1
|
Wang K, Ma HN, Song JX, Yuan X. Color and fluorescence orthogonal dual-functional visual turn-on sensing for acidic and alkaline glyphosate and additive. Food Chem 2025; 464:141816. [PMID: 39488051 DOI: 10.1016/j.foodchem.2024.141816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
In this work, benefitting from the sensitive pH-responsiveness of both meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS4) and calixpyridinium, and their controllable strong noncovalent interactions, the first orthogonal dual-functional visual sensor for simultaneously and separately detecting acidic and alkaline substances without interference by using UV-Vis absorption and fluorescence emission spectra with both "turn on" signal changes was constructed by the supramolecular assembly of calixpyridinium with TPPS4. Color and fluorescence orthogonal dual-functional visual "turn-on" sensing for acidic and alkaline glyphosate and additive by calixpyridinium-TPPS4 sensor was further practically applied. The preparation of this sensor is quite simple in an environmentally friendly water medium. Only 2 μM calixpyridinium and 3 μM TPPS4 are needed to construct this assembly sensor. This sensor has a good biocompatibility, a high selectivity and sensitivity. Moreover, calixpyridinium-TPPS4 sensor can also be applied as a thermal switch and a light controlled anti-counterfeit material.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Hui-Na Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Jia-Xuan Song
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Xing Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| |
Collapse
|
2
|
Chen S, Liu TL, Jia Y, Li J. Recent advances in bio-integrated electrochemical sensors for neuroengineering. FUNDAMENTAL RESEARCH 2025; 5:29-47. [PMID: 40166092 PMCID: PMC11955048 DOI: 10.1016/j.fmre.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 04/02/2025] Open
Abstract
Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes. The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous, real-time manner. Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites, dependence on clinician expertise, and prolonged and recurrent interventions. Bio-integrated electronics for chemical sensing is an emerging, multidisciplinary field enabled by rapid advances in electrical engineering, biosensing, materials science, analytical chemistry, and biomedical engineering. This review presents an overview of recent progress in bio-integrated electrochemical sensors, with an emphasis on their relevance to neuroengineering and neuromodulation. It traverses vital neurological biomarkers and explores bio-recognition elements, sensing strategies, transducer designs, and wireless signal transmission methods. The integration of in vivo biochemical sensors is showcased through applications. The review concludes by outlining future trends and advancements in in vivo electrochemical sensing, and highlighting ongoing research and technological innovation, which aims to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhen Jia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Chen L, Liu M, Dai X, He C, Wang K, Tang J, Yang Y. Untargeted Metabolomics Reveals Metabolic Link Between Histone H3K27 Demethylase UTX and Neurodevelopment. J Cell Mol Med 2025; 29:e70334. [PMID: 39779477 PMCID: PMC11710934 DOI: 10.1111/jcmm.70334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). We found that UTX knockout in neurones leads to cell death and apoptosis in the hippocampus and cortex, as well as induces impaired learning and memory functions in mice. Moreover, UTX deletion contributed to significant metabolic perturbations in brain tissues. A total of 223 differential metabolites were identified between wild-type (WT) and UTX cKO mice. Pathway analysis indicated that the metabolic pathways mainly affected by UTX deletion were alanine, aspartate, and glutamate metabolism, resulting in significant alterations in L-alanine, L-aspartate, D-aspartate, N-acetylaspartylglutamate, L-glutamate, and argininosuccinic acid. These data emphasised that UTX may exert a key effect in neurodevelopment and that the underlying mechanism may be related to the regulation of the alanine, aspartate, and glutamate metabolism pathways, especially the characteristic metabolites involved in this pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Maozhu Liu
- Center of Infectious Diseases, West China HospitalSichuan UniversityChengduChina
| | - Xinhua Dai
- Department of Laboratory Medicine, West China HospitalSichuan UniversityChengduChina
| | - Cuilin He
- Department of PharmacyThe First People's Hospital of Shuangliu DistrictChengduChina
| | - Kejing Wang
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jinhua Tang
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yang Yang
