1
|
Hackbarth H, Key TS, Cataldo T, Dillingham I, Yang Y, Dickerson MB, Pruyn TL, Bedford NM. Elucidation of Local Ordering and Atomic-Scale Structure in Polymer-Derived SiOC. ACS OMEGA 2025; 10:14745-14754. [PMID: 40290957 PMCID: PMC12019477 DOI: 10.1021/acsomega.4c09094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Silicon oxycarbide (SiOC) is a versatile ceramic material with tunable microstructure and compositions that can be modulated through precursor chemistry and processing conditions. Though there are several noteworthy uses of SiOC across a range of application spaces, the difficulties in elucidating the short- to medium-range order within these materials have limited the maturation of strategies to precisely control SiC x O4-x compositions for user-tailored applications. In this contribution, we implement a range of synchrotron scattering and spectroscopy methods coupled with stochastic modeling techniques to elucidate changes in local chemistry and structure associated with the pyrolysis of a commercially available SiOC polymer precursor. Stochastic modeling approaches provide valuable insights into decoupling local Si-O and Si-C environments while confirming predominate heterogeneous phases in materials. Using pyrolysis temperatures between 250 to 800 °C results in a heterogeneous material predominately composed of SiOC and amorphous SiO2 domains. At 1100 °C, redistribution of Si-C pairs in the SiOC network and Si-O from the SiO2 domains create a more ordered SiOC phase with local cubic SiC-like ordering. In addition, residual carbon leads to a detectable carbon phases at 1100 °C that persist at higher temperatures. These efforts address the difficulties of obtaining atomic-scale insights into the local structure and nanoscale heterogeneities in SiOC, providing pathways toward establishing structure-property relationships for future materials development.
Collapse
Affiliation(s)
- Haira
G. Hackbarth
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
| | - Thomas S. Key
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Taren Cataldo
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
| | - Ian Dillingham
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Yuwei Yang
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew B. Dickerson
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Timothy L. Pruyn
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Nicholas M. Bedford
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Ehrhardt KM, Coleman JM, Gu Y, Kim HS, Donley CL, Warren SC. Freestanding 2D Glasses by Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20042-20050. [PMID: 40110712 DOI: 10.1021/acsami.4c18918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Atomic layer deposition (ALD) is notable for highly controlled syntheses of ultrathin materials through self-limiting reactions. However, ALD materials have strong bonding interactions with substrates, which have generally made substrate removal for the preparation of freestanding large-area 2D films challenging. Here, we report a strategy for the fabrication of freestanding, amorphous ultrathin films by growing on single-crystal NaCl. NaCl surfaces, typically poor substrates, are improved by inserting hydroxyl groups across the surface. This heterogeneous surface forms bonding and nonbonding interactions with ALD materials, allowing us to grow amorphous ultrathin alumina and titania on the surface and remove the films with minimal damage. We show that this tailored substrate can be removed under mild conditions and that the ultrathin material can be transferred to an arbitrary substrate with assistance from a poly(methyl methacrylate) scaffold. This simple process results in materials that span 1 cm2 and have few cracks and pinholes. This strategy provides easy access to an expansive class of freestanding 2D glasses that have previously been challenging targets of fabrication at this scale.
Collapse
Affiliation(s)
- Karen M Ehrhardt
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jessica M Coleman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuqing Gu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hye Sol Kim
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrie L Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Scott C Warren
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Paranamana NC, Young MJ. Role of Surface Chemistry in Pyrrole Autoxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6432-6444. [PMID: 38478721 DOI: 10.1021/acs.langmuir.3c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Chemical compounds in liquid hydrocarbon fuels that contain five-membered pyrrole (Py) rings readily react with oxygen from air and polymerize through a process known as autoxidation. Autoxidation degrades the quality of fuel and leads to the formation of unwanted gum deposits in fuel storage vessels and engine components. Recent work has found that the rate of formation of these gum deposits is affected by material surfaces exposed to the fuel, but the origins of these effects are not yet understood. In this work, atomic layer deposition (ALD) is employed to grow aluminum oxide, zinc oxide, titanium dioxide, and manganese oxide films on silicon substrates to control material surface chemistry and study Py adsorption and gum nucleation on these surfaces. Quartz crystal microbalance (QCM) studies of gas-phase Py adsorption indicate 1.5-2.8 kcal/mol exergonic adsorption of Lewis basic Py onto Lewis acidic surface sites. More favorable Py adsorption onto Lewis acidic surfaces correlates with faster polypyrrole (PPy) film nucleation in vapor phase oxidative molecular deposition (oMLD) polymerization studies. Liquid-phase studies of Py autoxidation reveal primarily particulate formation, indicating a homogeneous PPy propagation step rather than a completely surface-based polymerization mechanism. The amount of PPy particulate formation is positively correlated with more acidic surfaces (lower pH-PZC values), indicating that the rate-limiting step for Py autoxidation involves Lewis acidic surface sites. These studies help to establish new mechanistic insights into the role of surface chemistry in the autoxidation of pyrrolic species. We apply this knowledge to demonstrate a polymer coating formed by vapor phase polymer deposition that slows autoxidation by 2 orders of magnitude.
