1
|
Shang W, Meng W, Chen L, Shangguan Z, Huang Y, Zhang XS, Li C, Bai S, Zhang G, Zhang D. Novel Dissymmetric Formal Quinoidal Molecules End-Capped by Dicyanomethylene and Triphenylphosphonium. Angew Chem Int Ed Engl 2024; 63:e202412704. [PMID: 39136173 DOI: 10.1002/anie.202412704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 10/04/2024]
Abstract
A number of quinoidal molecules with symmetric end-capping groups, particularly dicyanomethylene units, have been synthesized for organic optoelectronic materials. In comparison, dissymmetric quinoidal molecules, characterized by end-capping with different groups, are less explored. In this paper, we present the unexpected formation of new formal quinoidal molecules, which are end-capped with both dicyanomethylene and triphenylphosphonium moieties. The structures of these dissymmetric quinoidal molecules were firmly verified by single crystal structural analyses. On the basis of the control experiments and DFT calculations, we proposed the reaction mechanism for the formation of these dissymmetric quinoidal molecules. The respective zwitterionic forms should make contributions to the ground state structures of these quinoidal molecules based on the analysis of their bond lengths and aromaticity and Mayer Bond Orbital (MBO) calculation. This agrees well with the fact that negative solvatochromism was observed for these quinoidal molecules. Although these new quinoidal molecules are non-emissive both in solutions and crystalline states, they become emissive with quantum yields up to 51.4 % after elevating the solvent viscosity or dispersing them in a PMMA matrix. Interestingly, their emissions can also be switched on upon binding with certain proteins, in particular with human serum albumin.
Collapse
Affiliation(s)
- Wansong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingfang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhichun Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species and Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Giri I, Chhetri S, John P J, Mondal M, Dey AB, Vijayaraghavan RK. Engineered solid-state aggregates in brickwork stacks of n-type organic semiconductors: a way to achieve high electron mobility. Chem Sci 2024; 15:9630-9640. [PMID: 38939134 PMCID: PMC11206358 DOI: 10.1039/d4sc02339k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Efficient, economically viable n-type organic semiconductor materials suitable for solution-processed OFET devices with high electron mobility and ambient stability are scarce. Merging these attributes into a single molecule remains a significant challenge and a careful molecular design is needed. To address this, synthetic viability (achievable in fewer than three steps) and using cost-effective starting materials are crucial. Our research presents a strategy that meets these criteria using naphthalene diimide (NDI) core structures. The approach involves a simple synthesis process with a cost of $ 5-10 per gram for the final products. This paper highlights our success in scaling up the production using affordable known reagents, creating ambient condition solution-processed OFET devices with impressive electron mobility, on-off current ratio (1 cm2 V-1 s-1 and I on/I off ∼ 109) and good ambient stability (more than 100 h). We conducted a comprehensive study on EHNDIBr2, a material that demonstrates superior performance due to its unique supramolecular arrangement in its brickwork stack. This was compared with two similar structures to validate our findings. The superior performance of EHNDIBr2 is attributed to the effective interlocking of charge-hopping units within the NDI core in its brickwork stack. Our findings include detailed electronic, spectroscopic, and microscopic analyses of these layers.
