1
|
Deng W, Yang X, Yu J, Omari-Siaw E, Xu X. Recent advances of physiochemical cues on surfaces for directing cell fates. Colloids Surf B Biointerfaces 2025; 250:114550. [PMID: 39929022 DOI: 10.1016/j.colsurfb.2025.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Surface modification plays an essential role in dictating cell behavior and fate, as it creates a microenvironment that profoundly influences cell attachment, migration, proliferation, and differentiation. This review aims to the intricate interplay of culture surface properties, including topography, stiffness, charge, and chemical modifications, demonstrating their profound impact on cell destiny. We explore the nuanced responses of cells to varying surface topographies, from nano- to microscale features, elucidating the influence of geometric patterns and roughness. We also investigate the impact of substrate stiffness, highlighting the way cells perceive and respond to mechanical cues mimicking their native environments. The role of surface charge is examined, revealing how electrostatic interactions influence cell adhesion, signaling, and cell fate decisions. Finally, we delve into the diverse effects of chemical modifications, including the presentation of bioactive molecules, growth factors, and extracellular matrix (ECM) components, demonstrating their ability to guide cell behavior and stimulate specific cellular responses. This review offers comprehensive insights into the important role of surface properties in shaping cell fate, offering promising avenues for developing sophisticated cell culture platforms for applications in drug discovery, regenerative medicine, and fundamental research.
Collapse
Affiliation(s)
- Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Xiufen Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Science, Kumasi Technical University, PO Box 854, Kumasi, Ashanti, Ghana
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| |
Collapse
|
2
|
Xiao J, You K, Lu D, Guan S, Wu H, Gao J, Tang Y, Yu S, Gao B. Cell-Derived Basal Membrane-Like Extracellular Matrix Promotes Endothelial Cell Expansion and Functionalization. J Biomed Mater Res A 2025; 113:e37893. [PMID: 40059713 DOI: 10.1002/jbm.a.37893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Engineering cellular microenvironments with biomaterials is an effective strategy for endothelial cell expansion and functionality in vascular tissue engineering. The basement membrane (BM) is a natural vascular endothelium microenvironment that plays an important role in promoting rapid expansion and function of endothelial cells. However, mimicking the crucial function of BM with an ideal biomaterial remains challenging. In this study, we developed a cell-derived decellularized extracellular matrix (c-dECM) paper to mimic the role of BM in endothelial cell expansion and function. The results showed that c-dECM paper was a stable, biocompatible, and biodegradable scaffold that significantly promoted endothelial cell expansion by modulating cell migration, adhesion, and proliferation both in vivo and in vitro. Moreover, the biomimetic c-dECM paper can profoundly promote endothelial cell function by increasing the synthesis and release of nitric oxide (NO) and prostaglandin I2 (PGI2) and upregulating the expression of anticoagulant and vascularized genes, including thrombomodulin (THBD), tissue factor pathway inhibitor (TFPI), endothelial growth factor (VEGF) and endoglin (CD105). These data indicate that the c-dECM is a potential biomaterial for constructing vascular tissue engineering scaffolds or developing in vitro models to study the functional mechanisms of endothelial cells.
Collapse
Affiliation(s)
- Jiangwei Xiao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai You
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuwen Guan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Hengpeng Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Chemical Engineering Department, Ningbo Key Laboratory of High Performance Petroleum Resin Preparation Engineering and Technology, Ningbo, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
White T, López-Márquez A, Badosa C, Jimenez-Mallebrera C, Samitier J, Giannotti MI, Lagunas A. Nanomechanics of cell-derived matrices as a functional read-out in collagen VI-related congenital muscular dystrophies. J R Soc Interface 2025; 22:20240860. [PMID: 40070338 PMCID: PMC11897821 DOI: 10.1098/rsif.2024.0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Changes in the mechanical properties of the extracellular matrix (ECM) are a hallmark of disease. Due to its relevance, several in vitro models have been developed for the ECM, including cell-derived matrices (CDMs). CDMs are decellularized natural ECMs assembled by cells that closely mimic the in vivo stromal fibre organization and molecular content. Here, we applied atomic force microscopy-force spectroscopy (AFM-FS) to evaluate the nanomechanical properties of CDMs obtained from patients diagnosed with collagen VI-related congenital muscular dystrophies (COL6-RDs). COL6-RDs are a set of neuromuscular conditions caused by pathogenic variants in any of the three major COL6 genes, which result in deficiency or dysfunction of the COL6 incorporated into the ECM of connective tissues. Current diagnosis includes the genetic confirmation of the disease and categorization of the phenotype based on maximum motor ability, as no direct correlation exists between genotype and phenotype of COL6-RDs. We describe differences in the elastic modulus (E) among CDMs from patients with different clinical phenotypes, as well as the restoration of E in CDMs obtained from genetically edited cells. Results anticipate the potential of the nanomechanical analysis of CDMs as a complementary clinical tool, providing phenotypic information about COL6-RDs and their response to gene therapies.
Collapse
Affiliation(s)
- Tom White
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Marina Inés Giannotti
- CIBER-BBN, ISCIII, Madrid, Spain
- Nanoprobes and Nanoswitches, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Wu M, Lin H, Ran M, Li M, Liu C, Piao J, Yu P, Ning C, Xiao C, Qi S. Piezoelectric Nanoarrays with Mechanical-Electrical Coupling Microenvironment for Innervated Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5866-5879. [PMID: 39818699 DOI: 10.1021/acsami.4c17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected. Inspired by the mechanical and bioelectric properties of the bone microenvironment, this study constructed a mechanical-electrical coupling microenvironment (M-E) model based on barium titanate piezoelectric nanoarrays, which could effectively promote innervated bone regeneration. The study found that the mechanical microenvironment provided by the nanostructure, coupled with the electrical microenvironment provided by the piezoelectric properties, created a controllable M-E. In vitro cell experiments demonstrated that this coupled microenvironment activated Piezo2 and VGCC ion channels, promoted calcium influx in DRG neurons, and activated downstream PI3K-AKT and RAS pathways. This cascade of events led to the synthesis and release of CGRP in sensory nerves, ultimately enhancing the osteogenic differentiation of BMSCs. This work not only broadens the current understanding of biomaterials that mimic the bone extracellular matrix but also provides new insights into innervated bone regeneration.
Collapse
Affiliation(s)
- Min Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Han Lin
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| | - Maofei Ran
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| | - Mengqing Li
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| | - Chengli Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, China
| | - Cairong Xiao
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Suijian Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng 2025; 16:20417314241308022. [PMID: 39839985 PMCID: PMC11748162 DOI: 10.1177/20417314241308022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
The field of three dimensional (3D) bioprinting has witnessed significant advancements, with bioinks playing a crucial role in enabling the fabrication of complex tissue constructs. This review explores the innovative bioinks that are currently shaping the future of 3D bioprinting, focusing on their composition, functionality, and potential for tissue engineering, drug delivery, and regenerative medicine. The development of bioinks, incorporating natural and synthetic materials, offers unprecedented opportunities for personalized medicine. However, the rapid technological progress raises regulatory challenges regarding safety, standardization, and long-term biocompatibility. This paper addresses these challenges, examining the current regulatory frameworks and the need for updated guidelines to ensure patient safety and product efficacy. By highlighting both the technological potential and regulatory hurdles, this review offers a comprehensive overview of the future landscape of bioinks in bioprinting, emphasizing the necessity for cross-disciplinary collaboration between scientists, clinicians, and regulatory bodies to achieve successful clinical applications.
Collapse
Affiliation(s)
- Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, MI, USA
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Lee PS, Sriperumbudur KK, Dawson J, van Rienen U, Appali R. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012004. [PMID: 39655864 DOI: 10.1088/2516-1091/ad9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The role of bioelectricity in regulating various physiological processes has attracted increasing scientific interest in implementing exogenous electrical stimulations as a therapeutic approach. In particular, electrical stimuli are used clinically in pre-/post-surgery patient care for the musculoskeletal tissues. The reported potential of electric fields (EF) to regulate bone cell homeostasis and kineticsin vitrohas further provoked more studies in this field of research. Various customised apparatuses have been developed, and a range of parameters for the applied EFs have been investigatedin vitrowith bone cells or mesenchymal stem cells. Additionally, biomaterials with conductive or piezo-electric properties have been designed to complement the enhancing effects of the EF on bone regeneration. Despite much research, there remained a significant gap in knowledge due to the diverse range of EF parameters available. Mathematical models are built to facilitate further understanding and zero in on an effective range of EF parametersin silico. However, the diverse range of EF parameters, experimental conditions, and reported analytical output of different works of literature were reported to possess significant variance, making it challenging to accurately model the fieldin silico. This review categorises the existing experimental approaches and the parameters used to distinguish the potential variables that apply to mathematical modelling. Furthermore, we will discuss existing modelling approaches and models available in the literature. With this, we will concisely highlight the need to categorise EF parameters, osteogenic differentiation initiators and research output.