Collapse
Affiliation(s)
- Nikhila C Paranamana
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Matthias J Young
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Materials Science and Engineering Institute, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Strand J, Shluger AL. On the Structure of Oxygen Deficient Amorphous Oxide Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306243. [PMID: 38148443 PMCID: PMC10885675 DOI: 10.1002/advs.202306243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Understanding defects in amorphous oxide films and heterostructures is vital to improving performance of microelectronic devices, thin-film transistors, and electrocatalysis. However, to what extent the structure and properties of point defects in amorphous solids are similar to those in the crystalline phase are still debated. The validity of this analogy and the experimental and theoretical evidence of the effects of oxygen deficiency in amorphous oxide films are critically discussed. The authors start with the meaning and significance of defect models, such as "oxygen vacancy" in crystalline oxides, and then introduce experimental and computational methods used to study intrinsic defects in amorphous oxides and discuss their limitations and challenges. To test the validity of existing defect models, ab initio molecular dynamics is used with a non-local density functional to model the structure and electronic properties of oxygen-deficient amorphous alumina. Unlike some previous studies, the formation of deep defect states in the bandgap caused by the oxygen deficiency is found. Apart from atomistic structures analogous to crystal vacancies, the formation of more stable defect states characterized by the bond formation between under-coordinated Al ions is shown. The limitations of such defect models and how they may be overcome in simulations are discussed.
Collapse
Affiliation(s)
- Jack Strand
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- Nanolayers Research Computing Ltd., London, UK
| | - Alexander L Shluger
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
5
|
Chen Z, Zimmerli NK, Zubair M, Yakimov AV, Björgvinsdóttir S, Alaniva N, Willinger E, Barnes AB, Bedford NM, Copéret C, Florian P, Abdala PM, Fedorov A, Müller CR. Nature of GaO x Shells Grown on Silica by Atomic Layer Deposition. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7475-7490. [PMID: 37780414 PMCID: PMC10536998 DOI: 10.1021/acs.chemmater.3c00923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Indexed: 10/03/2023]
Abstract
Gallia-based shells with a thickness varying from a submonolayer to ca. 2.5 nm were prepared by atomic layer deposition (ALD) using trimethylgallium, ozone, and partially dehydroxylated silica, followed by calcination at 500 °C. Insight into the atomic-scale structure of these shells was obtained by high-field 71Ga solid-state nuclear magnetic resonance (NMR) experiments and the modeling of X-ray differential pair distribution function data, complemented by Ga K-edge X-ray absorption spectroscopy and 29Si dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) studies. When applying one ALD cycle, the grown submonolayer contains mostly tetracoordinate Ga sites with Si atoms in the second coordination sphere ([4]Ga(Si)) and, according to 15N DNP SENS using pyridine as the probe molecule, both strong Lewis acid sites (LAS) and strong Brønsted acid sites (BAS), consistent with the formation of gallosilicate Ga-O-Si and Ga-μ2-OH-Si species. The shells obtained using five and ten ALD cycles display characteristics of amorphous gallia (GaOx), i.e., an increased relative fraction of pentacoordinate sites ([5]Ga(Ga)), the presence of mild LAS, and a decreased relative abundance of strong BAS. The prepared Ga1-, Ga5-, and Ga10-SiO2-500 materials catalyze the dehydrogenation of isobutane to isobutene, and their catalytic performance correlates with the relative abundance and strength of LAS and BAS, viz., Ga1-SiO2-500, a material with a higher relative fraction of strong LAS, is more active and stable compared to Ga5- and Ga10-SiO2-500. In contrast, related ALD-derived Al1-, Al5-, and Al10-SiO2-500 materials do not catalyze the dehydrogenation of isobutane and this correlates with the lack of strong LAS in these materials that instead feature abundant strong BAS formed via the atomic-scale mixing of Al sites with silica, leading to Al-μ2-OH-Si sites. Our results suggest that [4]Ga(Si) sites provide strong Lewis acidity and drive the dehydrogenation activity, while the appearance of [5]Ga(Ga) sites with mild Lewis activity is associated with catalyst deactivation through coking. Overall, the atomic-level insights into the structure of the GaOx-based materials prepared in this work provide a guide to design active Ga-based catalysts by a rational tailoring of Lewis and Brønsted acidity (nature, strength, and abundance).
