1
|
Wang R, Ju L, Meng X, Yu B, Chen H, Li S, Fu W, Jiang J, Sun Y, Lu W, Dai Y. Building Thermal-Conduction Nanochannels in Composite Electromagnetic Interference Shielding Film for Electromagnetic Heat Management. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23050-23061. [PMID: 40183772 DOI: 10.1021/acsami.4c22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the 6G era, miniaturized and highly integrated wearable communications devices require electromagnetic materials with efficient thermal-management capability to mitigate electromagnetic interference (EMI) and heat accumulation. Herein, we present a facile strategy for conducting electromagnetic heat by constructing directional thermal-conduction nanochannels within a layer-by-layer EMI shielding film. This composite film consists of polyacrylonitrile/boron nitride nanosheets@polydopamine nanofibers covered with an EMI layer based on MXene sheets. Compared with traditional materials in which the heat dissipates randomly, the one-dimensional fibrous structure can offer a directional heat dissipation pathway. Under high-power microwave irradiation, it exhibits significantly lower temperatures, ensuring robust and durable communication performance without overheating. The thin film (0.43 mm thickness) achieves an impressive specific surface shielding efficiency of 29,400 dB·cm2·g-1 at 18-24 GHz, with an EMI shielding effectiveness (SE) of 88 dB for its layer-by-layer structure counterpart. In addition, the flexible film maintains a high EMI SE after 10,000 bending times. Its lightweight, flexible, and thin design makes it suitable for robust applications in various environments. This EMI shielding and thermally conductive film provides rapid heat dissipation and effective signal shielding for wearable communication systems, showcasing the great potential for efficient thermal management in next-generation communication technologies.
Collapse
Affiliation(s)
- Rui Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| | - Lu Ju
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| | - Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Buyun Yu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
| | - Hao Chen
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
| | - Shujing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jingyi Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Weibing Lu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| |
Collapse
|
2
|
Song YY, Jiang N, Li SZ, Wang LN, Bai L, Yang J, Yang W. Ultra-high thermally conductive graphite microplatelet/aramid nanofiber composites with reduced interfacial thermal resistances by engineered interface π-π interactions. MATERIALS HORIZONS 2025. [PMID: 40123516 DOI: 10.1039/d5mh00070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Polymer-based thermally conductive composites with ultrahigh in-plane thermal conductivity are ideal candidates for heat dissipation applications in electronics. However, the complex interfaces between the functional filler and polymer matrix limit the significant increase in thermal conductivity of the polymer composites. In this study, we developed a one-pot strategy to prepare highly thermally conductive composite films of freeze-expansion large-size graphite microplatelets (F-GMPs) and aramid nanofibers (ANFs) with π-π interactions. The obtained F-GMP/ANF nanocomposite films present salient in-plane thermal conductivity, considerable flexibility, and outstanding long-term stability. The π-π interactions between the F-GMPs and ANFs promote the freeze-expansion exfoliation of graphite, yielding stable F-GMP/ANF precursor pastes with high-quality graphite platelets. Moreover, the π-π interactions improve the filler-matrix interfacial compatibility and reduce the interfacial thermal resistance, while the large-size F-GMP particles are directly lapped to construct a thermal transfer pathway with a reduction in the filler-filler interfacial thermal resistance. Consequently, the F-GMP/ANF composite films with 30 wt% F-GMPs exhibit unprecedentedly high in-plane thermal conductivity (56.89 W m-1 K-1) and corresponding thermal conductivity enhancement efficiency, presenting great application potential for the effective thermal management of highly integrated electronics.
Collapse
Affiliation(s)
- Yu-Yang Song
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Niu Jiang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Shuang-Zhu Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Lu-Ning Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Lu Bai
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Jie Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| |
Collapse
|
3
|
Hu X, Fan Q, Wang S, Chen Y, Wang D, Chen K, Ge F, Zhou W, Liang K. Two-Dimensional MXenes: Innovative Materials for Efficient Thermal Management and Safety Solutions. RESEARCH (WASHINGTON, D.C.) 2024; 7:0542. [PMID: 39703779 PMCID: PMC11658421 DOI: 10.34133/research.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
MXenes, a class of 2-dimensional transition metal carbides and nitrides, have garnered important attention due to their remarkable electrical and thermal conductivity, high photothermal conversion efficiency, and multifunctionality. This review explores the potential of MXene materials in various thermal applications, including thermal energy storage, heat dissipation in electronic devices, and the mitigation of electromagnetic interference in wearable technologies. Recent advancements in MXene composites, such as MXene/bacterial cellulose aerogel films and MXene/polymer composites, have demonstrated enhanced performance in phase change thermal storage and electromagnetic interference shielding, underscoring their versatility and effectiveness. Although notable progress has been made, challenges remain, including the need for a deeper understanding of photothermal conversion mechanisms, improvements in mechanical properties, exploration of diverse MXene types, and the development of sustainable synthesis methods. This paper discusses these aspects and outlines future research directions, emphasizing the growing importance of MXenes in addressing energy efficiency, health, and safety concerns in modern applications.
Collapse
Affiliation(s)
- XiaoYan Hu
- School of Materials Science and Chemical Engineering,
Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanxin Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Degao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315336, P. R. China
| | - Fangfang Ge
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315336, P. R. China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha 410013, P. R. China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Lebeda F, Demleitner M, Pongratz A, Ruckdäschel H, Retsch M. Shaping Thermal Transport and Temperature Distribution via Anisotropic Carbon Fiber Reinforced Composites. ACS OMEGA 2024; 9:39232-39241. [PMID: 39310149 PMCID: PMC11411524 DOI: 10.1021/acsomega.4c06558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024]
Abstract
With the ongoing electrification of vehicles, thermal management is on everyone's lips. To prevent overheating in electronic systems, new design strategies for thermal dissipation are needed. Thermally anisotropic materials enable targeted directional heat transport due to their anisotropic thermal conduction. Laminates made of unidirectionally aligned carbon fibers in a polymer matrix can be tailored regarding their in-plane anisotropy. Exposing the laminates to a temperature gradient reveals that the thermal transport is determined by their anisotropic properties. The corresponding heat flow can be visualized by IR thermography. The combination of anisotropic laminate discs into composite materials, similar to building with toy bricks, enables precise control of heat transport in the macroscopic composite materials. Thus, we achieve control of heat flow at the level of the individual components. In addition, we show that the orientation of anisotropy relative to the temperature gradient is crucial to guide the heat flow selectively. We found that the ratio of thermal anisotropy, the amount and arrangement of anisotropic components, and their positioning in the composite strongly influence heat transport. By combining all these factors, we are able to locally control the heat flow in composites by creating materials to either dissipate heat or block heat transport. The proposed concept can be extended to different shapes of building blocks in two or three dimensions.