Collapse
Affiliation(s)
- Indrajit Giri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Shant Chhetri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Jesslyn John P
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Madalasa Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Arka Bikash Dey
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| |
Collapse
|
3
|
Velusamy A, Chen Y, Lin M, Afraj SN, Liu J, Chen M, Liu C. Diselenophene-Dithioalkylthiophene Based Quinoidal Small Molecules for Ambipolar Organic Field Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305361. [PMID: 38095532 PMCID: PMC10916611 DOI: 10.1002/advs.202305361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
This work presents a series of novel quinoidal organic semiconductors based on diselenophene-dithioalkylthiophene (DSpDST) conjugated cores with various side-chain lengths (-thiohexyl, -thiodecyl, and -thiotetradecyl, designated DSpDSTQ-6, DSpDSTQ-10, and DSpDSTQ-14, respectively). The purpose of this research is to develop solution-processable organic semiconductors using dicyanomethylene end-capped organic small molecules for organic field effect transistors (OFETs) application. The physical, electrochemical, and electrical properties of these new DSpDSTQs are systematically studied, along with their performance in OFETs and thin film morphologies. Additionally, the molecular structures of DSpDSTQ are determined through density functional theory (DFT) calculations and single-crystal X-ray diffraction analysis. The results reveal the presence of intramolecular S (alkyl)···Se (selenophene) interactions, which result in a planar SR-containing DSpDSTQ core, thereby promoting extended π-orbital interactions and efficient charge transport in the OFETs. Moreover, the influence of thioalkyl side chain length on surface morphologies and microstructures is investigated. Remarkably, the compound with the shortest thioalkyl chain, DSpDSTQ-6, demonstrates ambipolar carrier transport with the highest electron and hole mobilities of 0.334 and 0.463 cm2 V-1 s-1 , respectively. These findings highlight the excellence of ambipolar characteristics of solution-processable OFETs based on DSpDSTQs even under ambient conditions.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Yen‐Yu Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Meng‐Hao Lin
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Shakil N. Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Jia‐Hao Liu
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Ming‐Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Cheng‐Liang Liu
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
4
|
Velusamy A, Afraj SN, Guo YS, Ni JS, Huang HL, Su TY, Ezhumalai Y, Liu CL, Chiang CH, Chen MC, Wu CG. Bicyclopentadithiophene-Based Organic Semiconductor for Stable and High-Performance Perovskite Solar Cells Exceeding 22. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6162-6175. [PMID: 38277509 PMCID: PMC10859901 DOI: 10.1021/acsami.3c15774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Well-performing organic-inorganic halide perovskites are susceptible to poor efficiency and instability due to their various defects at the interphases, grain boundaries (GBs), and surfaces. In this study, an in situ method is utilized for effectively passivating the under-coordinated Pb2+ defects of perovskite with new non-fullerene acceptors (NFAs) (INXBCDT; X = H, Cl, and Br) through their carbonyl and cyano functional groups during the antisolvent dripping process. It reveals that the bicyclopentadithiophene (BCDT) core with highly electron-withdrawing end-capping groups passivates GBs and boosts perovskite grain growth. This effective defect passivation decreases the trap density to increase the carrier recombination lifetime of the perovskite film. As a result, bromo-substituted dicyanomethylene indanone (INBr)-end-capped BCDT (INBrBCDT-b8; 3a)-passivated devices exhibit the highest power conversion efficiency (PCE) of 22.20% (vs those of 18.09% obtained for perovskite films without passivation) upon an optimized film preparation process. Note that devices treated with more soluble 2-ethylhexyl-substituted compounds (1a, 2a, and 3a) exhibit higher PCE than those treated with less soluble octyl-substituted compounds (1b, 2b, and 3b). It is also worth noting that BCDT is a cost-effective six-ring core that is easier to synthesize with a higher yield and therefore much cheaper than those with highly fused-ring cores. In addition, a long-term stability test in a glovebox for 1500 h reveals that the perovskite solar cells (PSCs) based on a perovskite absorber treated with compound 3a maintain ∼90% of their initial PCE. This is the first example of the simplest high-conjugation additive for perovskite film to achieve a PCE greater than 22% of the corresponding lead-based PSCs.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Shakil N. Afraj
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Sheng Guo
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Jen-Shyang Ni
- Department
of Chemical and Materials Engineering, National
Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Hung-Lin Huang
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ting-Yu Su
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yamuna Ezhumalai
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Cheng-Liang Liu
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Chien-Hung Chiang
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Chou Chen
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Guey Wu
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
5
|
Ren C, Cao L, Wu T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300151. [PMID: 36869409 DOI: 10.1002/smll.202300151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.