Collapse
Affiliation(s)
- Zixuan Chen
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Nora K. Zimmerli
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Muhammad Zubair
- School
of Chemical Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander V. Yakimov
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Nicholas Alaniva
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Elena Willinger
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexander B. Barnes
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Nicholas M. Bedford
- School
of Chemical Engineering, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Pierre Florian
- CNRS,
CEMHTI UPR3079, Université d’Orléans, F-45071 Orléans, France
| | - Paula M. Abdala
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Alexey Fedorov
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph R. Müller
- Laboratory
of Energy Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Pugliese A, Shyam B, Repa GM, Nguyen AH, Mehta A, Webb III EB, Fredin LA, Strandwitz NC. Atomic-Layer-Deposited Aluminum Oxide Thin Films Probed with X-ray Scattering and Compared to Molecular Dynamics and Density Functional Theory Models. ACS OMEGA 2022; 7:41033-41043. [PMID: 36406558 PMCID: PMC9670265 DOI: 10.1021/acsomega.2c04402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
A better understanding of amorphous aluminum oxide's structure and electronic properties is obtained through combined experimental and computational approaches. Grazing incidence X-ray scattering measurements were carried out on aluminum oxide thin films grown using thermal atomic layer deposition. The corresponding pair distribution functions (PDFs) showed structures similar to previously reported PDFs of solid-state amorphous alumina and molten alumina. Structural models based on crystalline alumina polymorphs (PDFgui) and amorphous alumina (molecular dynamics, MD) were examined for structural comparisons to the experimental PDF data. Smaller MD models were optimized and verified against larger models to allow for quantum chemical electronic structure calculations. The electronic structure of the amorphous alumina models yields additional insight into the band structure and electronic defects present in amorphous alumina that are not present in crystalline samples.
Collapse
Affiliation(s)
- Anthony Pugliese
- Materials
Science and Engineering Department, Lehigh
University, Bethlehem, Pennsylvania 18015, USA
| | - Badri Shyam
- Xerion
Advanced Battery Corporation, Kettering, Ohio 45420, USA
| | - Gil M. Repa
- Chemistry
Department, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Anh Hung Nguyen
- Mechanical
Engineering and Mechanics Department, Lehigh
University, Bethlehem, Pennsylvania 18015, USA
| | - Apurva Mehta
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Edmund B. Webb III
- Mechanical
Engineering and Mechanics Department, Lehigh
University, Bethlehem, Pennsylvania 18015, USA
| | - Lisa A. Fredin
- Chemistry
Department, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Nicholas C. Strandwitz
- Materials
Science and Engineering Department, Lehigh
University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
7
|
Bielinski AR, Kamphaus EP, Cheng L, Martinson ABF. Resolving the Heat of Trimethylaluminum and Water Atomic Layer Deposition Half-Reactions. J Am Chem Soc 2022; 144:15203-15210. [PMID: 35943821 DOI: 10.1021/jacs.2c05460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomic layer deposition (ALD) is a surface synthesis technique that is characterized by self-limiting reactions between gas-phase precursors and a solid substrate. Although ALD processes have been demonstrated that span the periodic table, a greater understanding of the surface chemistry that affords ALD is necessary to enable greater precision, including area- and site-selective growth. We offer new insight into the thermodynamics and kinetics of the trimethylaluminum (TMA) and H2O ALD half-reactions with calibrated and time-resolved in situ pyroelectric calorimetry. The half-reactions produce 3.46 and 2.76 eV/Al heat, respectively, which is greater than the heat predicted by computational models based on crystalline Al2O3 substrates and closely aligned with the heat predicted by standard heats of formation. The pyroelectric thin-film calorimeter offers submillisecond temporal resolution that uniquely and clearly resolves precursor delivery and reaction kinetics. Both half-reactions are observed to exhibit multiple kinetic rates, with average TMA half-reaction rates at least 2 orders of magnitude faster than the H2O half-reaction kinetics. Comparing the experimental heat with published computational literature and additional first-principles modeling highlights the need to refine our models and mechanistic understanding of even the most ubiquitous ALD reactions.