Collapse
Affiliation(s)
- Flora Lebeda
- Department
of Chemistry, Physical Chemistry I, University
of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian
Center for Battery Technology (BayBatt), Weiherstraße 26, 95448 Bayreuth, Germany
| | - Martin Demleitner
- Department
of Polymer Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Annalena Pongratz
- Department
of Polymer Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Holger Ruckdäschel
- Department
of Polymer Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian
Polymer Institute and Bayreuth Institute of Macromolecular Research, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian
Polymer Institute, Bayreuth Center for Colloids
and Interfaces, Universitätsstraße
30, 95447 Bayreuth, Germany
| | - Markus Retsch
- Department
of Chemistry, Physical Chemistry I, University
of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian
Center for Battery Technology (BayBatt), Weiherstraße 26, 95448 Bayreuth, Germany
- Bavarian
Polymer Institute, Bayreuth Center for Colloids
and Interfaces, Universitätsstraße
30, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Wang Q, Zhang J, Zhou Z, Zhao J, Yi Y, Feng S, Sui Z, Zhang W, Lu C. Sandwich-Structured Mxene/Waste Polyurethane Foam Composites For Highly Efficient Electromagnetic Interference, Infrared Shielding and Joule Heating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309803. [PMID: 38659183 DOI: 10.1002/smll.202309803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Electromagnetic interference (EMI) shielding and infrared (IR) stealth materials have attracted increasing attention owing to the rapid development of modern communication and military surveillance technologies. However, to realize excellent EMI shielding and IR stealth performance simultaneously remains a great challenge. Herein, a facile strategy is demonstrated to prepare high-efficiency EMI shielding and IR stealth materials of sandwich-structured MXene-based thin foam composites (M-W-M) via filtration and hot-pressing. In this composite, the conductive Ti3C2Tx MXene/cellulose nanofiber (MXene/CNF) film serves as the outer layer, which reflects electromagnetic waves and reduces the IR emissivity. Meanwhile, the middle layer is composed of a porous waste polyurethane foam (WPUF), which not only improves thermal insulation capacity but also extends electromagnetic wave propagation paths. Owing to the unique sandwich structure of "film-foam-film", the M-W-M composite exhibits a high EMI shielding effectiveness of 83.37 dB, and in the meantime extremely low emissivity (22.17%) in the wavelength range of 7-14 µm and thermal conductivity (0.19 W m-1 K-1), giving rise to impressive IR stealth performance at various surrounding temperatures. Remarkably, the M-W-M composite also shows excellent Joule heating properties, capable of maintaining the IR stealth function during Joule heating.
Collapse
Affiliation(s)
- Qunhao Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Jian Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
- Fujian Provincial Key Laboratory of Environmental Engineering, Fujian Provincial Academy of Environmental Science, Fujian, 350013, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Jiangqi Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ya Yi
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Zengyan Sui
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
- Advanced Polymer Materials Research Center of Sichuan University, Shishi, 362700, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
- Advanced Polymer Materials Research Center of Sichuan University, Shishi, 362700, China
| |
Collapse
|
6
|
Wei Z, Cheng Y, Hu X, Meng Y, Zhan Y, Li Y, Xia H, Jiang X, Chen Z. Cellulose-derived carbon scaffolds with bidirectional gradient Fe 3O 4 distribution: Integration of green EMI shielding and thermal management. Int J Biol Macromol 2024; 275:133724. [PMID: 38977054 DOI: 10.1016/j.ijbiomac.2024.133724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Cellulose papers (CPs) possess a pore structure, rendering them ideal precursors for carbon scaffolds because of their renewability. However, achieving a tradeoff between high electromagnetic shielding effectiveness and low reflection coefficient poses a tremendous challenge for CP-based carbon scaffolds. To meet the challenge, leveraging the synergistic effect of gravity and evaporation dynamics, laminar CP-based carbon scaffolds with a bidirectional gradient distribution of Fe3O4 nanoparticles were fabricated via immersion, drying, and carbonization processes. The resulting carbon scaffold, owing to the bidirectional gradient structure of magnetic nanoparticles and unique laminar arrangement, exhibited excellent in-plane electrical conductivity (96.3 S/m), superior electromagnetic shielding efficiency (1805.9 dB/cm2 g), low reflection coefficients (0.23), and a high green index (gs, 3.38), suggesting its green shielding capabilities. Furthermore, the laminar structure conferred upon the resultant carbon scaffold a surprisingly anisotropic thermal conductivity, with an in-plane thermal conductivity of 1.73 W/m K compared to a through-plane value of only 0.07 W/m K, confirming the integration of thermal insulation and thermal management functionalities. These green electromagnetic interference shielding materials, coupled with thermal insulation and thermal management properties, hold promising prospects for applications in sensitive devices.
Collapse
Affiliation(s)
- Zijian Wei
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yu Cheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xuxu Hu
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yanyan Meng
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yanhu Zhan
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Yuchao Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Xiancai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
7
|
Park H, Park YH, Karima G, Kim S, Murali G, Hwang NS, In I, Kim HD. Fabrication of innovative multifunctional dye using MXene nanosheets. NANOSCALE HORIZONS 2024; 9:1301-1310. [PMID: 38808378 DOI: 10.1039/d4nh00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The increasing demand for natural and safer alternatives to traditional hair dyes has led to the investigation of nanomaterials as potential candidates for hair coloring applications. MXene nanosheets have emerged as a promising alternative in this context due to their unique optical and electronic properties. In this study, we aimed to evaluate the potential of Ti3C2Tx (Tx = -O, -OH, -F, etc.) MXene nanosheets as a hair dye. MXene nanosheet-based dyes have been demonstrated to exhibit not only coloring capabilities but also additional properties such as antistatic properties, heat dissipation, and electromagnetic wave shielding. Additionally, surface modification of MXene using collagen reduces the surface roughness of hair and upregulates keratinocyte markers KRT5 and KRT14, demonstrating the potential for tuning its physicochemical and biological properties. This conceptual advancement highlights the potential of MXene nanosheets to go beyond simple cosmetic improvements and provide improved comfort and safety by preventing the presence of hazardous ingredients and solvents while providing versatility.
Collapse
Affiliation(s)
- Hyeongtaek Park
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Young Ho Park
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, South Korea
| | - Gul Karima
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sujin Kim
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - G Murali
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, South Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Insik In
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, South Korea
| | - Hwan D Kim
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| |
Collapse
|
8
|
Nguyen QD, Choi CG. Recent advances in multifunctional electromagnetic interference shielding materials. Heliyon 2024; 10:e31118. [PMID: 38770332 PMCID: PMC11103537 DOI: 10.1016/j.heliyon.2024.e31118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Electromagnetic interference (EMI) shielding material is the most effective solution to protect electronic devices and human health from the harmful effects of electromagnetic radiation. The study of EMI shielding materials is intensifying in the constantly developing picture of the fourth industrial revolution. Many EMI shielding materials based on metal, carbon, emerging MXene materials, and their composites have been discovered to utilize the EMI shielding performance. However, a huge demand for compact and multi-functional devices requires the integration of new functions into EMI shielding materials. Multifunctional EMI shielding materials perform multiple functions beyond their main function of EMI shielding in a system due to their specific properties. The additional functions can either naturally exist or be specially engineered. This review summarizes the recent progress of cutting-edge multifunctional EMI shielding materials. The possibility of combining multifunction EMI shielding materials, such as strain sensing, humidity sensing, temperature sensing, thermal management, etc., and the difficulties in balancing EMI shielding performance with other functions are also discussed. Lastly, we point out challenges and propose future directions to develop research on multifunctional EMI shielding materials.