Collapse
Affiliation(s)
- Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| |
Collapse
|
6
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Liao YT, Hsiao YC, Lo YC, Lin CC, Lin PS, Tung SH, Wong KT, Liu CL. Solution-Processed Isoindigo- and Thienoisoindigo-Based Donor-Acceptor-Donor π-Conjugated Small Molecules: Synthesis, Morphology, Molecular Packing, and Field-Effect Transistor Characterization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55886-55897. [PMID: 36508279 DOI: 10.1021/acsami.2c18049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular design and precise control of thin-film morphology and crystallinity of solution-processed small molecules are important for enhancing charge transport mobility of organic field-effect transistors and gaining more insight into the structure-property relationship. Here, two donor-acceptor-donor (D-A-D) architecture small molecules TRA-IID-TRA and TRA-TIID-TRA comprising an electron-donating triarylamine (TRA) and two different electron-withdrawing cores, isoindigo (IID) and thienoisoindigo (TIID), respectively, were synthesized and characterized. Replacing the phenylene rings of central IID A with thiophene gives a TIID core, which reduces the optical band gap and upshifts the energy levels of frontier molecular orbitals. The single-crystal structures and grazing-incidence wide-angle X-ray scattering (GIWAXS) analysis revealed that TRA-TIID-TRA exhibits the relatively tighter π-π stacking packing with preferential edge-on orientation, larger coherence length, and higher crystallinity due to the noncovalent S···O/S···π intermolecular interactions. The distinctly oriented and connected ribbon-like TRA-TIID-TRA crystalline film by the solution-shearing process achieved a superior hole mobility of 0.89 cm2 V-1 s-1 in the organic field-effect transistor (OFET) device, which is at least five times higher than that (0.17 cm2 V-1 s-1) of TRA-IID-TRA with clear cracks. Eventually, rational modulation of fused core in the π-conjugated D-A-D small molecule provides a new understanding of structural design for enhancing the performance of solution-processed organic semiconductors.
Collapse
Affiliation(s)
- Yu-Ting Liao
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Yi-Chun Hsiao
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Yuan-Chih Lo
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Chia-Chi Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan32001, Taiwan
| | - Po-Shen Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
8
|
Velusamy A, Afraj SN, Yau S, Liu C, Ezhumalai Y, Kumaresan P, Chen M. Fused thiophene based materials for organic thin‐film transistors. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arulmozhi Velusamy
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules National Central University Taoyuan Taiwan
| | - Shakil N. Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules National Central University Taoyuan Taiwan
| | - Shuehlin Yau
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules National Central University Taoyuan Taiwan
| | - Cheng‐Liang Liu
- Department of Materials Science and Engineering National Taiwan University Taipei Taiwan
| | - Yamuna Ezhumalai
- Centre for Material Chemistry Karpagam Academy of Higher Education Coimbatore India
| | | | - Ming‐Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules National Central University Taoyuan Taiwan
| |
Collapse
|
9
|
The Adsorption and Electropolymerization of Terthiophene on Au(111) Electrode – Probed by in situ STM. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB. Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors. Chem Rev 2021; 122:4397-4419. [PMID: 34491034 DOI: 10.1021/acs.chemrev.1c00314] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
Collapse
Affiliation(s)
- Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
11
|
Lin PS, Shoji Y, Afraj SN, Ueda M, Lin CH, Inagaki S, Endo T, Tung SH, Chen MC, Liu CL, Higashihara T. Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31898-31909. [PMID: 34190528 DOI: 10.1021/acsami.1c04404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Regioregular polythiophenes have been widely used in organic electronic applications due to their solution processability with chemical modification through side chain engineering, as well as their microstructural organization and good hole transport properties. Here, we introduce alkylthio side chains, (poly[(3-alkylthio)thiophene]s; P3ATTs), with strong noncovalent sulfur molecular interactions, to main chain thienyl backbones. These P3ATTs were compared with alkyl-substituted polythiophene (poly(3-alkylthiophene); P3AT) variants such that the effects of straight (hexyl and decyl) and branched (2-ethylhexyl) side chains (with and without S atoms) on their thin-film morphologies and crystalline states could be investigated. P3ATTs with linear alkylthio side chains (P3HTT, hexylthio; P3DTT, decylthio) did not attain the expected higher organic field-effect transistor (OFET) mobilities with respect to P3HT (hexyl) and P3DT (decyl) mainly due to their lower regioregularity (76-78%), although P3ATTs exhibit an enhanced tendency for aggregation and compact molecular packing, as indicated by the red-shifting of the absorption spectra and the shortening of the π-π stacking distance, respectively. Moreover, the loss of regioregularity issue can be solved by introducing more soluble 2-ethylhexylthio branched side chains to form poly[3-(2-ethylhexylthio)thiophene] (P3EHTT), which provides enhanced crystallinity and efficient charge mobility (increased by up to a factor of 3) with respect to the poly(2-ethylhexylthiophene) (P3EHT) without S atoms in the side moieties. This study demonstrates that the presence of side chain alkylthio structural motifs with nonbonded interactions in polythiophene semiconductors has a beneficial impact on the molecular conformation, morphologies, structural packing, and charge transport in OFET devices.