Collapse
Affiliation(s)
- Ashley R Bielinski
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ethan P Kamphaus
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lei Cheng
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alex B F Martinson
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Aireddy D, Yu H, Cullen DA, Ding K. Elucidating the Roles of Amorphous Alumina Overcoat in Palladium-Catalyzed Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24290-24298. [PMID: 35584363 PMCID: PMC9164194 DOI: 10.1021/acsami.2c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Amorphous alumina overcoats generated by atomic layer deposition (ALD) have been shown to improve the selectivity and durability of supported metal catalysts in many reactions. Several mechanisms have been proposed to explain the enhanced catalytic performance, but the accessibilities of reactants through the amorphous overcoats remain elusive, which is crucial for understanding reaction mechanisms. Here, we show that an AlOx ALD overcoat is able to improve the alkene product selectivity of a supported Pd catalyst in acetylene (C2H2) hydrogenation. We further demonstrate that the AlOx ALD overcoat blocks the access of C2H2 (kinetic diameter of 0.33 nm), O2 (0.35 nm), and CO (0.38 nm) but allows H2 (0.29 nm) to access Pd surfaces. A H-D exchange experiment suggests that H2 might dissociate heterolytically at the Pd-AlOx interface. These findings are in favor of a hydrogen spillover mechanism.
Collapse
Affiliation(s)
- Divakar
R. Aireddy
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Haoran Yu
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David A. Cullen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Ding
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Advanced Functionalized CeO 2/Al 2O 3 Nanocomposite Sensor for Determination of Opioid Medication Tramadol Hydrochloride in Pharmaceutical Formulations. NANOMATERIALS 2022; 12:nano12081373. [PMID: 35458081 PMCID: PMC9025318 DOI: 10.3390/nano12081373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND The exceptional characteristics of cerium oxide (CeO2) and aluminum oxide (Al2O3) nanoscales have inspired significant attention to those nanocomposites as possible electroactive resources for applications of sensing and biosensing. METHODS In this research, an innovative new factionalized CeO2/Al2O3 nanocomposite membrane sensor was presented to assess tramadol hydrochloride (TRD) in marketable products. RESULTS Tramadol-phosphomolybdate (TRD-PM) was formed by mixing tramadol hydrochloride and phosphomolybdic acid (PMA) in the attendance of polymeric matrix and o-nitrophenyloctyl ether solvent mediator. With 1.0 × 10-10-1.0 × 10-2 mol L-1 as a range of linearity and EmV = (57.567 ± 0.2) log [TRD] + 676.29 as a regression equation, the functionalized sensor using TRD-PM-CeO2/Al2O3 nanocomposite showed great selectivity and sensitivity for the discriminating and measurement of TRD. Using the regression equation EmV = (52.143 ± 0.4) log [TRD] + 431.45, the unmodified coated wire sensor of TRD-PM, on the other hand, showed a Nernstian response between 1.0 × 10-6 and 1.0 × 10-2 mol L-1, Using the methodology's specified guidelines, the proposed improved potentiometric system was validated against several criteria. CONCLUSION The suggested method is suitable for the determination of TRD in its products.
Collapse
|
10
|
Gettler RC, Koenig HD, Young MJ. Iterative reverse Monte Carlo and molecular statics for improved atomic structure modeling: a case study of zinc oxide grown by atomic layer deposition. Phys Chem Chem Phys 2021; 23:26417-26427. [PMID: 34792514 DOI: 10.1039/d1cp03742k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reverse Monte Carlo (RMC) modeling is a common method to derive atomic structure models of materials from experimental diffraction data. However, conventional RMC modeling does not impose energetic constraints and can produce non-physical local structures within the simulation volume. Although previous strategies have introduced energetic constraints during RMC modeling, these approaches have limitations in computational cost and physical accuracy. In this work, we periodically introduce molecular statics (MS) energy minimizations during RMC modeling in an iterative RMC-MS approach. We test this iterative RMC-MS approach using diffraction data collected by in operando high energy X-ray diffraction during atomic layer deposition of ZnO as a sample case. For MS relaxations we employ ReaxFF pair potentials previously established for ZnO. We find that RMC-MS and RMC provide equivalent agreement with experimental data, but RMC-MS structures are on average 0.6 eV per atom lower in energy and are more consistent with known ZnO atomic structure features. The iterative RMC-MS approach we report can accommodate large systems with minimal additional computational burden beyond a standard RMC simulation and can leverage established pair potentials for immediate application to study a wide range of materials.