Collapse
Affiliation(s)
- Quy-Dat Nguyen
- Graphene Research Team, Materials and Components Research Division, Superintelligence Creative Research Laboratory, Electronics and Telecommunication Research Institute (ETRI), Daejeon, 34129, Republic of Korea
- Semiconductor and Advanced Device Engineering, ETRI School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Choon-Gi Choi
- Graphene Research Team, Materials and Components Research Division, Superintelligence Creative Research Laboratory, Electronics and Telecommunication Research Institute (ETRI), Daejeon, 34129, Republic of Korea
- Semiconductor and Advanced Device Engineering, ETRI School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
9
|
Wan J, Sun D, Li P, Huang J, Chen Z. Design and Analysis of a Textured Cu-Encapsulated Ni Tube for Low-Reflection Electromagnetic Interference Shielding Material. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9244-9254. [PMID: 38639003 DOI: 10.1021/acs.langmuir.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
With the frequent increase and update of electromagnetic interference (EMI) shielding materials, a low-resolution material that can absorb most electromagnetic waves, thereby effectively reducing the secondary pollution, is urgently needed. However, the excellent performance, flexibility, and low cost of these methods are usually incompatible with current reports. To address the above dilemma, we reported a facile solution for fabricating a low-reflection and high-performance EMI shielding composite by means of electroless nickel plating (EP-Ni), electroless copper plating (EP-Cu), annealing, and coating with a polydimethylsiloxane (PDMS) polymer with the structure of a Ni@Cu tube encapsulated with PDMS. The results indicate that the active groups on vegetable wool can act as active sites for the absorption of the Pd catalyst, thereby catalyzing the reduction of Ni2+, Cu2+, and the subsequent deposition on the plant fiber surface. Notably, the Ni@Cu-encapsulated plant fibers decreased during annealing at 100 °C. According to the segregated network and synergistic effect of the porous structure, the as-fabricated EMI shielding material demonstrated high absorption and low reflection, in which the power coefficient of the T value was approximately 0.0001, the R value was about 0.1764 (a decrease of 27.5% compared that of EP-Ni cotton), and the A value was approximately 0.8235.
Collapse
Affiliation(s)
- Jiajia Wan
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Di Sun
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Junjun Huang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Zhenming Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| |
Collapse
|
10
|
Chang R, Hao P, Qu H, Xu J, Ma J. A fire resistant MXene-based flexible film with excellent Joule heating and electromagnetic interference shielding performance. J Colloid Interface Sci 2024; 654:437-445. [PMID: 37857096 DOI: 10.1016/j.jcis.2023.10.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Flexible films with thermal management capability and efficient electromagnetic interference (EMI) shielding performance are highly needed for electronic devices. Moreover, it remains difficult to integrate fire safety performance into the multifunctional film. Thus, a facile multi-interfacial engineering strategy was proposed to prepare a fire resistant MXene-based flexible film with excellent Joule heating and EMI Shielding performance. Specifically, the neighboring and interlayer MXene sheets were respectively bridged by graphene oxide and carbon nanotube via multiple physical and chemical interactions, thus formed a optimized hierarchical microstructure. The resultant film possessesd outstanding Joule heating performance including wide electrical-to-thermal temperature and sensitive conversion ability. Simultaneously, the film exhibited high EMI shielding efficiency (99.97%). Most significantly, after being burned up to 60 min, the film still maintained its flexibility and multifunctional perfprmance benefiting from a large expanded protective layer. The excellent fire resistance and multi-functions endowed the film wide application prospects in advanced electronics.
Collapse
Affiliation(s)
- Ran Chang
- The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Peng Hao
- Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding 071002, China
| | - Hongqiang Qu
- The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jianzhong Xu
- The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Jing Ma
- The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
Cheng X, Cai J, Liu P, Chen T, Chen B, Gong D. Multifunctional Flexible MXene/AgNW Composite Thin Film with Ultrahigh Conductivity Enabled by a Sandwich-Structured Assembly Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304327. [PMID: 37699748 DOI: 10.1002/smll.202304327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Flexible composite films have attracted considerable attention due to great potential for healthcare, telecommunication, and aerospace. However, it is still challenging to achieve high conductivity and multifunctional integration, mainly due to poorly designed composite structures of these films. Herein, a novel sandwich-structured assembly strategy is proposed to fabricate flexible composite thin films made of Ag nanowire (AgNW) core and MXene layers by combination of spray coating and vacuum filtration process. In this case, ultrathin MXene layers play crucial roles in constructing compact composite structures strongly anchored to substrate with extensive hydrogen-bonding interactions. The resultant sandwich-structured MXene/AgNW composite thin films (SMAFs) exhibit ultrahigh electrical conductivity (up to 27193 S cm-1 ), resulting in exceptional electromagnetic interference shielding effectiveness of 16 223.3 dB cm2 g-1 and impressive Joule heating performance with rapid heating rate of 10.4 °C s-1 . Moreover, the uniform SMAFs can also be facilely cut into kirigami-patterned interconnects, which indicate superior strain-insensitive conductance even after long-term exposure to extreme temperatures. The demonstrated strategy offers a significant paradigm to construct multifunctional composite thin films for next-generation integrated flexible electronics with practical applications.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Liu
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Teng Chen
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Bo Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
12
|
Ran L, Ma X, Qiu L, Sun F, Zhao L, Yi L, Ji X. Liquid metal assisted fabrication of MXene-based films: Toward superior electromagnetic interference shielding and thermal management. J Colloid Interface Sci 2023; 652:705-717. [PMID: 37524621 DOI: 10.1016/j.jcis.2023.07.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The development of thin and flexible films that possess both electromagnetic interference (EMI) shielding and thermal management capabilities has always been an intriguing pursuit, but itisnevertheless a crucialproblemtoaddress. Inspired by the deformability of liquid metal (LM) and film forming capacity of MXene, here we present a series of ternary compositing films prepared via cellulose nanofiber (CNF) assisted vacuum filtration technology. Originating from the highly conductive LM/MXene network, the MLMC film presents a maximum EMI shielding effectiness (EMI SE) of 78 dB at a tiny thickness of 45 μm, together with a high specific EMI SE of 3046 dB mm-1. Meanwhile, these compositing films also deliver excellent flexibility and mechanical reliability, showing no obvious decline in EMI shielding performance even after 1000 bending and 500 folding cycles, respectively. Moreover, notable anisotropic thermal conductive property was successfully achieved, allowing for a highly desirable in-plane thermal conductivity of 7.8 W m-1 K-1. This accomplishment also yielded an exceptional electro-thermal conversion capacity, enabling efficient low-voltage (3 V) heating capabilities. These captivating features are expected to greatly drive the widespread adoption of LM-based films in future flexible electronic and wearable technologies.
Collapse
Affiliation(s)
- Linxin Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Xinguo Ma
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Lijuan Qiu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Furong Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Longfei Yi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China.
| | - Xiaoying Ji
- Cigar Technology Innovation Center of China Tobacco, Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610100, PR China.
| |
Collapse
|
13
|
Huang Z, Zhang Y, Wang H, Li Y, Cui J, Wang Y, Liu J, Wu Y. Rapid Fabrication of Flexible Cu@Ag Flake/SAE Composites with Exceptional EMIS and Joule Heating Performance. ACS OMEGA 2023; 8:37032-37042. [PMID: 37841125 PMCID: PMC10568693 DOI: 10.1021/acsomega.3c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
High electromagnetic interference shielding (EMIS) effectiveness and good thermal management properties are both required to meet the rapid development of integrated electronic components. However, it remains challenging to obtain environmentally friendly and flexible films with high EMIS and thermal management performance in an efficient and scalable way. In this paper, an environmentally friendly strategy is proposed to synthesize multifunctional waterborne Cu@Ag flake conductive films using water as the solvent and silicone-acrylic emulsion (SAE) as a matrix. The obtained films show high electrical conductivity and exceptional EMI SE and electrothermal conversion properties. The EMI SE in the X-band is higher than 76.31 dB at a thickness of 60 μm owing to the ultrahigh electrical conductivity of 1073.61 S cm-1. The film warms up quickly to 102.1 °C within 10 s under a low voltage of 2.0 V. In addition, the shielding coating is sufficiently flexible to retain a conductivity of 93.4% after 2000 bending-release cycles with a bending radius of 3 mm. This work presents an alternative strategy to produce high EMIS effectiveness and Joule heating films for highly integrated and flexible electronic components in a green, scalable, and highly efficient way.