Collapse
Affiliation(s)
- Poh Soo Lee
- Faculty of Mechanical Science and Engineering, Max Bergmann Centre of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Kiran K Sriperumbudur
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Research and Development, MedEL GmbH, Innsbruck, Austria
| | - Jonathan Dawson
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Engineering and Physics, Whitworth University, Spokane, WA 99251, United States of America
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Institute for Electrical Engineering and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| |
Collapse
|
7
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
杜 志, 廖 婕, 王 冰, 于 素, 李 晓. [Advantages and prospects of cell derived decellularized extracellular matrix as tissue engineering scaffolds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1291-1298. [PMID: 39542617 PMCID: PMC11563747 DOI: 10.7507/1002-1892.202404114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/17/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To review the application of cell derived decellularized extracellular matrix (CDM) in tissue engineering. METHODS The literature related to the application of CDM in tissue engineering was extensively reviewed and analyzed. RESULTS CDM is a mixture of cells and their secretory products obtained by culturing cells in vitro for a period of time, and then the mixture is treated by decellularization. Compared with tissue derived decellularized extracellular matrix (TDM), CDM can screen and utilize pathogen-free autologous cells, effectively avoiding the possible shortcomings of TDM, such as immune response and limited sources. In addition, by selecting the cell source, controlling the culture conditions, and selecting the template scaffold, the composition, structure, and mechanical properties of the scaffold can be controlled to obtain the desired scaffold. CDM retains the components and microstructure of extracellular matrix and has excellent biological functions, so it has become the focus of tissue engineering scaffolds. CONCLUSION CDM is superior in the field of tissue engineering because of its outstanding adjustability, safety, and high bioactivity. With the continuous progress of technology, CDM stents suitable for clinical use are expected to continue to emerge.
Collapse
Affiliation(s)
- 志坡 杜
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 婕 廖
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 冰冰 王
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 素香 于
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| | - 晓明 李
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P. R. China
| |
Collapse
|
9
|
Gao Y, Gadd VL, Heim M, Grant R, Bate TSR, Esser H, Gonzalez SF, Man TY, Forbes SJ, Callanan A. Combining human liver ECM with topographically featured electrospun scaffolds for engineering hepatic microenvironment. Sci Rep 2024; 14:23192. [PMID: 39369012 PMCID: PMC11455933 DOI: 10.1038/s41598-024-73827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Liver disease cases are rapidly expanding worldwide, and transplantation remains the only effective cure for end-stage disease. There is an increasing demand for developing potential drug treatments, and regenerative therapies using in-vitro culture platforms. Human decellularized extracellular matrix (dECM) is an appealing alternative to conventional animal tissues as it contains human-specific proteins and can serve as scaffolding materials. Herein we exploit this with human donor tissue from discarded liver which was not suitable for transplant using a synergistic approach to combining biological and topographical cues in electrospun materials as an in-vitro culture platform. To realise this, we developed a methodology for incorporating human liver dECM into electrospun polycaprolactone (PCL) fibres with surface nanotopographies (230-580 nm). The hybrid scaffolds were fabricated using varying concentrations of dECM; their morphology, mechanical properties, hydrophilicity and stability were analysed. The scaffolds were validated using HepG2 and primary mouse hepatocytes, with subsequent results indicating that the modified scaffolds-maintained cell growth and influenced cell attachment, proliferation and hepatic-related gene expression. This work demonstrates a novel approach to harvesting the potential from decellularized human tissues in the form of innovative in-vitro culture platforms for liver.
Collapse
Affiliation(s)
- Yunxi Gao
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Foundation of Liver Research, The Roger Williams Institute of Liver Study, London, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Maria Heim
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rhiannon Grant
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas S R Bate
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Vanderbilt University Medical Center, Nashville, USA
| | - Hannah Esser
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sofia Ferreira Gonzalez
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Tak Yung Man
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Yang MC, Chin IL, Fang H, Drack A, Nour S, Choi YS, O'Connor AJ, Greening DW, Kalionis B, Heath DE. Tailored environments for directed mesenchymal stromal cell proliferation and differentiation using decellularized extracellular matrices in conjunction with substrate modulus. Acta Biomater 2024; 187:110-122. [PMID: 39181177 DOI: 10.1016/j.actbio.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Decellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs. dECM was produced on type I collagen-functionalised polyacrylamide hydrogels with discrete moduli (∼4, 10, and 40 kPa) or in a linear gradient of modulus that spans the same range, and the substrates were used as culture surfaces for MSCs. Fluorescence spectroscopy and mass spectrometry characterization revealed structural compositional changes in the dECM as a function of substrate modulus. Softer substrates (4 kPa) with dECM supported the largest number of MSCs after 7 days (∼1.6-fold increase compared to glass). Additionally, osteogenic differentiation was greatest on high modulus substrates (40 kPa and glass) with dECM. Nuclear translocation of YAP1 was observed on all surfaces with a modulus of 10 kPa or greater and may be a driver for the increased osteogenesis on the high modulus surfaces. These data demonstrate that dECM technology can be integrated with environmental parameters such as substrate modulus to improve/tailor MSC proliferation and differentiation during ex vivo culture. These results have potential impact in the improved expansion of MSCs for tailored therapeutic applications and in the development of advanced tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are extensively used in tissue engineering and regenerative medicine due to their ability to proliferate, differentiate, and modulate the immune environment. Controlling MSC behavior is critical for advances in the field. Decellularised extracellular matrix (dECM) can maintain MSC properties in culture, increase their proliferation rate and capacity, and enhance their stimulated differentiation. Substrate stiffness is another key driver of cell function, and previous reports have primarily looked at dECM deposition and function on stiff substrates such as glass. Herein, we produce dECM on substrates of varying stiffness to create tailored environments that enhance desired MSC properties such as proliferation and differentiation. Additionally, we complete mechanistic studies including quantitative mass spec of the ECM to understand the biological function.
Collapse
Affiliation(s)
- Michael C Yang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia; Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Ian L Chin
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia; Department of Chemical Engineering, Polymer Science Group, University of Melbourne, Parkville, VIC, Australia
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Bundoora, VIC, Australia; Central Clinical School, Monash University, Clayton, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia; Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia.
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
11
|
Gandin A, Torresan V, Panciera T, Brusatin G. A Scalable Method to Fabricate 2D Hydrogel Substrates for Mechanobiology Studies with Independent Tuning of Adhesiveness and Stiffness. Methods Protoc 2024; 7:75. [PMID: 39452789 PMCID: PMC11510107 DOI: 10.3390/mps7050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Mechanical signals from the extracellular matrix are crucial in guiding cellular behavior. Two-dimensional hydrogel substrates for cell cultures serve as exceptional tools for mechanobiology studies because they mimic the biomechanical and adhesive characteristics of natural environments. However, the interdisciplinary knowledge required to synthetize and manipulate these biomaterials typically restricts their widespread use in biological laboratories, which may not have the material science expertise or specialized instrumentation. To address this, we propose a scalable method that requires minimal setup to produce 2D hydrogel substrates with independent modulation of the rigidity and adhesiveness within the range typical of natural tissues. In this method, norbornene-terminated 8-arm polyethylene glycol is stoichiometrically functionalized with RGD peptides and crosslinked with a di-cysteine terminated peptide via a thiol-ene click reaction. Since the synthesis process significantly influences the final properties of the hydrogels, we provide a detailed description of the chemical procedure to ensure reproducibility and high throughput results. We demonstrate examples of cell mechanosignaling by monitoring the activation state of the mechanoeffector proteins YAP/TAZ. This method effectively dissects the influence of biophysical and adhesive cues on cell behavior. We believe that our procedure will be easily adopted by other cell biology laboratories, improving its accessibility and practical application.