Collapse
Affiliation(s)
- Po-Shen Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yamato Shoji
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shakil N Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| | - Mitsuru Ueda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ching-Hsuan Lin
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| | - Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Taiki Endo
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
12
|
Mullin WJ, Sharber SA, Thomas SW. Optimizing the
self‐assembly
of conjugated polymers and small molecules through structurally programmed
non‐covalent
control. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Seth A. Sharber
- Department of Chemistry Tufts University Medford Massachusetts USA
- Aramco Services Company, Aramco Research Center Boston Massachusetts USA
| | - Samuel W. Thomas
- Department of Chemistry Tufts University Medford Massachusetts USA
| |
Collapse
|
13
|
Taguchi T, Chiarella F, Barra M, Chianese F, Kubozono Y, Cassinese A. Balanced Ambipolar Charge Transport in Phenacene/Perylene Heterojunction-Based Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8631-8642. [PMID: 33583173 PMCID: PMC9289882 DOI: 10.1021/acsami.0c20140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Electronic devices relying on the combination of different conjugated organic materials are considerably appealing for their potential use in many applications such as photovoltaics, light emission, and digital/analog circuitry. In this study, the electrical response of field-effect transistors achieved through the evaporation of picene and PDIF-CN2 molecules, two well-known organic semiconductors with remarkable charge transport properties, was investigated. With the main goal to get a balanced ambipolar response, various device configurations bearing double-layer, triple-layer, and codeposited active channels were analyzed. The most suitable choices for the layer deposition processes, the related characteristic parameters, and the electrode position were identified to this purpose. In this way, ambipolar organic field-effect transistors exhibiting balanced mobility values exceeding 0.1 cm2 V-1 s-1 for both electrons and holes were obtained. These experimental results highlight also how the combination between picene and PDIF-CN2 layers allows tuning the threshold voltages of the p-type response. Scanning Kelvin probe microscopy (SKPM) images acquired on picene/PDIF-CN2 heterojunctions suggest the presence of an interface dipole between the two organic layers. This feature is related to the partial accumulation of space charge at the interface being enhanced when the electrons are depleted in the underlayer.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Fabio Chiarella
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
- Email
| | - Mario Barra
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
| | - Federico Chianese
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
- Dip.
di Fisica “Ettore Pancini”, Università “Federico II”, P.le Tecchio, 80, I-80125 Napoli, Italy
| | - Yoshihiro Kubozono
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Antonio Cassinese
- CNR-SPIN, c/o Dip. di Fisica “Ettore
Pancini”, P.le Tecchio, 80, I-80125 Napoli, Italy
- Dip.
di Fisica “Ettore Pancini”, Università “Federico II”, P.le Tecchio, 80, I-80125 Napoli, Italy
| |
Collapse
|
14
|
Yang W, Sun M, Wang Y, Yan H, Zhang G, Zhang Q. Bis-isatin based polymers with tunable energy levels for organic field-effect transistor applications. Polym Chem 2021. [DOI: 10.1039/d0py01726d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two bis-isatin based building blocks have been synthesized with the aid of non-covalent intramolecular interactions. Their polymers showed p-type or ambipolar charge transport in OFETs.