Collapse
Affiliation(s)
- Zhongxin Huang
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, Anhui, China
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Yong Zhang
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, Anhui, China
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
- China
International S&T Cooperation Base for Advanced Energy and Environmental
Materials, Hefei 230009, Anhui,China
| | - Huipeng Wang
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, Anhui, China
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Yuanyuan Li
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, Anhui, China
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
| | - Jiewu Cui
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, Anhui, China
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
- China
International S&T Cooperation Base for Advanced Energy and Environmental
Materials, Hefei 230009, Anhui,China
| | - Yan Wang
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, Anhui, China
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
- China
International S&T Cooperation Base for Advanced Energy and Environmental
Materials, Hefei 230009, Anhui,China
| | - Jiaqin Liu
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
- Institute
of Industry & Equipment Technology, Engineering Research Center
of Advanced Composite Materials Design & Application of Anhui
Province, Hefei University of Technology, Hefei 230009, China
- China
International S&T Cooperation Base for Advanced Energy and Environmental
Materials, Hefei 230009, Anhui,China
| | - Yucheng Wu
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, Anhui, China
- Key
Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China
- China
International S&T Cooperation Base for Advanced Energy and Environmental
Materials, Hefei 230009, Anhui,China
| |
Collapse
|
14
|
Wei Q, Li L, Deng Z, Wan G, Zhang Y, Du C, Su Y, Wang G. Scalable Fabrication of Nacre-Structured Graphene/Polytetrafluoroethylene Films for Outstanding EMI Shielding Under Extreme Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302082. [PMID: 37105765 DOI: 10.1002/smll.202302082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In this work, inspired by the great advantage of the unique "brick-mortar" layered structure as electromagnetic interference (EMI) shielding materials, a multifunctional flexible graphene nanosheets (GNS)/polytetrafluoroethylene (PTFE) composite film with excellent EMI shielding effects, impressive Joule heating performance, and light-to-heat conversion efficiency is fabricated based on the self-emulsifying process of PTFE. Both PTFE microspheres and nanofibers are employed together for the first time as "sand and cement" to build unique nacre-structured EMI shielding materials. Such configuration can obviously enhance the adhesion of composites and improve their mechanical property for the application under extreme environment. Moreover, the simple and effective repetitive roll pressing method can be used for the scalable production in industrialization. The GNS/PTFE composite film shows a high EMI shielding effectiveness (SE) of 50.85 dB. Furthermore, it has a high thermal conductivity of 16.54 W (m K)-1 , good flexibility, and recyclable properties. The excellent fire-resistant and hydrophobic properties of GNS/PTFE film also ensure its reliability and safety in practical application. In conclusion, the GNS/PTFE film demonstrates the potential for industrial manufacturing, and outstanding EMI shielding performance with high stability and durability, which has a broad application prospect for electronic devices in practical extreme outdoor environments.
Collapse
Affiliation(s)
- Qiyi Wei
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Liang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen Deng
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Gengping Wan
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Ying Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Changlong Du
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Yanran Su
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Guizhen Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
15
|
Bark H, Thangavel G, Liu RJ, Chua DHC, Lee PS. Effective Surface Modification of 2D MXene toward Thermal Energy Conversion and Management. SMALL METHODS 2023; 7:e2300077. [PMID: 37069766 DOI: 10.1002/smtd.202300077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Thermal energy management is a crucial aspect of many research developments, such as hybrid and soft electronics, aerospace, and electric vehicles. The selection of materials is of critical importance in these applications to manage thermal energy effectively. From this perspective, MXene, a new type of 2D material, has attracted considerable attention in thermal energy management, including thermal conduction and conversion, owing to its unique electrical and thermal properties. However, tailored surface modification of 2D MXenes is required to meet the application requirements or overcome specific limitations. Herein, a comprehensive review of surface modification of 2D MXenes for thermal energy management is discussed. First, this work discusses the current progress in the surface modification of 2D MXenes, including termination with functional groups, small-molecule organic compound functionalization, and polymer modification and composites. Subsequently, an in situ analysis of surface-modified 2D MXenes is presented. This is followed by an overview of the recent progress in the thermal energy management of 2D MXenes and their composites, such as Joule heating, heat dissipation, thermoelectric energy conversion, and photothermal conversion. Finally, some challenges facing the application of 2D MXenes are discussed, and an outlook on surface-modified 2D MXenes is provided.
Collapse
Affiliation(s)
- Hyunwoo Bark
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rui Jun Liu
- Department of Materials Sciences and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Daniel H C Chua
- Department of Materials Sciences and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Pei Y, An J, Wang K, Hui Z, Zhang X, Pan H, Zhou J, Sun G. Ti 3 C 2 T X MXene Ink Direct Writing Flexible Sensors for Disposable Paper Toys. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301884. [PMID: 37162447 DOI: 10.1002/smll.202301884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Flexible electronics have gained great attention in recent years owing to their promising applications in biomedicine, sustainable energy, human-machine interaction, and toys for children. Paper mainly produced from cellulose fibers is attractive substrate for flexible electronics because it is biodegradable, foldable, tailorable, and light-weight. Inspired by daily handwriting, the rapid prototyping of sensing devices with arbitrary patterns can be achieved by directly drawing conductive inks on flat or curved paper surfaces; this provides huge freedom for children to design and integrate "do-it-yourself (DIY)" electronic toys. Herein, viscous and additive-free ink made from Ti3 C2 TX MXene sediment is employed to prepare disposable paper electronics through a simple ball pen drawing. The as-drawn paper sensors possess hierarchical microstructures with interweaving nanosheets, nanoflakes, and nanoparticles, therefore exhibiting superior mechanosensing performances to those based on single/fewer-layer MXene nanosheets. As proof-of-concept applications, several popular children's games are implemented by the MXene-based paper sensors, including "You say, I guess," "Emotional expression," "Rock-Paper-Scissors," "Arm wrestling," "Throwing game," "Carrot squat," and "Grab the cup," as well as a DIY smart whisker for a cartoon mouse. Moreover, MXene-based paper sensors are safe and disposable, free from producing any e-waste and hazard to the environment.