Collapse
Affiliation(s)
- Alessandro Gandin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Veronica Torresan
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Tito Panciera
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, PD, Italy;
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| |
Collapse
|
12
|
Carreira M, Pires-Santos M, Correia CR, Nadine S, Mano JF. Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering. OPEN RESEARCH EUROPE 2024; 4:94. [PMID: 39279819 PMCID: PMC11393531 DOI: 10.12688/openreseurope.17000.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Background Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography's role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment. Methods A co-culture of Wharton's jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs). Microdiscs presenting 358 ± 23 nm grooves and 944 ± 49 nm ridges were produced via nanoimprinting of spherical polycaprolactone microparticles between water-soluble polyvinyl alcohol counter molds of nanogrooved templates. Spheres and microdiscs were cultured in vitro with umbilical cord-derived cells in a basal or osteogenic medium within liquefied capsules for 21 days. Results WJ-MSCs and HUVECs were successfully encapsulated within liquefied capsules containing spheres and microdiscs, ensuring high cellular viability. Results show an enhanced osteogenic differentiation in microdiscs compared to spheres, even in basal medium, evidenced by alkaline phosphatase activity and osteopontin expression. Conclusions This work suggests that the topographical features present in microdiscs induce the osteogenic differentiation of adhered WJ-MSCs along the contact guidance, without additional differentiation factors. The developed 3D bioencapsulation system comprising topographical features might be suitable for bone tissue engineering approaches with minimum in vitro manipulation.
Collapse
Affiliation(s)
- Mariana Carreira
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Manuel Pires-Santos
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Clara R Correia
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| |
Collapse
|
13
|
Xu Y, Liu X, Ahmad MA, Ao Q, Yu Y, Shao D, Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration. Mater Today Bio 2024; 27:101125. [PMID: 38979129 PMCID: PMC11228803 DOI: 10.1016/j.mtbio.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Extracellular matrices (ECMs) play a key role in nerve repair and are recognized as the natural source of biomaterials. In parallel to extensively studied tissue-derived ECMs (ts-ECMs), cell-derived ECMs (cd-ECMs) also have the capability to partially recapitulate the complicated regenerative microenvironment of native nerve tissues. Notably, cd-ECMs can avoid the shortcomings of ts-ECMs. Cd-ECMs can be prepared by culturing various cells or even autologous cells in vitro under pathogen-free conditions. And mild decellularization can achieve efficient removal of immunogenic components in cd-ECMs. Moreover, cd-ECMs are more readily customizable to achieve the desired functional properties. These advantages have garnered significant attention for the potential of cd-ECMs in neuroregenerative medicine. As promising biomaterials, cd-ECMs bring new hope for the effective treatment of peripheral nerve injuries. Herein, this review comprehensively examines current knowledge about the functional characteristics of cd-ECMs and their mechanisms of interaction with cells in nerve regeneration, with a particular focus on the preparation, engineering optimization, and scalability of cd-ECMs. The applications of cd-ECMs from distinct cell sources reported in peripheral nerve tissue engineering are highlighted and summarized. Furthermore, current limitations that should be addressed and outlooks related to clinical translation are put forward as well.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianbo Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | | | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, Guangzhou, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
14
|
Harati J, Du P, Galluzzi M, Li X, Lin J, Pan H, Wang PY. Tailored Physicochemical Cues Direct Human Mesenchymal Stem Cell Differentiation through Epigenetic Regulation Using Colloidal Self-Assembled Patterns. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35912-35924. [PMID: 38976770 DOI: 10.1021/acsami.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 μm) and polystyrene (0.4 μm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Science, Beijing 101408, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xian Li
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
15
|
Einabadi M, Izadyari Aghmiuni A, Foroutani L, Ai A, Namini MS, Farzin A, Nahanmoghadam A, Shirian S, Kargar Jahromi H, Ai J. Evaluation of the effect of co-transplantation of collagen-hydroxyapatite bio-scaffold containing nanolycopene and human endometrial mesenchymal stem cell derived exosomes to regenerate bone in rat critical size calvarial defect. Regen Ther 2024; 26:387-400. [PMID: 39045576 PMCID: PMC11263782 DOI: 10.1016/j.reth.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 07/25/2024] Open
Abstract
This study aimed to evaluate the effect of nanoparticles based on the PLGA and biomolecule of lycopene (i.e. NLcp) and exosomes loaded on hydroxyapatite/collagen-based scaffolds (HA/Coll), on human endometrial MSCs (hEnMSCs) differentiation into osteoblast cells. To this end, after synthesizing NLcp and isolating hEnMSC-derived exosomes, and studying their characterizations, HA/Coll scaffold with/without NLcp and exosome was fabricated. In following, the rat skull-defect model was created on 54 male Sprague-Dawley rats (12 weeks old) which were classified into 6 groups [control group (4 healthy rats), negative control group: bone defect without grafting (10 rats), and experimental groups including bone defect grafted with HA/Coll scaffold (10 rats), HA/Coll/NLcp scaffold (10 rats), HA/Coll scaffold + exosome (10 rats), and HA/Coll-NLcp scaffold + exosome (10 rats)]. Finally, the grafted membrane along with its surrounding tissues was removed at 90 days after surgery, to assess the amount of defect repair by Hematoxylin and eosin staining. Moreover, immunohistochemical and X-ray Micro-Computed Tomography (Micro-CT) analyses were performed to assess osteocalcin and mean bone volume fraction (BVF). Based on the results, although, the existence of the exosome in the scaffold network can significantly increase mean BVF compared to HA/Coll scaffold and HA/Coll-NLcp scaffold (2.25-fold and 1.5-fold, respectively). However, the combination of NLcp and exosome indicated more effect on mean BVF; so that the HA/Coll-NLcp scaffold + exosome led to a 15.95 % increase in mean BVF than the HA/Coll scaffold + exosome. Hence, synthesized NLcp in this study can act as a suitable bioactive to stimulate the osteogenic, promotion of cell proliferation and its differentiation when used in the polymer scaffold structure or loaded into polymeric carriers containing the exosome.