Collapse
Affiliation(s)
- Ryan C Gettler
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA.
| | - Henry D Koenig
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA.
| | - Matthias J Young
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA. .,Department of Chemistry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Jasim A, He X, Xing Y, White TA, Young MJ. Cryo-ePDF: Overcoming Electron Beam Damage to Study the Local Atomic Structure of Amorphous ALD Aluminum Oxide Thin Films within a TEM. ACS OMEGA 2021; 6:8986-9000. [PMID: 33842769 PMCID: PMC8028128 DOI: 10.1021/acsomega.0c06124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Atomic layer deposition (ALD) provides uniform and conformal thin films that are of interest for a range of applications. To better understand the properties of amorphous ALD films, we need an improved understanding of their local atomic structure. Previous work demonstrated measurement of how the local atomic structure of ALD-grown aluminum oxide (AlO x ) evolves in operando during growth by employing synchrotron high-energy X-ray diffraction (HE-XRD). In this work, we report on efforts to employ electron diffraction pair distribution function (ePDF) measurements using more broadly available transmission electron microscope (TEM) instrumentation to study the atomic structure of amorphous ALD-AlO x . We observe electron beam damage in the ALD-coated samples during ePDF at ambient temperature and successfully mitigate this beam damage using ePDF at cryogenic temperatures (cryo-ePDF). We employ cryo-ePDF and reverse Monte Carlo (RMC) modeling to obtain structural models of ALD-AlO x coatings formed at a range of deposition temperatures from 150 to 332 °C. From these model structures, we derive structural metrics including stoichiometry, pair distances, and coordination environments in the ALD-AlO x films as a function of deposition temperature. The structural variations we observe with growth temperature are consistent with temperature-dependent changes in the surface hydroxyl density on the growth surface. The sample preparation and cryo-ePDF procedures we report here can be used for the routine measurement of ALD-grown amorphous thin films to improve our understanding of the atomic structure of these materials, establish structure-property relationships, and help accelerate the timescale for the application of ALD to address technological needs.
Collapse
Affiliation(s)
- Ahmed
M. Jasim
- Department
of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaoqing He
- Electron
Microscopy Core, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Yangchuan Xing
- Department
of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Tommi A. White
- Electron
Microscopy Core, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Matthias J. Young
- Department
of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
12
|
He X, Waldman RZ, Mandia DJ, Jeon N, Zaluzec NJ, Borkiewicz OJ, Ruett U, Darling SB, Martinson ABF, Tiede DM. Resolving the Atomic Structure of Sequential Infiltration Synthesis Derived Inorganic Clusters. ACS NANO 2020; 14:14846-14860. [PMID: 33170644 DOI: 10.1021/acsnano.0c03848] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sequential infiltration synthesis (SIS) is a route to the precision deposition of inorganic solids in analogy to atomic layer deposition but occurs within (vs upon) a soft material template. SIS has enabled exquisite nanoscale morphological complexity in various oxides through selective nucleation in block copolymers templates. However, the earliest stages of SIS growth remain unresolved, including the atomic structure of nuclei and the evolution of local coordination environments, before and after polymer template removal. We employed In K-edge extended X-ray absorption fine structure and atomic pair distribution function analysis of high-energy X-ray scattering to unravel (1) the structural evolution of InOxHy clusters inside a poly(methyl methacrylate) (PMMA) host matrix and (2) the formation of porous In2O3 solids (obtained after annealing) as a function of SIS cycle number. Early SIS cycles result in InOxHy cluster growth with high aspect ratio, followed by the formation of a three-dimensional network with additional SIS cycles. That the atomic structures of the InOxHy clusters can be modeled as multinuclear clusters with bonding patterns related to those in In2O3 and In(OH)3 crystal structures suggests that SIS may be an efficient route to 3D arrays of discrete-atom-number clusters. Annealing the mixed inorganic/polymer films in air removes the PMMA template and consolidates the as-grown clusters into cubic In2O3 nanocrystals with structural details that also depend on SIS cycle number.
Collapse
Affiliation(s)
| | - Ruben Z Waldman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | | | | | | | | | | | - Seth B Darling
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | | | | |
Collapse
|