Collapse
Affiliation(s)
- Yangyang Pei
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710129, P. R. China
| | - Jianing An
- Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710129, P. R. China
| | - Zengyu Hui
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710129, P. R. China
| | - Xiaoli Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710129, P. R. China
| | - Hongqing Pan
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
17
|
Oliveira FM, Azadmanjiri J, Wang X, Yu M, Sofer Z. Structure Design and Processing Strategies of MXene-Based Materials for Electromagnetic Interference Shielding. SMALL METHODS 2023:e2300112. [PMID: 37129581 DOI: 10.1002/smtd.202300112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The development of new materials for electromagnetic interference (EMI) shielding is an important area of research, as it allows for the creation of more effective and high-efficient shielding solutions. In this sense, MXenes, a class of 2D transition metal carbides and nitrides have exhibited promising performances as EMI shielding materials. Electric conductivity, low density, and flexibility are some of the properties given by MXene materials, which make them very attractive in the field. Different processing techniques have been employed to produce MXene-based materials with EMI shielding properties. This review summarizes processes and the role of key parameters like the content of fillers and thickness in the desired EMI shielding performance. It also discusses the determination of power coefficients in defining the EMI shielding mechanism and the concept of green shielding materials, as well as their influence on the real application of a produced material. The review concludes with a summary of current challenges and prospects in the production of MXene materials as EMI shields.
Collapse
Affiliation(s)
- Filipa M Oliveira
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Minghao Yu
- Centre for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| |
Collapse
|
18
|
Hu G, Cen Z, Xiong Y, Liang K. Progress of high performance Ti 3C 2T x MXene nanocomposite films for electromagnetic interference shielding. NANOSCALE 2023; 15:5579-5597. [PMID: 36883434 DOI: 10.1039/d2nr05047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the rapid growth of 5G communication technology, it is imperative to produce electromagnetic interference (EMI) shielding materials to combat the growing electromagnetic radiation pollution. For new shielding applications, EMI shielding materials with high flexibility, light weight and good mechanical strength are in high demand. Due to their light weight, high flexibility, excellent EMI shielding performance, high mechanical properties, and multifunctionality, Ti3C2Tx MXene nanocomposite films have shown absolute benefits in EMI shielding in recent years. Consequently, numerous lightweight and flexible high-performance Ti3C2Tx MXene nanocomposite films have been generated quickly. In this article, we discuss not only the present state of EMI shielding material research, but also the synthesis and electromagnetic properties of Ti3C2Tx MXene. In addition, the loss mechanism of EMI shielding is described, with an emphasis on the analysis and summary of the research progress of diverse layer structured Ti3C2Tx MXene nanocomposite films for EMI shielding. Finally, the current issues of design and fabrication for Ti3C2Tx MXene nanocomposite films that need to be addressed are proposed, as well as the future research direction for Ti3C2Tx MXene nanocomposite films.
Collapse
Affiliation(s)
- Guirong Hu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Zhuoqi Cen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang 315336, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Kun Liang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang 315336, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| |
Collapse
|
19
|
Idumah CI. Recently emerging advancements in thermal conductivity and flame retardancy of MXene polymeric nanoarchitectures. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C. I. Idumah
- Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
20
|
Nan B, Zhan Y, Xu CA. A review on the thermal conductivity properties of polymer/ nanodiamond nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bingfei Nan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona Spain
| | - Yingjie Zhan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, Kwangtung, China
| | - Chang-an Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, Kwangtung, China
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Kwangtung, China
| |
Collapse
|
21
|
Kim S, Vu CM, Kim S, In I, Lee J. Improved Mechanical Strength of Dicatechol Crosslinked MXene Films for Electromagnetic Interference Shielding Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:787. [PMID: 36903666 PMCID: PMC10005341 DOI: 10.3390/nano13050787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Pristine MXene films express outstanding excellent electromagnetic interference (EMI) shielding properties. Nevertheless, the poor mechanical properties (weak and brittle nature) and easy oxidation of MXene films hinder their practical applications. This study demonstrates a facile strategy for simultaneously improving the mechanical flexibility and the EMI shielding of MXene films. In this study, dicatechol-6 (DC), a mussel-inspired molecule, was successfully synthesized in which DC as mortars was crosslinked with MXene nanosheets (MX) as bricks to create the brick-mortar structure of the MX@DC film. The resulting MX@DC-2 film has a toughness of 40.02 kJ·m-3 and Young's modulus of 6.2 GPa, which are improvements of 513% and 849%, respectively, compared to those of the bare MXene films. The coating of electrically insulating DC significantly reduced the in-plane electrical conductivity from 6491 S·cm-1 for the bare MXene film to 2820 S·cm-1 for the MX@DC-5 film. However, the EMI shielding effectiveness (SE) of the MX@DC-5 film reached 66.2 dB, which is noticeably greater than that of the bare MX film (61.5 dB). The enhancement in EMI SE resulted from the highly ordered alignment of the MXene nanosheets. The synergistic concurrent enhancement in the strength and EMI SE of the DC-coated MXene film can facilitate the utilization of the MXene film in reliable, practical applications.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Canh Minh Vu
- Advanced Institue of Science and Technology, The University of Da Nang, Da Nang 550000, Vietnam
| | - Suehyeun Kim
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Insik In
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jihoon Lee
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
22
|
Zhang Y, Li L, Cao Y, Yang Y, Wang W, Wang J. High-strength, low infrared-emission nonmetallic films for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage. MATERIALS HORIZONS 2023; 10:235-247. [PMID: 36367197 DOI: 10.1039/d2mh01073a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-strength nonmetallic materials with low infrared (IR) emission are rare in nature, yet highly anticipated especially in military and aerospace fields for thermal camouflage, IR stealth, energy-saving heating. Here, we reported a high-strength (422 MPa) nonmetallic film with very low IR emissivity (12%), realized by constructing alternating multilayered structures consisting of successive MXene functionalized outer layers and continuous GO reinforced inner layers. This nonmetallic film is capable of competing with typical stainless steel (415 MPa, 15.5%), and exhibits remarkable thermal camouflage performance (ΔT = 335 °C), ultrahigh Joule heating capability (350 °C at 2 V), excellent solar-to-thermal conversion efficiency (70.2%), and ultrahigh specific electromagnetic interference shielding effectiveness (83 429 dB cm-1). Impressively, these functionalities can be maintained well after prolonged outdoor aging, and even after undergoing harsh application conditions including strong acid/alkali and boiling water immersion, and cryogenic (-196 °C) temperature.
Collapse
Affiliation(s)
- Yuxuan Zhang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lei Li
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanxia Cao
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanyu Yang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wanjie Wang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianfeng Wang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
23
|
Cui Y, Zhu J, Tong H, Zou R. Advanced perspectives on MXene composite nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques. iScience 2022; 26:105824. [PMID: 36632064 PMCID: PMC9826899 DOI: 10.1016/j.isci.2022.105824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MXene, 2D material, can be synthesized as single flake with 1 nm thickness by using phase change material, polymer and graphene oxide. Meanwhile, the MXene and its composite derivative materials have been applied widely in electro-to-thermal conversion, photo-to-thermal conversion, thermal energy storage, and 3D printing ink aspects. Furthermore, the forward-looking utilization of the MXene nanomaterials in hydrogen energy storage, radio frequency field application, CO2 capture and remediation of environmental pollution, is explored. This article reveals that the efficiencies of the photo-to-thermal and electro-to-thermal energy conversions with the MXene nanomaterials could reach about 80-90%. In parallel, it is demonstrated that the MXene printed ink has the excellent rheological property and high viscosity and stability of liquid, which contribute to arranging the multi-dimensional architectures with functional materials and controlling the flow rate of the MXene ink in the range of 0.03-0.15 mL/min for speedily printing and various printing structures.