Collapse
Affiliation(s)
- Masoumeh Einabadi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Laleh Foroutani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Ai
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farzin
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nahanmoghadam
- Department of Chemical Engineering, Faculty of Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Pathology, Shahrekord University, Shahrekord, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Xu Y, Yao Y, Gao J. Cell-Derived Matrix: Production, Decellularization, and Application of Wound Repair. Stem Cells Int 2024; 2024:7398473. [PMID: 38882595 PMCID: PMC11178417 DOI: 10.1155/2024/7398473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic nonhealing wounds significantly reduce patients' quality of life and are a major burden on healthcare systems. Over the past few decades, tissue engineering materials have emerged as a viable option for wound healing, with cell-derived extracellular matrix (CDM) showing remarkable results. The CDM's compatibility and resemblance to the natural tissue microenvironment confer distinct advantages to tissue-engineered scaffolds in wound repair. This review summarizes the current processes for CDM preparation, various cell decellularization protocols, and common characterization methods. Furthermore, it discusses the applications of CDM in wound healing, including skin defect and wound repair, angiogenesis, and engineered vessels, and offers perspectives on future developments.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
17
|
Fasciano S, Luo S, Wang S. Long non-coding RNA (lncRNA) MALAT1 in regulating osteogenic and adipogenic differentiation using a double-stranded gapmer locked nucleic acid nanobiosensor. Analyst 2023; 148:6261-6273. [PMID: 37937546 DOI: 10.1039/d3an01531a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Long non-coding RNAs (lncRNA) are non-protein coding RNA molecules that are longer than 200 nucleotides. The lncRNA molecule plays diverse roles in gene regulation, chromatin remodeling, and cellular processes, influencing various biological pathways. However, probing the complex dynamics of lncRNA in live cells is a challenging task. In this study, a double-stranded gapmer locked nucleic acid (ds-GapM-LNA) nanobiosensor is designed for visualizing the abundance and expression of lncRNA in live human bone-marrow-derived mesenchymal stem cells (hMSCs). The sensitivity, specificity, and stability were characterized. The results showed that this ds-GapM-LNA nanobiosensor has very good sensitivity, specificity, and stability, which allows for dissecting the regulatory roles of cellular processes during dynamic physiological events. By incorporating this nanobiosensor in living hMSC imaging, we elucidated lncRNA MALAT1 expression dynamics during osteogenic and adipogenic differentiation. The data reveal that lncRNA MALAT1 expression is correlated with distinct sub-stages of osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
- Department of Cellular and Molecular Biology, College of Art and Science, University of New Haven, West Haven, CT, 06516, USA
| | - Shuai Luo
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
| |
Collapse
|
18
|
Chen TA, Sharma D, Jia W, Ha D, Man K, Zhang J, Yang Y, Zhou Y, Kamp TJ, Zhao F. Detergent-Based Decellularization for Anisotropic Cardiac-Specific Extracellular Matrix Scaffold Generation. Biomimetics (Basel) 2023; 8:551. [PMID: 37999192 PMCID: PMC10669368 DOI: 10.3390/biomimetics8070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Cell-derived extracellular matrix (ECM) has become increasingly popular in tissue engineering applications due to its ability to provide tailored signals for desirable cellular responses. Anisotropic cardiac-specific ECM scaffold decellularized from human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts (hiPSC-CFs) mimics the native cardiac microenvironment and provides essential biochemical and signaling cues to hiPSC-derived cardiomyocytes (hiPSC-CMs). The objective of this study was to assess the efficacy of two detergent-based decellularization methods: (1) a combination of ethylenediaminetetraacetic acid and sodium dodecyl sulfate (EDTA + SDS) and (2) a combination of sodium deoxycholate and deoxyribonuclease (SD + DNase), in preserving the composition and bioactive substances within the aligned ECM scaffold while maximumly removing cellular components. The decellularization effects were evaluated by characterizing the ECM morphology, quantifying key structural biomacromolecules, and measuring preserved growth factors. Results showed that both treatments met the standard of cell removal (less than 50 ng/mg ECM dry weight) and substantially preserved major ECM biomacromolecules and growth factors. The EDTA + SDS treatment was more time-efficient and has been determined to be a more efficient method for generating an anisotropic ECM scaffold from aligned hiPSC-CFs. Moreover, this cardiac-specific ECM has demonstrated effectiveness in supporting the alignment of hiPSC-CMs and their expression of mature structural and functional proteins in in vitro cultures, which is crucial for cardiac tissue engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jianhua Zhang
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Zanette RDSS, Fayer L, Vasconcellos R, de Oliveira LFC, Maranduba CMDC, de Alvarenga ÉLFC, Martins MA, Brandão HDM, Munk M. Cytocompatible and osteoinductive cotton cellulose nanofiber/chitosan nanobiocomposite scaffold for bone tissue engineering. Biomed Mater 2023; 18:055016. [PMID: 37494940 DOI: 10.1088/1748-605x/aceac8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Natural polymeric nanobiocomposites hold promise in repairing damaged bone tissue in tissue engineering. These materials create an extracellular matrix (ECM)-like microenvironment that induces stem cell differentiation. In this study, we investigated a new cytocompatible nanobiocomposite made from cotton cellulose nanofibers (CNFs) combined with chitosan polymer to induce osteogenic stem cell differentiation. First, we characterized the chemical composition, nanotopography, swelling properties, and mechanical properties of the cotton CNF/chitosan nanobiocomposite scaffold. Then, we examined the biological characteristics of the nanocomposites to evaluate their cytocompatibility and osteogenic differentiation potential using human mesenchymal stem cells derived from exfoliated deciduous teeth. The results showed that the nanobiocomposite exhibited favorable cytocompatibility and promoted osteogenic differentiation of cells without the need for chemical inducers, as demonstrated by the increase in alkaline phosphatase activity and ECM mineralization. Therefore, the cotton CNF/chitosan nanobiocomposite scaffold holds great promise for bone tissue engineering applications.
Collapse
Affiliation(s)
- Rafaella de Souza Salomão Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Rebecca Vasconcellos
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Luiz Fernando Cappa de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Carlos Magno da Costa Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | | | - Maria Alice Martins
- National Laboratory of Nanotechnology for Agriculture, Embrapa Instrumentation, 13560-970 São Carlos, Brazil
| | - Humberto de Mello Brandão
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), 36038-330 Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| |
Collapse
|
20
|
Lin S, Yuan X, Du X, An R, Han Y. Surface microtopography construction and osteogenic properties evaluation of bulk polylactic acid implants. Colloids Surf B Biointerfaces 2023; 228:113418. [PMID: 37348268 DOI: 10.1016/j.colsurfb.2023.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
In this study, polylactic acid (PLA) microspheres were used as the raw material to construct bulk implants with surface microtopography through hot pressing and heat treatment, and the microtopographical structures were regulated through the sizes of the PLA microspheres. The surface microtopographies of PLA implants were successfully constructed using micron-sized bulges, which showed a wave-like structure. The ridge width of bulges ranged from 1.64 ± 0.16 µm to 82.52 ± 14.38 µm and the valley depth ranged from 0.49 ± 0.07 µm to 37.35 ± 6.78 µm according to the sizes of microspheres. The nanoindentation tests showed that the modulus and hardness of PLA implants were gradually increased with the decrease in microsphere sizes. The surface microtopography resulted in a slight increase in the hydrophobicity of the PLA implants, but no significant differences were observed. Cells cultured on the implant surface with microtopography exhibited varying morphological responses, and significantly increased osteogenic activity was observed relative to a PLA flat film. This study demonstrated that the surface microtopography derived from PLA microspheres could regulate cellular response and activate osteogenic properties of PLA implants.
Collapse
Affiliation(s)
- Si Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiaoting Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xinrui Du
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ran An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
21
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
22
|
Chen Z, Xiao L, Hu C, Shen Z, Zhou E, Zhang S, Wang Y. Aligned Lovastatin-loaded Electrospun Nanofibers Regulate Collagen Organization and Reduce Scar Formation. Acta Biomater 2023; 164:240-252. [PMID: 37075962 DOI: 10.1016/j.actbio.2023.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Excessive scar formation caused by cutaneous injury leads to pruritus, pain, contracture, dyskinesia, and unpleasant appearance. Functional wound dressings are designed to accelerate wound healing and reduce scar formation. In this study, we fabricated aligned or random polycaprolactone/silk fibroin electrospun nanofiber membranes with or without lovastatin loading, and then evaluated their scar-inhibitory effects on wounds under a specific tension direction. The nanofiber membranes exhibited good controlled-release performance, mechanical properties, hydrophilicity, and biocompatibility. Furthermore, nanofibers' perpendicular placement to the tension direction of the wound most effectively reduced scar formation (the scar area decreased by 66.9%) and promoted skin regeneration in vivo. The mechanism was associated with its aligned nanofibers regulated collagen organization in the early stage of wound healing. Moreover, lovastatin-loaded nanofibers inhibited myofibroblast differentiation and migration. Both tension direction-perpendicular topographical cues and lovastatin synergistically inhibited mechanical transduction and fibrosis progression, further reducing scar formation. In summary, our study may provide an effective scar prevention strategy in which individualized dressings can be designed according to the local mechanical force direction of patients' wounds, and the addition of lovastatin can further inhibit scar formation. STATEMENT OF SIGNIFICANCE: In vivo, cells and collagen are always arranged parallel to the tension direction. However, the aligned topographic cues themselves promote myofibroblast differentiation and exacerbate scar formation. Electrospun nanofibers' perpendicular placement to the tension direction of the wound most effectively reduces scar formation and promotes skin regeneration in vivo. The mechanism is associated with its tension direction-perpendicular nanofibers reregulate collagen organization in the early stage of wound healing. In addition, tension direction-perpendicular topographical cue and lovastatin could inhibit mechanical transduction and fibrosis progression synergistically, further reducing scar formation. This study proves that combining topographical cues of wound dressing and drugs would be a promising therapy for clinical scar management.