Collapse
Affiliation(s)
- Wei Yang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- School of Chemistry and Chemical Engineering
- Shanghai Jiaotong University
- Shanghai
- China
| | - Mingxiang Sun
- Special Display and Imaging Technology Innovation Center of Anhui Province
- State Key Laboratory of Advanced Display Technology
- Academy of Opto-Electronic Technology
- Hefei University of Technology
- Hefei
| | - Yue Wang
- School of Pharmacy
- Liaocheng University
- Liaocheng
- China
| | - Hui Yan
- School of Pharmacy
- Liaocheng University
- Liaocheng
- China
| | - Guobing Zhang
- Special Display and Imaging Technology Innovation Center of Anhui Province
- State Key Laboratory of Advanced Display Technology
- Academy of Opto-Electronic Technology
- Hefei University of Technology
- Hefei
| | - Qing Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- School of Chemistry and Chemical Engineering
- Shanghai Jiaotong University
- Shanghai
- China
| |
Collapse
|
15
|
Shibayama N, Maekawa H, Nakamura Y, Haruyama Y, Niibe M, Ito S. Control of Molecular Orientation of Spiro-OMeTAD on Substrates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50187-50191. [PMID: 33084297 DOI: 10.1021/acsami.0c15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) is utilized as a p-type semiconductor layer in perovskite solar cells and solid-state dye-sensitized solar cells. Spiro-OMeTAD has been known to have a spiro center, leading to a random orientation. Although the molecular orientation of organic semiconductor materials influences the conductivity, which is directly related to semiconductor device characteristics, the molecular orientation of spiro-OMeTAD has not been fully discussed. In this study, we prepared spiro-OMeTAD layers on various substrates and investigated their orientation by grazing-incidence wide-angle X-ray scattering (GIWAXS) and near-edge X-ray absorption fine structure (NEXAFS). Additionally, we demonstrated that the molecular orientation of spiro-OMeTAD could be controlled by changing their surface energies by changing the substrate materials. Consequently, we could improve the electrical conductivity by improving its molecular orientation. The results of this study provide a guideline for the preparation of organic semiconductor material layers using the wet-coating method.
Collapse
Affiliation(s)
- Naoyuki Shibayama
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Megro, Tokyo 153-8902, Japan
| | - Hiroyuki Maekawa
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Yuiga Nakamura
- Japan Synchrotron Radiation Research Institute, Sayo-gun 679-5198, Hyogo, Japan
| | - Yuichi Haruyama
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205, Japan
| | - Masahito Niibe
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205, Japan
| | - Seigo Ito
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| |
Collapse
|
16
|
Velusamy A, Yu C, Afraj SN, Lin C, Lo W, Yeh C, Wu Y, Hsieh H, Chen J, Lee G, Tung S, Liu C, Chen M, Facchetti A. Thienoisoindigo (TII)-Based Quinoidal Small Molecules for High-Performance n-Type Organic Field Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2002930. [PMID: 33437584 PMCID: PMC7788596 DOI: 10.1002/advs.202002930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/15/2020] [Indexed: 05/26/2023]
Abstract
A novel quinoidal thienoisoindigo (TII)-containing small molecule family with dicyanomethylene end-capping units and various alkyl chains is synthesized as n-type organic small molecules for solution-processable organic field effect transistors (OFETs). The molecular structure of the 2-hexyldecyl substituted derivative, TIIQ-b16, is determined via single-crystal X-ray diffraction and shows that the TIIQ core is planar and exhibits molecular layers stacked in a "face-to-face" arrangement with short core intermolecular distances of 3.28 Å. The very planar core structure, shortest intermolecular N···H distance (2.52 Å), existence of an intramolecular non-bonded contact between sulfur and oxygen atom (S···O) of 2.80 Å, and a very low-lying LUMO energy level of -4.16 eV suggest that TIIQ molecules should be electron transporting semiconductors. The physical, thermal, and electrochemical properties as well as OFET performance and thin film morphologies of these new TIIQs are systematically studied. Thus, air-processed TIIQ-b16 OFETs exhibit an electron mobility up to 2.54 cm2 V-1 s-1 with a current ON/OFF ratio of 105-106, which is the first demonstration of TII-based small molecules exhibiting unipolar electron transport characteristics and enhanced ambient stability. These results indicate that construction of quinoidal molecule from TII moiety is a successful approach to enhance n-type charge transport characteristics.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Chih‐Hsin Yu
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan32001Taiwan
| | - Shakil N. Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Chia‐Chi Lin
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan32001Taiwan
| | - Wei‐Yu Lo
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Chia‐Jung Yeh
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Ya‐Wen Wu
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Hsin‐Chun Hsieh
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Jianhua Chen
- Department of Chemistry and the Materials Research CenterNorthwestern UniversityEvanstonIL60208USA
| | - Gene‐Hsiang Lee
- Instrumentation CenterNational Taiwan UniversityTaipei10617Taiwan
| | - Shih‐Huang Tung
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Cheng‐Liang Liu
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ming‐Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research CenterNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|