuja Tripathi
- National Research Council Canada, Nanotechnology Research Centre, Edmonton, Edmonton, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Kenneth D. Harris
- National Research Council Canada, Nanotechnology Research Centre, Edmonton, Edmonton, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Anastasia L. Elias
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
50
|
Le K, Zhang X, Zhao Q, Liu Y, Yi P, Xu S, Liu W. Controllably Doping Nitrogen into 1T/2H MoS 2 Heterostructure Nanosheets for Enhanced Supercapacitive and Electrocatalytic Performance by Low-Power N 2 Plasma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44427-44439. [PMID: 34506106 DOI: 10.1021/acsami.1c12973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molybdenum disulfide (MoS2) is a promising candidate for use as a supercapacitor electrode material and non-noble-metal electrocatalyst owing to its relatively high theoretical specific capacitance, Pt-like electronic feature, and graphene-like structure. However, insufficient electrochemically active sites along with poor conductivity significantly hinder its practical application. Heteroatom doping and phase engineering have been regarded as effective ways to overcome the inherent limitations of MoS2 and enhance its ion storage and electrocatalytic performance. In this study, a plasma-assisted nitrogen-doped 1T/2H MoS2 heterostructure has been proposed for the first time, resulting in excellent supercapacitor performance and hydrogen evolution reaction activity. XPS, Raman, and TEM analysis results indicate that N atoms have been successfully doped into MoS2 nanosheets via room-temperature low-power N2 plasma, and the 1T/2H hybrid phase is maintained. As expected, the 1T/2H MoS2 heterostructure after a 10 min plasma treatment displayed a much boosted supercapacitive performance with a high specific capacitance of 410 F g-1 at 1 A g-1 and an excellent hydrogen evolution property with a low overpotential of 131 mV vs RHE at 10 mA cm-2 for hydrogen evolution reaction. The excellent performance is superior to most of the recently reported outstanding MoS2-based electrode and electrocatalytic materials. Moreover, the as-assembled flexible symmetric supercapacitor shows a high specific capacitance of 84.8 F g-1 and superior mechanical robustness with 84.5% capacity retention after 2000 bending cycles.
Collapse
Affiliation(s)
- Kai Le
- The State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266071, China
| | - Xiang Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qi Zhao
- The State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yuzhen Liu
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Peng Yi
- The State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shusheng Xu
- The State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266071, China
| | - Weimin Liu
- The State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|