Collapse
Affiliation(s)
- Zuhan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China; Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoyu Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Zixia Shen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Shichen Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Wu C, Sun Y, He X, Weng W, Cheng K, Chen Z. Photothermal extracellular matrix based nanocomposite films and their effect on the osteogenic differentiation of BMSCs. NANOSCALE 2023; 15:5379-5390. [PMID: 36825767 DOI: 10.1039/d2nr05889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mild thermal stimulation in vivo could induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, nano-functionalized photothermal extracellular matrix (ECM) nanocomposite films were obtained through adding graphene during cell culture, so that graphene could directly integrate with the ECM secreted by cells. Owing to the similarity of the ECM to the in vivo microenvironment and the apparent photothermal effect of graphene nanoflakes, heat could be generated and transferred at the material-cell interface in a biomimetic way. It was demonstrated that such nanocomposite films achieved an interface temperature rise with light illumination. This could be easily sensed by BMSCs through the ECM. According to alkaline phosphatase, osteogenic related gene expression, mineral deposition, and upregulated expression of heat shock protein (HSP70) and p-ERK, composite films with proper illumination significantly promoted the differentiation of BMSCs into osteoblasts. This work endeavors to study the thermal regulation of BMSC differentiation and provide a new perspective on biocompatible osteo-implant materials which can be remotely controlled.
Collapse
Affiliation(s)
- Chengwei Wu
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Yuan Sun
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Kui Cheng
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
- Center of Rehabilitation Biomedical Materials, Zhejiang University, Hangzhou 310027, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Wu X, Peng W, Liu G, Wang S, Duan B, Yu J, Yang H, Huang C. Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration. Adv Healthc Mater 2023; 12:e2202611. [PMID: 36640447 DOI: 10.1002/adhm.202202611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Dentin is a natural extracellular matrix, but its availability in bone grafting and tissue engineering applications is underestimated due to a lack of proper treatment. In this study, the concept of extrafibrillar demineralization is introduced into the construction of dentin-derived biomaterials for bone regeneration for the first time. Calcium chelating agents with large molecular weights are used to selectively remove the extrafibrillar apatite minerals without disturbing the intrafibrillar minerals within dentin collagen, resulting in the formation of an extrafibrillarly demineralized dentin matrix (EDM). EDM with distinctive nanotopography and bone-like mechanical properties is found to significantly promote cell adhesion, migration, and osteogenic differentiation in vitro while enhancing in vivo bone healing of rat calvarial defects. The outstanding osteogenic performance of EDM is further confirmed to be related to the activation of the focal adhesion-cytoskeleton-nucleus mechanotransduction axis. Overall, this study shows that extrafibrillar demineralization of dentin has great potential to produce hierarchical collagen-based scaffolds for bone regeneration, and this facile top-down fabrication method brings about new ideas for the biomedical application of naturally derived bioactive materials.
Collapse
Affiliation(s)
- Xiaoyi Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Wenan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Gufeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Shilei Wang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
25
|
Modaresifar K, Ganjian M, Díaz-Payno PJ, Klimopoulou M, Koedam M, van der Eerden BC, Fratila-Apachitei LE, Zadpoor AA. Mechanotransduction in high aspect ratio nanostructured meta-biomaterials: The role of cell adhesion, contractility, and transcriptional factors. Mater Today Bio 2022; 16:100448. [PMID: 36238966 PMCID: PMC9552121 DOI: 10.1016/j.mtbio.2022.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Black Ti (bTi) surfaces comprising high aspect ratio nanopillars exhibit a rare combination of bactericidal and osteogenic properties, framing them as cell-instructive meta-biomaterials. Despite the existing data indicating that bTi surfaces induce osteogenic differentiation in cells, the mechanisms by which this response is regulated are not fully understood. Here, we hypothesized that high aspect ratio bTi nanopillars regulate cell adhesion, contractility, and nuclear translocation of transcriptional factors, thereby inducing an osteogenic response in the cells. Upon the observation of significant changes in the morphological characteristics, nuclear localization of Yes-associated protein (YAP), and Runt-related transcription factor 2 (Runx2) expression in the human bone marrow-derived mesenchymal stem cells (hMSCs), we inhibited focal adhesion kinase (FAK), Rho-associated protein kinase (ROCK), and YAP in separate experiments to elucidate their effects on the subsequent expression of Runx2. Our findings indicated that the increased expression of Runx2 in the cells residing on the bTi nanopillars compared to the flat Ti is highly dependent on the activity of FAK and ROCK. A mechanotransduction pathway is then postulated in which the FAK-dependent adhesion of cells to the extreme topography of the surface is in close relation with ROCK to increase the endogenous forces within the cells, eventually determining the cell shape and area. The nuclear translocation of YAP may also enhance in response to the changes in cell shape and area, resulting in the translation of mechanical stimuli to biochemical factors such as Runx2.
Collapse
Affiliation(s)
- Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Mahya Ganjian
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Pedro J. Díaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Maria Klimopoulou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Bram C.J. van der Eerden
- Department of Internal Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD, Delft, the Netherlands
| |
Collapse
|
26
|
Ryan CNM, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. The synergistic effect of physicochemical in vitro microenvironment modulators in human bone marrow stem cell cultures. BIOMATERIALS ADVANCES 2022; 144:213196. [PMID: 36455498 DOI: 10.1016/j.bioadv.2022.213196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology. MMC significantly increased extracellular matrix deposition, albeit in a globular manner, independently of the surface topography, substrate rigidity and collagen type I coating. Collagen type I coating significantly increased cell metabolic activity and none of the assessed parameters affected cell viability. At day 14, in the absence of MMC, none of the assessed genes was affected by surface topography, substrate rigidity and collagen type I coating, whilst in the presence of MMC, in general, collagen type I α1 chain, tenascin C, osteonectin, bone sialoprotein, aggrecan, cartilage oligomeric protein and runt-related transcription factor were downregulated. Interestingly, in the presence of the MMC, the 1000 kPa grooved substrate without collagen type I coating upregulated aggrecan, cartilage oligomeric protein, scleraxis homolog A, tenomodulin and thrombospondin 4, indicative of tenogenic differentiation. This study further supports the notion for multifactorial bioengineering to control cell fate in culture.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Matthew D Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
27
|
Piñeiro-Llanes J, Suzuki-Hatano S, Jain A, Pérez Medina VA, Cade WT, Pacak CA, Simmons CS. Matrix produced by diseased cardiac fibroblasts affects early myotube formation and function. Acta Biomater 2022; 152:100-112. [PMID: 36055608 PMCID: PMC10625442 DOI: 10.1016/j.actbio.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
The extracellular matrix (ECM) provides both physical and chemical cues that dictate cell function and contribute to muscle maintenance. Muscle cells require efficient mitochondria to satisfy their high energy demand, however, the role the ECM plays in moderating mitochondrial function is not clear. We hypothesized that the ECM produced by stromal cells with mitochondrial dysfunction (Barth syndrome, BTHS) provides cues that contribute to metabolic dysfunction independent of muscle cell health. To test this, we harnessed the ECM production capabilities of human pluripotent stem-cell-derived cardiac fibroblasts (hPSC-CFs) from healthy and BTHS patients to fabricate cell-derived matrices (CDMs) with controlled topography, though we found that matrix composition from healthy versus diseased cells influenced myotube formation independent of alignment cues. To further investigate the effects of matrix composition, we then examined the influence of healthy- and BTHS-derived CDMs on myotube formation and metabolic function. We found that BTHS CDMs induced lower fusion index, lower ATP production, lower mitochondrial membrane potential, and higher ROS generation than the healthy CDMs. These findings imply that BTHS-derived ECM alone contributes to myocyte dysfunction in otherwise healthy cells. Finally, to investigate potential mechanisms, we defined the composition of CDMs produced by hPSC-CFs from healthy and BTHS patients using mass spectrometry and identified 15 ECM and related proteins that were differentially expressed in the BTHS-CDM compared to healthy CDM. Our results highlight that ECM composition affects skeletal muscle formation and metabolic efficiency in otherwise healthy cells, and our methods to generate patient-specific CDMs are a useful tool to investigate the influence of the ECM on disease progression and to investigate variability among diseased patients. STATEMENT OF SIGNIFICANCE: Muscle function requires both efficient metabolism to generate force and structured extracellular matrix (ECM) to transmit force, and we sought to examine the interactions between metabolism and ECM when metabolic disease is present. We fabricated patient-specific cell derived matrices (CDMs) with controlled topographic features to replicate the composition of healthy and mitochondrial-diseased (Barth syndrome) ECM. We found that disease-derived ECM negatively affects metabolic function of otherwise healthy myoblasts, and we identified several proteins in disease-derived ECM that may be mediating this dysfunction. We anticipate that our patient-specific CDM system could be fabricated with other topographies and cell types to study cell functions and diseases of interest beyond mitochondrial dysfunction and, eventually, be applied toward personalized medicine.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ananya Jain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Valerie A Pérez Medina
- Department of Mechanical Engineering, University of Puerto Rico, Mayaguez 00682, Puerto Rico
| | - William Todd Cade
- Physical Therapy Division, Duke University, 311 Trent Drive, Durham, NC 27710, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Neurology Department, Medical School, University of Minnesota, WMBB 4-188 2101 6th Street SE, Minneapolis 55455, USA
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Mechanical and Aerospace Engineering Herbert Wertheim College of Engineering, University of Florida.