Collapse
Affiliation(s)
- Yuanlong Cui
- School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China,Corresponding author
| | - Jie Zhu
- Department of Architecture and Built Environment, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Hui Tong
- School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China
| | - Ran Zou
- School of Management Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China,Corresponding author
| |
Collapse
|
24
|
Wang B, Jia P, He R, Song L, Hu Y. Multilayer Joule Heating and Electromagnetic Interference Shielding Composite Fabric with High Interfacial Durability. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.11.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Wang L, Ma Z, Qiu H, Zhang Y, Yu Z, Gu J. Significantly Enhanced Electromagnetic Interference Shielding Performances of Epoxy Nanocomposites with Long-Range Aligned Lamellar Structures. NANO-MICRO LETTERS 2022; 14:224. [PMID: 36378424 PMCID: PMC9666581 DOI: 10.1007/s40820-022-00949-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
High‑efficiency electromagnetic interference (EMI) shielding materials are of great importance for electronic equipment reliability, information security and human health. In this work, bidirectional aligned Ti3C2Tx@Fe3O4/CNF aerogels (BTFCA) were firstly assembled by bidirectional freezing and freeze-drying technique, and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins. Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect, when the mass fraction of Ti3C2Tx and Fe3O4 are 2.96 and 1.48 wt%, BTFCA/epoxy nanocomposites show outstanding EMI shielding effectiveness of 79 dB, about 10 times of that of blended Ti3C2Tx@Fe3O4/epoxy (8 dB) nanocomposites with the same loadings of Ti3C2Tx and Fe3O4. Meantime, the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability (Theat-resistance index of 198.7 °C) and mechanical properties (storage modulus of 9902.1 MPa, Young's modulus of 4.51 GPa and hardness of 0.34 GPa). Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security, aerospace and weapon manufacturing, etc.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, People's Republic of China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhonglei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Ze Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
26
|
Zhan Y, Nan B, Zheng X, Lu M, Shi J, Wu K. Ma Lao-like structural fireproof aramid nanofiber@Ag nanocomposite film enhanced with MXene for advanced thermal management applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Feng S, Yi Y, Chen B, Deng P, Zhou Z, Lu C. Rheology-Guided Assembly of a Highly Aligned MXene/Cellulose Nanofiber Composite Film for High-Performance Electromagnetic Interference Shielding and Infrared Stealth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36060-36070. [PMID: 35912584 DOI: 10.1021/acsami.2c11292] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delicately aligned structures of two-dimensional (2D) MXene nanosheets have demonstrated positive effects on applications, especially in electromagnetic interference (EMI) shielding and infrared (IR) stealth. However, precise regulation of structural assembly by theory-guided solution processing is still a great challenge. Herein, one-dimensional (1D) cellulose nanofibers (CNFs) with a high aspect ratio are applied as a reinforcing agent and a rheological modifier for MXene/CNF colloids to fabricate aligned MXene-based materials for EMI shielding and IR stealth. Notably, a systematical rheological study of the MXene/CNF colloids is proposed to determine the optimal solution-processing conditions for finely oriented component arrangement requirements and provides in-depth information on the interactions between the components. The delicately regulated orientation structure assembled by shear inducement is convincingly demonstrated through micro-CT and wide-angle X-ray diffraction/small-angle X-ray scattering (WAXD/SAXS), which endows the MXene/CNF film with a significantly enhanced electrical conductivity of 46 685 S m-1, a tensile strength of 281.7 MPa, and Young's modulus of 14.8 GPa. Furthermore, the highly aligned structure of the ultrathin film possesses a great enhancement in EMI shielding effectiveness (50.2 dB) and IR stealth (0.562 emissivity). These findings provide a fruitful understanding of the optimized fabrication in solution processing of high-performance MXene-based functional composite films and open up a great opportunity for the development of multifunctional stealth materials.
Collapse
Affiliation(s)
- Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Ya Yi
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Binxia Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
- Advanced Polymer Materials Research Center of Sichuan University, Shishi 362700, P. R. China
| |
Collapse
|
28
|
Li L, Cheng Q. MXene based nanocomposite films. EXPLORATION (BEIJING, CHINA) 2022; 2:20220049. [PMID: 37325612 PMCID: PMC10190843 DOI: 10.1002/exp.20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/16/2022] [Indexed: 06/17/2023]
Abstract
Since the first report in 2011, two-dimensional transition metal carbide/nitride MXenes have aroused widespread attention owing to the particular structure and physiochemical properties. In the last few years, MXene-based nanocomposite films have been widely investigated, showing promising applications in many fields. However, poor mechanical properties and thermal/electrical conductivities of MXene-based nanocomposite films still limited their practical applications. Herein, we summarize the fabrication approach of MXene-based nanocomposite films and discuss the mechanical properties and other applications, including electromagnetic interference shielding, thermal conductivity, and supercapacitors. Then, several vital factors for fabricating high performance MXene based nanocomposite films have been refined. To further fabricate high performance MXene-based nanocomposite films, some effective sequential bridging strategies are also discussed. Lastly, a conclusion of the challenges and opportunities of MXene-based nanocomposite films is provided to facilitate their development and application for various purposes in the future of scientific research.
Collapse
Affiliation(s)
- Lei Li
- School of ChemistryKey Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationBeihang UniversityBeijingChina
| | - Qunfeng Cheng
- School of ChemistryKey Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationBeihang UniversityBeijingChina
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina
| |
Collapse
|
29
|
Liu H, Wang Z, Wang J, Yang Y, Wu S, You C, Tian N, Li Y. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. NANOSCALE 2022; 14:9218-9247. [PMID: 35726826 DOI: 10.1039/d2nr02224a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nowadays, the extensive utilization of electronic devices and equipment inevitably leads to severe electromagnetic interference (EMI) issues. Therefore, EMI shielding materials have drawn considerable attention, and great effort has been devoted to the exploration of high-efficiency EMI shielding materials. As a novel kind of 2D transition metal carbide material, MXenes have been widely investigated for EMI shielding in the past few years due to their extraordinary electrical conductivity, large specific surface area, light weight, and easy processability. In view of the great achievements in MXene-based materials for EMI shielding, herein, we reviewed the recent studies on the structural design and evolution of MXenes and their composites for EMI shielding. First, the methods for structural control of MXenes, including HF etching, in situ HF etching, fluorine-free etching, electrochemical etching, and molten salt etching, are systematically summarized. Then we illustrate the fundamental relationship between the microstructure of MXenes and the EMI shielding mechanism. In the following, the effects of different synthesis methods and structures of MXene-based composite materials as well as their EMI shielding performances are comprehensively discussed. Lastly, future prospects for the development of MXene-based composite materials in EMI shielding applications are commented on.