- Department of PharmacyChongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Saglam-Metiner P, Yanasik S, Odabasi YC, Modamio J, Negwer M, Biray-Avci C, Guler A, Erturk A, Yildirim E, Yesil-Celiktas O. ICU patient-on-a-chip emulating orchestration of mast cells and cerebral organoids in neuroinflammation. Commun Biol 2024; 7:1627. [PMID: 39639082 PMCID: PMC11621364 DOI: 10.1038/s42003-024-07313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Propofol and midazolam are the current standard of care for prolonged sedation in Intensive Care Units (ICUs). However, the effects and mechanism of these sedatives in brain tissue are unclear. Herein, the development of an ICU patient-on-a-chip platform to elucidate those effects is reported. The humanized neural tissue compartment combines mast cells differentiated from human induced pluripotent stem cells (hiPSCs) with cerebral organoids in a three-dimensional (3D) matrix, which is covered with a membrane populated with human cerebral microvascular endothelial cells (hCMEC/D3) that separates the tissue chamber from the vascular lumen, where sedatives were infused for four days to evaluate neurotoxicity and cell-mediated immune responses. Subsequent to propofol administration, gene expressions of CD40 and TNF-α in mast cells, AIF1 in microglia and GFAP/S100B/OLIG2/MBP in macroglia were elevated, as well as NOS2, CD80, CD40, CD68, IL6 and TNF-α mediated proinflammation is noted in cerebral organoids, which resulted in higher expressions of GJB1, GABA-A and NMDAR1 in the tissue construct of the platform. Besides, midazolam administration stimulated expression of CD40 and CD203c+ reactivated mast cell proliferation and compromised BBB permeability and decreased TEER values with higher barrier disruption, whereas increased populations of CD11b+ microglia, higher expressions of GFAP/DLG4/GJB1 and GABA-A-/NMDAR1- identities, as well as glutamate related neurotoxicity and IL1B, IFNG, IFNA1, IL6 genes mediated proinflammation, resulting in increased apoptotic zones are observed in cerebral organoids. These results suggest that different sedatives cause variations in cell type activation that modulate different pathways related to neuroinflammation and neurotoxicity in the ICU patient-on-chip platform.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Sena Yanasik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Yusuf Caglar Odabasi
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Jennifer Modamio
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ayse Guler
- Department of Neuroscience, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ali Erturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye
- ODTÜ MEMS Center, Ankara, Türkiye
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye.
- ODTÜ MEMS Center, Ankara, Türkiye.
| |
Collapse
|
5
|
Wang Q, Yang C, Chen S, Li J. Miniaturized Electrochemical Sensing Platforms for Quantitative Monitoring of Glutamate Dynamics in the Central Nervous System. Angew Chem Int Ed Engl 2024; 63:e202406867. [PMID: 38829963 DOI: 10.1002/anie.202406867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra-synaptic paths highlights the importance of the real-time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co-design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio-integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.
Collapse
Affiliation(s)
- Qi Wang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Yang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Cui Y, Gao J, Dong H, Li Z, Zhang Z, Wang V, Nie K, Zeng Z, Jiang Y, Chen N, Mao HK, Chen J. In Situ High-Pressure Correlated Transportation of Heavy Rare-Earth Perovskite Nickelates as Batch Synthesized within Eutectic Molten Salts at MPa- pO2. J Phys Chem Lett 2024; 15:7716-7723. [PMID: 39041920 DOI: 10.1021/acs.jpclett.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The multiple magneto-/electrical quantum transitions discovered with d-band correlated metastable perovskite oxides, such as rare-earth nickelate (ReNiO3), enable applications in artificial intelligence and multifunctional sensors. Nevertheless, to date such investigation merely focuses on ReNiO3 with light or middle rare-earth composition, while the analogous explorations toward heavy rare-earth (ReHNiO3, ReH after Gd) are impeded by their ineffective material synthesis relying on GPa pressure. Herein, for the first time we synthesized the powder of ReHNiO3 in grams/batch with ∼1000 times lower pressure and ∼300 °C lower temperature in comparison to the previous ∼101 milligram/batch results, assisted by their eutectic precipitation and heterogeneous growth within alkali-metal halide molten salt at MPa oxygen pressures. Further in situ characterizations under high pressures within a diamond anvil cell reveal a distinguishing pressure predominated bad metal transport within the nonequilibrium state of ReHNiO3 showing high-pressure sensitivity up to 10 GPa, and the temperature dependences in electrical transportations are effectively frozen.