| |
Collapse
|
28
|
Zhao Y, Richardson K, Yang R, Bousraou Z, Lee YK, Fasciano S, Wang S. Notch signaling and fluid shear stress in regulating osteogenic differentiation. Front Bioeng Biotechnol 2022; 10:1007430. [PMID: 36277376 PMCID: PMC9581166 DOI: 10.3389/fbioe.2022.1007430] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, United States
| | - Kiarra Richardson
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Rui Yang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Zoe Bousraou
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Yoo Kyoung Lee
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, United States
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- *Correspondence: Shue Wang,
| |
Collapse
|
29
|
Oliver‐Cervelló L, Martin‐Gómez H, Mandakhbayar N, Jo Y, Cavalcanti‐Adam EA, Kim H, Ginebra M, Lee J, Mas‐Moruno C. Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings. Adv Healthc Mater 2022; 11:e2201339. [PMID: 35941083 PMCID: PMC11468143 DOI: 10.1002/adhm.202201339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Helena Martin‐Gómez
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Young‐Woo Jo
- Neobiotech Co.Ltd R&D CenterSeoul08381Republic of Korea
| | - Elisabetta Ada Cavalcanti‐Adam
- Department of Cellular BiophysicsGrowth Factor Mechanobiology groupMax Planck Institute for Medical Research Jahnstraße 2969120HeidelbergGermany
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Maria‐Pau Ginebra
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
- Institute for Bioengineering of CataloniaBarcelona08028Spain
| | - Jung‐Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Carlos Mas‐Moruno
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| |
Collapse
|
30
|
Topography-Mediated Enhancement of Nonviral Gene Delivery in Stem Cells. Pharmaceutics 2022; 14:pharmaceutics14051096. [PMID: 35631682 PMCID: PMC9142897 DOI: 10.3390/pharmaceutics14051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Gene delivery holds great promise for bioengineering, biomedical applications, biosensors, diagnoses, and gene therapy. In particular, the influence of topography on gene delivery is considered to be an attractive approach due to low toxicity and localized delivery properties. Even though many gene vectors and transfection systems have been developed to enhance transfection potential and combining it with other forms of stimulations could even further enhance it. Topography is an interesting surface property that has been shown to stimulate differentiation, migration, cell morphology, and cell mechanics. Therefore, it is envisioned that topography might also be able to stimulate transfection. In this study, we tested the hypothesis “topography is able to regulate transfection efficiency”, for which we used nano- and microwave-like topographical substrates with wavelengths ranging from 500 nm to 25 µm and assessed the transfectability of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and myoblasts. For transfection, Lipofectamine 2000 and a gene encoding plasmid for red-fluorescent protein (m-Cherry) were used and topography-induced cell morphology and transfection efficiency was analyzed. As a result, topography directs cell spreading, elongation, and proliferation as well as the transfection efficiency, which were investigated but were found not to be correlated and dependent on the cell type. A 55% percent improvement of transfection efficiency was identified for hBM-MSCs grown on 2 µm wrinkles (24.3%) as compared to hBM-MSCs cultured on flat controls (15.7%). For myoblast cells, the highest gene-expression efficiency (46.1%) was observed on the 10 µm topography, which enhanced the transfection efficiency by 64% as compared to the flat control (28.1%). From a qualitative assessment, it was observed that the uptake capacity of cationic complexes of TAMRA-labeled oligodeoxynucleotides (ODNs) was not topography-dependent but that the intracellular release was faster, as indicated by the positively stained nuclei on 2 μm for hBM-MSCs and 10 μm for myoblasts. The presented results indicate that topography enhances the gene-delivery capacity and that the responses are dependent on cell type. This study demonstrates the important role of topography on cell stimulation for gene delivery as well as understanding the uptake capacity of lipoplexes and may be useful for developing advanced nonviral gene delivery strategies.
Collapse
|
31
|
Jesus D, Pinho AR, Gomes MC, Oliveira CS, Mano JF. Emerging modulators for osteogenic differentiation: a combination of chemical and topographical cues for bone microenvironment engineering. SOFT MATTER 2022; 18:3107-3119. [PMID: 35373803 DOI: 10.1039/d2sm00009a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bone presents an intrinsic ability for self-regeneration and repair, however critical defects and large fractures require invasive and time-consuming clinical interventions. As an alternative to current therapy, bone tissue engineering (BTE) has primarily aimed to recreate the bone microenvironment by delivering key biomolecules and/or by modification of scaffolds to guide cell fate towards the osteogenic lineage or other phenotypes that may benefit the bone regeneration mechanism. Considering that bone cells communicate, in their native microenvironment, through biochemical and physical signals, most strategies fail when considering only chemical, geometrical or mechanical cues. This is not representative of the physiological conditions, where the cells are simultaneously in contact and stimulated by several cues. Therefore, this review explores the synergistic effect of biochemical/physical cues in regulating cellular events, namely cell adhesion, proliferation, osteogenic differentiation, and mineralization, highlighting the importance of the combined modifications for the development of innovative bone regenerative therapies.
Collapse
Affiliation(s)
- Diana Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana R Pinho
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria C Gomes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Cláudia S Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Tian KK, Huang SC, Xia XX, Qian ZG. Fibrous Structure and Stiffness of Designer Protein Hydrogels Synergize to Regulate Endothelial Differentiation of Bone Marrow Mesenchymal Stem Cells. Biomacromolecules 2022; 23:1777-1788. [PMID: 35312276 DOI: 10.1021/acs.biomac.2c00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matrix stiffness and fibrous structure provided by the native extracellular matrix have been increasingly appreciated as important cues in regulating cell behaviors. Recapitulating these physical cues for cell fate regulation remains a challenge due to the inherent difficulties in making mimetic hydrogels with well-defined compositions, tunable stiffness, and structures. Here, we present two series of fibrous and porous hydrogels with tunable stiffness based on genetically engineered resilin-silk-like and resilin-like protein polymers. Using these hydrogels as substrates, the mechanoresponses of bone marrow mesenchymal stem cells to stiffness and fibrous structure were systematically studied. For both hydrogel series, increasing compression modulus from 8.5 to 14.5 and 23 kPa consistently promoted cell proliferation and differentiation. Nonetheless, the promoting effects were more pronounced on the fibrous gels than their porous counterparts at all three stiffness levels. More interestingly, even the softest fibrous gel (8.5 kPa) allowed the stem cells to exhibit higher endothelial differentiation capability than the toughest porous gel (23 kPa). The predominant role of fibrous structure on the synergistic regulation of endothelial differentiation was further explored. It was found that the stiffness signal activated Yes-associated protein (YAP), the main regulator of endothelial differentiation, via spreading of focal adhesions, whereas fibrous structure reinforced YAP activation by promoting the maturation of focal adhesions and associated F-actin alignment. Therefore, our results shed light on the interplay of physical cues in regulating stem cells and may guide the fabrication of designer proteinaceous matrices toward regenerative medicine.
Collapse
Affiliation(s)
- Kai-Kai Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
33
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
34
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
35
|
Chan WW, Yu F, Le QB, Chen S, Yee M, Choudhury D. Towards Biomanufacturing of Cell-Derived Matrices. Int J Mol Sci 2021; 22:ijms222111929. [PMID: 34769358 PMCID: PMC8585106 DOI: 10.3390/ijms222111929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Cell-derived matrices (CDM) are the decellularised extracellular matrices (ECM) of tissues obtained by the laboratory culture process. CDM is developed to mimic, to a certain extent, the properties of the needed natural tissue and thus to obviate the use of animals. The composition of CDM can be tailored for intended applications by carefully optimising the cell sources, culturing conditions and decellularising methods. This unique advantage has inspired the increasing use of CDM for biomedical research, ranging from stem cell niches to disease modelling and regenerative medicine. However, while much effort is spent on extracting different types of CDM and exploring their utilisation, little is spent on the scale-up aspect of CDM production. The ability to scale up CDM production is essential, as the materials are due for clinical trials and regulatory approval, and in fact, this ability to scale up should be an important factor from the early stages. In this review, we first introduce the current CDM production and characterisation methods. We then describe the existing scale-up technologies for cell culture and highlight the key considerations in scaling-up CDM manufacturing. Finally, we discuss the considerations and challenges faced while converting a laboratory protocol into a full industrial process. Scaling-up CDM manufacturing is a challenging task since it may be hindered by technologies that are not yet available. The early identification of these gaps will not only quicken CDM based product development but also help drive the advancement in scale-up cell culture and ECM extraction.