Collapse
Affiliation(s)
- Heguang Liu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Zhe Wang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yujia Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Shaoqing Wu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Caiyin You
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Na Tian
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
30
|
Chand K, Zhang X, Chen Y. Recent Progress in MXene and Graphene based Nanocomposites for Microwave Absorption and EMI Shielding. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
32
|
Scalable MXene and PEDOT-CNT Nanocoatings for Fibre-Reinforced Composite De-Icing. MATERIALS 2022; 15:ma15103535. [PMID: 35629562 PMCID: PMC9144452 DOI: 10.3390/ma15103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
In this study, the de-icing performance is investigated between traditional carbon fibre-based coatings and novel MXene and poly(3,4-ethylenedioxythiophene)-coated single-walled carbon nanotube (PEDOT-CNT) nanocoatings, based on simple and scalable coating application. The thickness and morphology of the coatings are investigated using atomic force microscopy and scanning electron microscopy. Adhesion strength, as well as electrical properties, are evaluated on rough and glossy surfaces of the composite. The flexibility and electrical sensitivity of the coatings are studied under three-point bending. Additionally, the influence of ambient temperature on coating’s electrical resistance is investigated. Finally, thermal imaging and Joule heating are analysed with high-accuracy infrared cameras. Under the same power density, the increase in average temperature is 84% higher for MXenes and 117% for PEDOT-CNT, when compared with fibre-based coatings. Furthermore, both nanocoatings result in up to three times faster de-icing. These easily processable nanocoatings offer fast and efficient de-icing for large composite structures such as wind turbine blades without adding any significant weight.
Collapse
|
33
|
Li H, Zhao J, Huang L, Xia P, Zhou Y, Wang J, Jiang L. A Constrained Assembly Strategy for High-Strength Natural Nanoclay Film. ACS NANO 2022; 16:6224-6232. [PMID: 35293215 DOI: 10.1021/acsnano.2c00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing high-performance materials from existing natural materials is highly desired because of their environmental friendliness and low cost; two-dimensional nanoclay exfoliated from layered silicate minerals is a good building block to construct multilayered macroscopic assemblies for achieving high mechanical and functional properties. Nevertheless, the efforts have been frustrated by insufficient inter-nanosheet stress transfer and nanosheet misalignment caused by capillary force during solution-based spontaneous assembly, degrading the mechanical strength of clay-based materials. Herein, a constrained assembly strategy that is implemented by in-plane stretching a robust water-containing nanoclay network with hydrogen and ionic bonding is developed to adjust the 2D topography of nanosheets within multilayered nanoclay film. In-plane stretching overcomes capillary force during water removal and thus restrains nanosheet conformation transition from nearly flat to wrinkled, leading to a highly aligned multilayered nanostructure with synergistic hydrogen and ionic bonding. It is proved that inter-nanosheet hydrogen and ionic bonding and nanosheet conformation extension generate profound mechanical reinforcement. The tensile strength and modulus of natural nanoclay film reach up to 429.0 MPa and 43.8 GPa and surpass the counterparts fabricated by normal spontaneous assembly. Additionally, improved heat insulation function and good nonflammability are shown for the natural nanoclay film and extend its potential for realistic uses.
Collapse
Affiliation(s)
| | | | | | | | - Yahong Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing 100190, China
| | | | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Wang J, Ma X, Zhou J, Du F, Teng C. Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS NANO 2022; 16:6700-6711. [PMID: 35333052 DOI: 10.1021/acsnano.2c01323] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-strength, flexible, and multifunctional characteristics are highly desirable for electromagnetic interference (EMI) shielding materials in the field of electric devices. In this work, inspired by natural nacre, we fabricated large-scale, layered MXene/amarid nanofiber (ANF) nanocomposite papers by blade-coating process plus sol-gel conversion step. The as-synthesized papers possess excellent mechanical performance, that is, exceptional tensile strength (198.80 ± 5.35 MPa), large strain (15.30 ± 1.01%), and good flexibility (folded into various models without fracture), which are ascribed to synergetic interactions of the interconnected three-dimensional network frame and hydrogen bonds between MXene and ANF. More importantly, the papers with extensive continuous conductive paths formed by MXene nanosheets present a high EMI shielding effectiveness of 13188.2 dB cm2 g-1 in the frequency range of 8.2-12.4 GHz. More interestingly, the papers show excellent Joule heating performance with a fast thermal response (<10 s) and a low driving voltage (≤4 V). As such, the large-scale MXene/ANF papers are considered as promising alternatives in a wide range of applications in electromagnetic shielding and thermal management.
Collapse
Affiliation(s)
- Jie Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyan Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiale Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fanglin Du
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
35
|
Liu Z, Guo W, Wang W, Guo Z, Yao L, Xue Y, Liu Q, Zhang Q. Healable Strain Sensor Based on Tough and Eco-Friendly Biomimetic Supramolecular Waterborne Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6016-6027. [PMID: 35061368 DOI: 10.1021/acsami.1c21987] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable sensors are essential for flexible electronics, which can be made with polymer elastomers as the matrix. The main challenge in producing practical devices is to obtain polymers with mechanical stability, eco-friendliness, and self-healing properties. Herein, we introduce urea bonds and 2-ureido-4[1H]-pyrimidinone (UPy) to synthesize tailored waterborne polyurethanes (WPU-UPy-x) with a hierarchical hydrogen bond (H-bond). Accordingly, sound tensile performance (strength: 53.33 MPa, toughness: 128.97 MJ m-3), satisfying deformation recovery, and good self-healing capability of the WPU-UPy-x film are demonstrated. With atomic force microscope characterization, we find that UPy groups contribute to the highly improved microphase separation of WPU-UPy-x, responsible for good mechanical properties. As a proof of concept, a strain sensor is successfully configured, thanks to the good interfacial interactions between the polyurethane matrix and the Ti3C2Tx MXene conductive filler, which features sensitive and stable performance for monitoring diverse human and mechanical motions. Intriguingly, this sensor is capable of self-healing after cutting and displays well-retained sensitivity to detect the stretched signal. The as-proposed design concept for healable and sensitive strain sensors can shed light on future wearable electronics.
Collapse
Affiliation(s)
- Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wenyan Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zijian Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Laifeng Yao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ying Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qing Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
36
|
Shang S, Zhao N, Chen Y, Wang X, Hu F, Fan B, Zhao B, Lu H, Wang H, Zhang R. Ti 3C 2T x/rGO Aerogel Towards High Electromagnetic Wave Absorbing and Thermal Resistance. CrystEngComm 2022. [DOI: 10.1039/d2ce00578f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facing the fast development of telecommunication technology, traditional electromagnetic wave absorption materials are unable to meet the microwave shielding requirements in practical application. Herein, a Ti3C2Tx MXene/rGO composite aerogel was...
Collapse
|
37
|
Xue B, Li Y, Cheng Z, Yang S, Xie L, Qin S, Zheng Q. Directional Electromagnetic Interference Shielding Based on Step-Wise Asymmetric Conductive Networks. NANO-MICRO LETTERS 2021; 14:16. [PMID: 34870788 PMCID: PMC8648885 DOI: 10.1007/s40820-021-00743-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 05/21/2023]
Abstract
Some precision electronics such as signal transmitters need to not only emit effective signal but also be protected from the external electromagnetic (EM) waves. Thus, directional electromagnetic interference (EMI) shielding materials (i.e., when the EM wave is incident from different sides of the sample, the EMI shielding effectiveness (SE) is rather different) are strongly required; unfortunately, no comprehensive literature report is available on this research field. Herein, Ni-coated melamine foams (Ni@MF) were obtained by a facile electroless plating process, and multiwalled carbon nanotube (CNT) papers were prepared via a simple vacuum-assisted self-assembly approach. Then, step-wise asymmetric poly(butylene adipate-co-terephthalate) (PBAT) composites consisting of loose Ni@MF layer and compact CNT layer were successfully fabricated via a facile solution encapsulation approach. The step-wise asymmetric structures and electrical conductivity endow the Ni@MF/CNT/PBAT composites with unprecedented directional EMI shielding performances. When the EM wave is incident from Ni@MF layer or CNT layer, Ni@MF-5/CNT-75/PBAT exhibits the total EMI SE (SET) of 38.3 and 29.5 dB, respectively, which illustrates the ΔSET of 8.8 dB. This work opens a new research window for directional EMI shielding composites with step-wise asymmetric structures, which has promising applications in portable electronics and next-generation communication technologies.