Collapse
Affiliation(s)
- Yuchen Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingxin Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai 201203, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Ziang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyou Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Vei Wang
- Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, China
| | - Kaiqi Nie
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhidan Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yong Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nuofu Chen
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai 201203, P.R. China
| | - Jikun Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Spitz S, Schobesberger S, Brandauer K, Ertl P. Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research. Bioeng Transl Med 2024; 9:e10604. [PMID: 38818126 PMCID: PMC11135156 DOI: 10.1002/btm2.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 06/01/2024] Open
Abstract
Affecting millions of individuals worldwide, neurodegenerative diseases (NDDs) pose a significant and growing health concern in people over the age of 60 years. Contributing to this trend are the steady increase in the aging population coupled with a persistent lack of disease-altering treatment strategies targeting NDDs. The absence of efficient therapeutics can be attributed to high failure rates in clinical trials and the ineptness of animal models in preceding preclinical studies. To that end, in recent years, significant research effort has been dedicated to the development of human cell-based preclinical disease models characterized by a higher degree of predictive validity. However, a key requirement of any in vitro model constitutes the precise knowledge and replication of the target tissues' (patho-)physiological microenvironment. Herein, microphysiological systems have demonstrated superiority over conventional static 2D/3D in vitro cell culture systems, as they allow for the emulation and continuous monitoring of the onset, progression, and remission of disease-associated phenotypes. This review provides an overview of recent advances in the field of NDD research using organ-on-a-chip platforms. Specific focus is directed toward non-invasive sensing strategies encompassing electrical, electrochemical, and optical sensors. Additionally, promising on- and integrable off-chip sensing strategies targeting key analytes in NDDs will be presented and discussed in detail.
Collapse
Affiliation(s)
- Sarah Spitz
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
- Present address:
Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Peter Ertl
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
| |
Collapse
|
8
|
Ye C, Zhou T, Deng Y, Wu S, Zeng T, Yang J, Shi YS, Yin Y, Li G. Enhanced performance of enzymes confined in biocatalytic hydrogen-bonded organic frameworks for sensing of glutamate in the central nervous system. Biosens Bioelectron 2024; 247:115963. [PMID: 38147717 DOI: 10.1016/j.bios.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Glutamate (Glu) is a key excitatory neurotransmitter associated with various neurological disorders in the central nervous system, so its measurement is vital to both basic research and biomedical application. In this work, we propose the first example of using biocatalytic hydrogen-bonded organic frameworks (HOFs) as the hosting matrix to encapsulate glutamate oxidase (GLOD) via a de novo approach, fabricating a cascaded-enzyme nanoreactor for Glu biosensing. In this design, the ferriporphyrin ligands can assemble to form Fe-HOFs with high catalase-like activity, while offering a scaffold for the in-situ immobilization of GLOD. Moreover, the formed GLOD@Fe-HOFs are favorable for the efficient diffusion of Glu into the active sites of GLOD via the porous channels, accelerating the cascade reaction with neighboring Fe-HOFs. Consequently, the constructed nanoreactor can offer superior activity and operational stability in the catalytic cascade for Glu biosensing. More importantly, rapid and selective detection can be achieved in the cerebrospinal fluid (CSF) collected from mice in a low sample consumption. Therefore, the successful fabrication of enzyme@HOFs may offer promise to develop high-performance biosensor for further biomedical applications.
Collapse
Affiliation(s)
- Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Shuai Wu
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Tianyu Zeng
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, 210032, PR China.
| | - Yongmei Yin
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
9
|
Rajarathinam T, Thirumalai D, Jayaraman S, Yang S, Ishigami A, Yoon JH, Paik HJ, Lee J, Chang SC. Glutamate oxidase sheets-Prussian blue grafted amperometric biosensor for the real time monitoring of glutamate release from primary cortical neurons. Int J Biol Macromol 2024; 254:127903. [PMID: 37939751 DOI: 10.1016/j.ijbiomac.2023.127903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Glutamate (GLU) is a primary excitatory neurotransmitter, and its dysregulation is associated with several neurodegenerative disorders. A major challenge in GLU estimation is the existence of other biomolecules in the brain that could directly get oxidized at the electrode. Hence, highly selective electroenzymatic biosensors that enable rapid estimation of GLU are needed. Initially, a copolymer, poly(2-dimethylaminoethyl methacrylate- styrene) was synthesized through reversible addition-fragmentation chain transfer polymerization to noncovalently functionalize reduced graphene oxide (rGO), named DS-rGO. Glutamate oxidase macromolecule immobilized DS-rGO formed enzyme nanosheets, which was drop-coated over Prussian blue electrodeposited disposable electrodes to fabricate the GLU biosensor. The interconnectivity between the enzyme nanosheets and the Prussian blue endows the biosensor with enhanced conductivity and electrochemical activity. The biosensor exhibited a linearity: 3.25-250 μM; sensitivity: 3.96 μA mM-1 cm-2, and a limit of detection: 0.96 μM for GLU in the Neurobasal Medium. The biosensor was applied to an in vitro primary rat cortical model to discriminate GLU levels in Neurobasal Medium, before and after KCl mediated depolarization, which provides new insights for elucidating neuronal functioning in the brain.