Collapse
Affiliation(s)
- Weng Wan Chan
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Fang Yu
- Smart MicroFluidics, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Fusionopolis Way, Singapore 138634, Singapore;
| | - Quang Bach Le
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Sixun Chen
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Marcus Yee
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore; (W.W.C.); (Q.B.L.); (S.C.); (M.Y.)
- Correspondence:
| |
Collapse
|
36
|
Guan Y, Yang B, Xu W, Li D, Wang S, Ren Z, Zhang J, Zhang T, Liu XZ, Li J, Li C, Meng F, Han F, Wu T, Wang Y, Peng J. Cell-derived extracellular matrix materials for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1007-1021. [PMID: 34641714 DOI: 10.1089/ten.teb.2021.0147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development.
Collapse
Affiliation(s)
- Yanjun Guan
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Boyao Yang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Wenjing Xu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Dongdong Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Sidong Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Zhiqi Ren
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Jian Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tieyuan Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Xiu-Zhi Liu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Junyang Li
- Nankai University School of Medicine, 481107, Tianjin, Tianjin, China.,Chinese PLA General Hospital, 104607, Beijing, Beijing, China;
| | - Chaochao Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Fanqi Meng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Peking University People's Hospital, 71185, Department of spine surgery, Beijing, China;
| | - Feng Han
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tong Wu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Yu Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| | - Jiang Peng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| |
Collapse
|
37
|
Yazdian Kashani S, Keshavarz Moraveji M, Bonakdar S. Computational and experimental studies of a cell-imprinted-based integrated microfluidic device for biomedical applications. Sci Rep 2021; 11:12130. [PMID: 34108580 PMCID: PMC8190060 DOI: 10.1038/s41598-021-91616-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
It has been proved that cell-imprinted substrates molded from template cells can be used for the re-culture of that cell while preserving its normal behavior or to differentiate the cultured stem cells into the template cell. In this study, a microfluidic device was presented to modify the previous irregular cell-imprinted substrate and increase imprinting efficiency by regular and objective cell culture. First, a cell-imprinted substrate from template cells was prepared using a microfluidic chip in a regular pattern. Another microfluidic chip with the same pattern was then aligned on the cell-imprinted substrate to create a chondrocyte-imprinted-based integrated microfluidic device. Computational fluid dynamics (CFD) simulations were used to obtain suitable conditions for injecting cells into the microfluidic chip before performing experimental evaluations. In this simulation, the effect of input flow rate, number per unit volume, and size of injected cells in two different chip sizes were examined on exerted shear stress and cell trajectories. This numerical simulation was first validated with experiments with cell lines. Finally, chondrocyte was used as template cell to evaluate the chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) in the chondrocyte-imprinted-based integrated microfluidic device. ADSCs were positioned precisely on the chondrocyte patterns, and without using any chemical growth factor, their fibroblast-like morphology was modified to the spherical morphology of chondrocytes after 14 days of culture. Both immunostaining and gene expression analysis showed improvement in chondrogenic differentiation compared to traditional imprinting methods. This study demonstrated the effectiveness of cell-imprinted-based integrated microfluidic devices for biomedical applications.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran.
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran.
| |
Collapse
|
38
|
Modaresifar K, Ganjian M, Angeloni L, Minneboo M, Ghatkesar MK, Hagedoorn PL, Fratila-Apachitei LE, Zadpoor AA. On the Use of Black Ti as a Bone Substituting Biomaterial: Behind the Scenes of Dual-Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100706. [PMID: 33978318 DOI: 10.1002/smll.202100706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Despite the potential of small-scale pillars of black titanium (bTi) for killing the bacteria and directing the fate of stem cells, not much is known about the effects of the pillars' design parameters on their biological properties. Here, three distinct bTi surfaces are designed and fabricated through dry etching of the titanium, each featuring different pillar designs. The interactions of the surfaces with MC3T3-E1 preosteoblast cells and Staphylococcus aureus bacteria are then investigated. Pillars with different heights and spatial organizations differently influence the morphological characteristics of the cells, including their spreading area, aspect ratio, nucleus area, and cytoskeletal organization. The preferential formation of focal adhesions (FAs) and their size variations also depend on the type of topography. When the pillars are neither fully separated nor extremely tall, the colocalization of actin fibers and FAs as well as an enhanced matrix mineralization are observed. However, the killing efficiency of these pillars against the bacteria is not as high as that of fully separated and tall pillars. This study provides a new perspective on the dual-functionality of bTi surfaces and elucidates how the surface design and fabrication parameters can be used to achieve a surface topography with balanced bactericidal and osteogenic properties.
Collapse
Affiliation(s)
- Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mahya Ganjian
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Livia Angeloni
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Murali K Ghatkesar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
39
|
Carthew J, Abdelmaksoud HH, Hodgson‐Garms M, Aslanoglou S, Ghavamian S, Elnathan R, Spatz JP, Brugger J, Thissen H, Voelcker NH, Cadarso VJ, Frith JE. Precision Surface Microtopography Regulates Cell Fate via Changes to Actomyosin Contractility and Nuclear Architecture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003186. [PMID: 33747730 PMCID: PMC7967085 DOI: 10.1002/advs.202003186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Indexed: 05/06/2023]
Abstract
Cells are able to perceive complex mechanical cues from their microenvironment, which in turn influences their development. Although the understanding of these intricate mechanotransductive signals is evolving, the precise roles of substrate microtopography in directing cell fate is still poorly understood. Here, UV nanoimprint lithography is used to generate micropillar arrays ranging from 1 to 10 µm in height, width, and spacing to investigate the impact of microtopography on mechanotransduction. Using mesenchymal stem cells (MSCs) as a model, stark pattern-specific changes in nuclear architecture, lamin A/C accumulation, chromatin positioning, and DNA methyltransferase expression, are demonstrated. MSC osteogenesis is also enhanced specifically on micropillars with 5 µm width/spacing and 5 µm height. Intriguingly, the highest degree of osteogenesis correlates with patterns that stimulated maximal nuclear deformation which is shown to be dependent on myosin-II-generated tension. The outcomes determine new insights into nuclear mechanotransduction by demonstrating that force transmission across the nuclear envelope can be modulated by substrate topography, and that this can alter chromatin organisation and impact upon cell fate. These findings have potential to inform the development of microstructured cell culture substrates that can direct cell mechanotransduction and fate for therapeutic applications in both research and clinical sectors.