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Dinakaran Thirumalai
- BIT Convergence-based Innovative Drug Development Targeting Metainflammation, Pusan National University, Busan 46241, Republic of Korea
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan 46241, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
10
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
11
|
Zhou J, Zhou S, Fan P, Li X, Ying Y, Ping J, Pan Y. Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information. NANO-MICRO LETTERS 2023; 16:49. [PMID: 38087121 PMCID: PMC10716106 DOI: 10.1007/s40820-023-01274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 10/11/2024]
Abstract
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases. Currently, implantable electrochemical microsensors have emerged as a prominent area of research. These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration. They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner, characterized by their bloodless, painless features, and exceptional performance. The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts. This review commenced with a comprehensive discussion of the construction of microsensors, including the materials utilized and the methods employed for fabrication. Following this, we proceeded to explore the various implantation technologies employed for electrochemical microsensors. In addition, a comprehensive overview was provided of the various applications of implantable electrochemical microsensors, specifically in the monitoring of diseases and the investigation of disease mechanisms. Lastly, a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shenghan Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Peidi Fan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunjia Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| | - Yuxiang Pan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| |
Collapse
|
12
|
Nithianandam P, Tzu-li L, Chen S, Yizhen J, Dong Y, Saul M, Tedeschi A, Wenjing S, Jinghua L. Flexible, Miniaturized Sensing Probes Inspired by Biofuel Cells for Monitoring Synaptically Released Glutamate in the Mouse Brain. Angew Chem Int Ed Engl 2023; 62:e202310245. [PMID: 37632702 PMCID: PMC10592105 DOI: 10.1002/anie.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 μm, can detect real-time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience.
Collapse
Affiliation(s)
- Prasad Nithianandam
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Liu Tzu-li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jia Yizhen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Morgan Saul
- Department of Neuroscience, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, The Ohio State University College of Medicine, Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Sun Wenjing
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Li Jinghua
- Department of Materials Science and Engineering, Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Meng Z, Zhang Y, Yang L, Zhao S, Zhou Q, Chen J, Sui J, Wang J, Guo L, Chang L, He J, Wang G, Zang G. A Novel Poly(3-hexylthiophene) Engineered Interface for Electrochemical Monitoring of Ascorbic Acid During the Occurrence of Glutamate-Induced Brain Cytotoxic Edemas. RESEARCH (WASHINGTON, D.C.) 2023; 6:0149. [PMID: 37234604 PMCID: PMC10205589 DOI: 10.34133/research.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Although neuroelectrochemical sensing technology offers unique benefits for neuroscience research, its application is limited by substantial interference in complex brain environments while ensuring biosafety requirements. In this study, we introduced poly(3-hexylthiophene) (P3HT) and nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) to construct a composite membrane-modified carbon fiber microelectrode (CFME/P3HT-N-MWCNTs) for ascorbic acid (AA) detection. The microelectrode presented good linearity, selectivity, stability, antifouling, and biocompatibility and exhibited great performance for application in neuroelectrochemical sensing. Subsequently, we applied CFME/P3HT-N-MWCNTs to monitor AA release from in vitro nerve cells, ex vivo brain slices, and in vivo living rat brains and determined that glutamate can induce cell edema and AA release. We also found that glutamate activated the N-methyl-d-aspartic acid receptor, which enhanced Na+ and Cl- inflow to induce osmotic stress, resulting in cytotoxic edema and ultimately AA release. This study is the first to observe the process of glutamate-induced brain cytotoxic edema with AA release and to reveal the mechanism. Our work can benefit the application of P3HT in in vivo implant microelectrode construction to monitor neurochemicals, understand the molecular basis of nervous system diseases, and discover certain biomarkers of brain diseases.