Collapse
Affiliation(s)
- James Carthew
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Centre to Impact Antimicrobial Resistance – Sustainable SolutionsMonash UniversityClaytonVictoria3800Australia
| | - Hazem H. Abdelmaksoud
- Department of Mechanical and Aerospace EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
| | - Margeaux Hodgson‐Garms
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Stella Aslanoglou
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Sara Ghavamian
- Centre to Impact Antimicrobial Resistance – Sustainable SolutionsMonash UniversityClaytonVictoria3800Australia
- Department of Mechanical and Aerospace EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Roey Elnathan
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVictoria3052Australia
| | - Joachim P. Spatz
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraßeHeidelbergD‐69120Germany
- Heidelberg UniversityInstitute for Molecular Systems Engineering (IMSE)HeidelbergD‐69120Germany
- Max Planck School Matter to LifeGermany
| | - Juergen Brugger
- Microsystems LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Nicolas H. Voelcker
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Victor J. Cadarso
- Centre to Impact Antimicrobial Resistance – Sustainable SolutionsMonash UniversityClaytonVictoria3800Australia
- Department of Mechanical and Aerospace EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
| | - Jessica E. Frith
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| |
Collapse
|
40
|
Saghati S, Nasrabadi HT, Khoshfetrat AB, Moharamzadeh K, Hassani A, Mohammadi SM, Rahbarghazi R, Fathi Karkan S. Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities. Stem Cell Rev Rep 2021; 17:1294-1311. [PMID: 33547591 DOI: 10.1007/s12015-021-10130-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts. Stem cells are touted as an alternative cell source for the alleviation of osteochondral diseases. These cells appropriately respond to the physicochemical properties of different biomaterials. This review aimed to address some of the essential factors which participate in the chondrogenic and osteogenic capacity of stem cells. Elements consisted of biomechanical forces, electrical fields, and biochemical and physical properties of the extracellular matrix are the major determinant of stem cell differentiation capacity. It is suggested that an additional certain mechanism related to signal-transduction pathways could also mediate the chondro-osteogenic differentiation of stem cells. The discovery of these clues can enable us to modulate the regeneration capacity of stem cells in osteochondral injuries and lead to the improvement of more operative approaches using tissue engineering modalities.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Seyedeh Momeneh Mohammadi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Dede Eren A, Eren ED, Wilting TJS, de Boer J, Gelderblom H, Foolen J. Self-agglomerated collagen patterns govern cell behaviour. Sci Rep 2021; 11:1516. [PMID: 33452334 PMCID: PMC7810981 DOI: 10.1038/s41598-021-81054-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023] Open
Abstract
Reciprocity between cells and their surrounding extracellular matrix is one of the main drivers for cellular function and, in turn, matrix maintenance and remodelling. Unravelling how cells respond to their environment is key in understanding mechanisms of health and disease. In all these examples, matrix anisotropy is an important element, since it can alter the cell shape and fate. In this work, the objective is to develop and exploit easy-to-produce platforms that can be used to study the cellular response to natural proteins assembled into diverse topographical cues. We demonstrate a robust and simple approach to form collagen substrates with different topographies by evaporating droplets of a collagen solution. Upon evaporation of the collagen solution, a stain of collagen is left behind, composed of three regions with a distinct pattern: an isotropic region, a concentric ring pattern, and a radially oriented region. The formation and size of these regions can be controlled by the evaporation rate of the droplet and initial collagen concentration. The patterns form topographical cues inducing a pattern-specific cell (tenocyte) morphology, density, and proliferation. Rapid and cost-effective production of different self-agglomerated collagen topographies and their interfaces enables further study of the cell shape-phenotype relationship in vitro. Substrate topography and in analogy tissue architecture remains a cue that can and will be used to steer and understand cell function in vitro, which in turn can be applied in vivo, e.g. in optimizing tissue engineering applications.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Biointerface Science Group, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Twan J S Wilting
- Fluids and Flows Group, J.M. Burgers Centre for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jan de Boer
- Biointerface Science Group, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hanneke Gelderblom
- Fluids and Flows Group, J.M. Burgers Centre for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jasper Foolen
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
42
|
Brodie EG, Robinson KJ, Sigston E, Molotnikov A, Frith JE. Osteogenic Potential of Additively Manufactured TiTa Alloys. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Erin G. Brodie
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Centre for Additive Manufacturing (MCAM), 11 Normanby Road, Nottinghill, Victoria 3168, Australia
| | - Kye J. Robinson
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Elizabeth Sigston
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria 3800, Australia
- Department of Otolaryngology, Head and Neck Surgery, Monash Health, Clayton, Victoria 3168, Australia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Centre for Additive Manufacturing (MCAM), 11 Normanby Road, Nottinghill, Victoria 3168, Australia
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Melbourne, Australia
| | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
43
|
Yazdian Kashani S, Keshavarz Moraveji M, Taghipoor M, Kowsari-Esfahan R, Hosseini AA, Montazeri L, Dehghan MM, Gholami H, Farzad-Mohajeri S, Mehrjoo M, Majidi M, Renaud P, Bonakdar S. An integrated microfluidic device for stem cell differentiation based on cell-imprinted substrate designed for cartilage regeneration in a rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111794. [PMID: 33579444 DOI: 10.1016/j.msec.2020.111794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023]
Abstract
Separating cells from the body and cultivating them in vitro will alter the function of cells. Therefore, for optimal cell culture in the laboratory, conditions similar to those of their natural growth should be provided. In previous studies, it has been shown that the use of cellular shape at the culture surface can regulate cellular function. In this work, the efficiency of the imprinting method increased by using microfluidic chip design and fabrication. In this method, first, a cell-imprinted substrate of chondrocytes was made using a microfluidic chip. Afterwards, stem cells were cultured on a cell-imprinted substrate using a second microfluidic chip aligned with the substrate. Therefore, stem cells were precisely placed on the chondrocyte patterns on the substrate and their fibroblast-like morphology was changed to chondrocyte's spherical morphology after 14-days culture in the chip without using any chemical growth factor. After chondrogenic differentiation and in vitro assessments (real-time PCR and immunocytotoxicity), differentiated stem cells were transferred on a collagen-hyaluronic acid scaffold and transplanted in articular cartilage defect of the rabbit. After 6 months, the post-transplantation analysis showed that the articular cartilage defect had been successfully regenerated in differentiated stem cell groups in comparison with the controls. In conclusion, this study showed the potency of the imprinting method for inducing chondrogenicity in stem cells, which can be used in clinical trials due to the safety of the procedure.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 1591634311 Tehran, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 1591634311 Tehran, Iran.
| | - Mojtaba Taghipoor
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Reza Kowsari-Esfahan
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | | | - Leila Montazeri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Institute of Biomedical Research, University of Tehran, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Gholami
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Institute of Biomedical Research, University of Tehran, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Morteza Mehrjoo
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | - Philippe Renaud
- Laboratory of Microsystems (LMIS4), École Polytechnique FÉdÉrale de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran.
| |
Collapse
|
44
|
Azam Bozorgi Zarrini, Bozorgi M, Khazaei M, Soleimani M. Decellularized Extracellular Matrices in Bone Tissue Engineering: From Cells to Tissues. Mini-Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x20060127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Assunção M, Dehghan-Baniani D, Yiu CHK, Später T, Beyer S, Blocki A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:602009. [PMID: 33344434 PMCID: PMC7744374 DOI: 10.3389/fbioe.2020.602009] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs offer the opportunity to produce microenvironments with costumizable biological and biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular functions such as stemness or be employed as a platform to study cellular niches in health and disease. Either on their own or integrated with other materials, CD-ECMs can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous healing and regeneration. This review provides a brief overview over the methodologies used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses of CD-ECM in fundamental research and therapeutic approaches, while highlighting innovative strategies. Furthermore, current challenges are identified and it is accentuated that advancements in methodologies, as well as innovative interdisciplinary approaches are needed to take CD-ECM-based research to the next level.
Collapse
Affiliation(s)
- Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dorsa Dehghan-Baniani
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, University of Saarland, Saarbrücken, Germany
| | - Sebastian Beyer
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
46
|
Almonacid Suarez AM, van der Ham I, Brinker MG, van Rijn P, Harmsen MC. Topography-driven alterations in endothelial cell phenotype and contact guidance. Heliyon 2020; 6:e04329. [PMID: 32637708 PMCID: PMC7330714 DOI: 10.1016/j.heliyon.2020.e04329] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding how endothelial cell phenotype is affected by topography could improve the design of new tools for tissue engineering as many tissue engineering approaches make use of topography-mediated cell stimulation. Therefore, we cultured human pulmonary microvascular endothelial cells (ECs) on a directional topographical gradient to screen the EC vascular-like network formation and alignment response to nano to microsized topographies. The cell response was evaluated by microscopy. We found that ECs formed unstable vascular-like networks that aggregated in the smaller topographies and flat parts whereas ECs themselves aligned on the larger topographies. Subsequently, we designed a mixed topography where we could explore the network formation and proliferative properties of these ECs by live imaging for three days. Vascular-like network formation continued to be unstable on the topography and were only produced on the flat areas and a fibronectin coating did not improve the network stability. However, an instructive adipose tissue-derived stromal cell (ASC) coating provided the correct environment to sustain the vascular-like networks, which were still affected by the topography underneath. It was concluded that large microsized topographies inhibit vascular endothelial network formation but not proliferation and flat and nano/microsized topographies allow formation of early networks that can be stabilized by using an ASC instructive layer.
Collapse
Affiliation(s)
- Ana Maria Almonacid Suarez
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| | - Iris van der Ham
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| | - Marja G.L. Brinker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| |
Collapse
|