Collapse
Affiliation(s)
- Zexuan Meng
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Lu Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Qiang Zhou
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
- Department of Pathophysiology,
Chongqing Medical University, Chongqing, China
| | - Jiajia Chen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jiuxi Sui
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jian Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Lizhong Guo
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Luyue Chang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jialing He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
- Department of Pathophysiology,
Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Vokoun D, Samal S, Stachiv I. Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion. SENSORS (BASEL, SWITZERLAND) 2023; 23:1488. [PMID: 36772526 PMCID: PMC9920180 DOI: 10.3390/s23031488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Nafion possesses many interesting properties such as a high ion-conductivity, hydrophilicity, and thermal and chemical stability that make this material highly suitable for many applications including fuel cells and various (bio-)chemical and physical sensors. However, the mechanical properties of a Nafion membrane that are known to be affected by the viscoplastic characteristics of the material itself have a strong impact on the performance of Nafion-based sensors. In this study, the mechanical properties of Nafion under the cyclic loading have been investigated in detail. After cyclic tensile loading (i.e., maximum elongation about 25% at a room temperature and relative humidity about 40%) a time-dependent recovery comes into play. This recovery process is also shown being strain-rate dependent. Our results reveal that the recovery behavior weakens after performing several stress-strain cycles. Present findings can be of a great importance in future design of various chemical and biological microsensors and nanosensors such as hydrogen or glucose ones.
Collapse
|
15
|
Zhou N, Yin C, Yue Y, Huo F. Intramolecular hydrogen bond driven specific nucleophilic addition for highly selective detection of NE and its tumor imaging. SENSORS AND ACTUATORS B: CHEMICAL 2022; 373:132711. [DOI: 10.1016/j.snb.2022.132711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Chen H, Dong M, Hu Y, Lin T, Zhang Q, Guo EJ, Gu L, Wu J, Lu Q. Protonation-Induced Colossal Chemical Expansion and Property Tuning in NdNiO 3 Revealed by Proton Concentration Gradient Thin Films. NANO LETTERS 2022; 22:8983-8990. [PMID: 36331193 DOI: 10.1021/acs.nanolett.2c03229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protonation can be used to tune diverse physical and chemical properties of functional oxides. Although protonation of nickelate perovskites has been reported, details on the crystal structure of the protonated phase and a quantitative understanding of the effect of protons on physical properties are still lacking. Therefore, in this work, we select NdNiO3 (NNO) as a model system to understand the protonation process from pristine NNO to protonated HxNdNiO3 (H-NNO). We used a reliable electrochemical method with well-defined reference electrode to trigger the protonation-induced phase transition. We found that the protonated H-NNO phase showed a colossal ∼13% lattice expansion caused by a large tilt of NiO6 octahedra and displacement of Nd cations. Importantly, we further designed a novel device configuration to induce a gradient of proton concentration into a single NNO thin film to establish a quantitative correlation between the proton concentration and the lattice constant and transport property of H-NNO.
Collapse
Affiliation(s)
- Haowen Chen
- Zhejiang University, Hangzhou 310027, People's Republic of China
- School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Mingdong Dong
- Zhejiang University, Hangzhou 310027, People's Republic of China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310030, People's Republic of China
| | - Yang Hu
- School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Ting Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jie Wu
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310030, People's Republic of China
| | - Qiyang Lu
- School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:5954. [PMID: 35682631 PMCID: PMC9180936 DOI: 10.3390/ijms23115954] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Eugenia Roza
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Vladâcenco
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
18
|
Guo H, Huang J, Zhou H, Zuo F, Jiang Y, Zhang KHL, Fu X, Bu Y, Cheng W, Sun Y. Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24887-24895. [PMID: 34002602 DOI: 10.1021/acsami.1c04903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO.. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni-O orbital hybridization, which triggers the local electron-electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.
Collapse
Affiliation(s)
- Hongquan Guo
- College of Energy, Xiamen University, Xiamen 361005, P. R. China
| | - Jijie Huang
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Hua Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fan Zuo
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| | - Yifeng Jiang
- Runner (Xiamen) Corp., Xiamen 361021, P. R. China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xianzhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yunfei Bu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, P. R. China
| | - Wei Cheng
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
19
|
Brain neurochemical monitoring. Biosens Bioelectron 2021; 189:113351. [PMID: 34049083 DOI: 10.1016/j.bios.2021.113351] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Brain neurochemical monitoring aims to provide continuous and accurate measurements of brain biomarkers. It has enabled significant advances in neuroscience for application in clinical diagnostics, treatment, and prevention of brain diseases. Microfabricated electrochemical and optical spectroscopy sensing technologies have been developed for precise monitoring of brain neurochemicals. Here, a comprehensive review on the progress of sensing technologies developed for brain neurochemical monitoring is presented. The review provides a summary of the widely measured clinically relevant neurochemicals and commonly adopted recognition technologies. Recent advances in sampling, electrochemistry, and optical spectroscopy for brain neurochemical monitoring are highlighted and their application are discussed. Existing gaps in current technologies and future directions to design industry standard brain neurochemical sensing devices for clinical applications are addressed.
Collapse
|
20
|
Abstract
The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.
Collapse
|