Collapse
Affiliation(s)
- Bai Xue
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials, National and Local Joint Engineering Research Center for Functional Polymer Membrane Materials and Membrane Processes, Guiyang, 550014, People's Republic of China
| | - Yi Li
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Ziling Cheng
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Shengdu Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Lan Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China.
- National Engineering Research Center for Compounding and Modification of Polymer Materials, National and Local Joint Engineering Research Center for Functional Polymer Membrane Materials and Membrane Processes, Guiyang, 550014, People's Republic of China.
| | - Shuhao Qin
- National Engineering Research Center for Compounding and Modification of Polymer Materials, National and Local Joint Engineering Research Center for Functional Polymer Membrane Materials and Membrane Processes, Guiyang, 550014, People's Republic of China
| | - Qiang Zheng
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
38
|
Zhao Y, Hao L, Zhang X, Tan S, Li H, Zheng J, Ji G. A Novel Strategy in Electromagnetic Wave Absorbing and Shielding Materials Design: Multi‐Responsive Field Effect. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100077] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yue Zhao
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Lele Hao
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Xindan Zhang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Shujuan Tan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Haohang Li
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Jing Zheng
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing 210037 P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| |
Collapse
|
39
|
Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydr Polym 2021; 274:118652. [PMID: 34702471 DOI: 10.1016/j.carbpol.2021.118652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
A high-yield and straightforward method is proposed to obtain an electromagnetic interference (EMI) shielding film based on multilayered Ti3C2Tx (m-Ti3C2Tx). Holocellulose nanofibrils modified by sulfamic acid (SHCNF) with unique "core-shell" structure can act as a dispersant and a binder to assist in exfoliating m-Ti3C2Tx into delaminated-Ti3C2Tx (d-Ti3C2Tx) and fabricate flexible Ti3C2Tx/SHCNF composite films with a high-yield value. The "brick-and-mortar" composite films exhibit a superior electromagnetic interference (EMI) shielding effectiveness (SE) of 45.02 dB with an ultrathin thickness of 40 μm at the 12.4 GHz. Moreover, these flexible and strong integrated Ti3C2Tx/SHCNF composite films also display excellent specific EMI SE of SSE/t (4437 dB cm2 g-1) and high EMI shielding efficiency (99.996%). Therefore, the SHCNF-assisted method provides a cost-effective approach to fabricate a strong and flexible MXene-based nanocomposite films toward EMI shielding application.
Collapse
|
40
|
Jiang D, Zhang J, Qin S, Hegh D, Usman KAS, Wang J, Lei W, Liu J, Razal JM. Scalable Fabrication of Ti 3C 2T x MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51333-51342. [PMID: 34696589 DOI: 10.1021/acsami.1c13808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High aspect ratio two-dimensional Ti3C2Tx MXene flakes with extraordinary mechanical, electrical, and thermal properties are ideal candidates for assembling elastic and conductive aerogels. However, the scalable fabrication of large MXene-based aerogels remains a challenge because the traditional preparation method relies on supercritical drying techniques such as freeze drying, resulting in poor scalability and high cost. Herein, the use of porous melamine foam as a robust template for MXene/reduced graphene oxide aerogel circumvents the volume shrinkage during its natural drying process. Through this approach, we were able to produce large size (up to 600 cm3) MXene-based aerogel with controllable shape. In addition, the aerogels possess an interconnected cellular structure and display resilience up to 70% of compressive strain. Some key features also include high solvent absorption capacity (∼50-90 g g-1), good photothermal conversion ability (an average evaporation rate of 1.48 kg m-2 h-1 for steam generation), and an excellent electrothermal conversion rate (1.8 kg m-2 h-1 at 1 V). More importantly, this passive drying process provides a scalable, convenient, and cost-effective approach to produce high-performance MXene-based aerogels, demonstrating the feasibility of commercial production of MXene-based aerogels toward practical applications.
Collapse
Affiliation(s)
- Degang Jiang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jinfeng Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
41
|
Anju, Yadav RS, Pötschke P, Pionteck J, Krause B, Kuřitka I, Vilcakova J, Skoda D, Urbánek P, Machovsky M, Masař M, Urbánek M, Jurca M, Kalina L, Havlica J. High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn 2+-Substituted CoFe 2O 4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution. ACS OMEGA 2021; 6:28098-28118. [PMID: 34723009 PMCID: PMC8552366 DOI: 10.1021/acsomega.1c04192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 03/08/2024]
Abstract
The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.
Collapse
Affiliation(s)
- Anju
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Raghvendra Singh Yadav
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Petra Pötschke
- Leibniz
Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany
| | - Jürgen Pionteck
- Leibniz
Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany
| | - Beate Krause
- Leibniz
Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany
| | - Ivo Kuřitka
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Jarmila Vilcakova
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - David Skoda
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Pavel Urbánek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Machovsky
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Milan Masař
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Urbánek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Marek Jurca
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Lukas Kalina
- Materials
Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech
Republic
| | - Jaromir Havlica
- Materials
Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech
Republic
| |
Collapse
|
42
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
43
|
Zhang Y, Ruan K, Gu J. Flexible Sandwich-Structured Electromagnetic Interference Shielding Nanocomposite Films with Excellent Thermal Conductivities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101951. [PMID: 34523229 DOI: 10.1002/smll.202101951] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Indexed: 05/21/2023]
Abstract
With the rapid development and popularization of smart, portable, and wearable flexible electronic devices, urgent demands have been raised for flexible electromagnetic interference (EMI) shielding films to solve related electromagnetic pollution problems. With polyvinyl alcohol (PVA) as polymer matrix, the sandwich-structured EMI shielding nanocomposite films are prepared via electrospinning-laying-hot pressing technology, where Fe3 O4 /PVA composite electrospun nanofibers in the top and bottom layers and Ti3 C2 Tx /PVA composite electrospun nanofibers in the middle layer. Owing to the electrospinning process and the successful construction of the sandwich structure, when the amounts of Ti3 C2 Tx and Fe3 O4 are respectively only 13.3 and 26.7 wt%, the EMI shielding effectiveness (EMI SE) of the sandwich-structured EMI shielding nanocomposite films reach 40 dB with the thickness of 75 µm, higher than that of (Fe3 O4 /Ti3 C2 Tx )/PVA EMI shielding nanocomposite films (21 dB) prepared based on blending-electrospinning-hot pressing process under the same amounts of fillers. Furthermore, the prepared sandwich-structured EMI shielding nanocomposite films possess excellent thermal conductivities and mechanical properties. This novel kind of flexible sandwich-structured EMI shielding nanocomposite films with excellent EMI shielding performances, thermal conductivities, and mechanical properties presents broad application prospects in the fields of EMI shielding and protection for high-power, portable, and wearable flexible electronic devices.
Collapse
Affiliation(s)
- Yali Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
44
|
Sun Z, Song C, Zhou J, Hao C, Liu W, Liu H, Wang J, Huang M, He S, Yang M. Rapid Photothermal Responsive Conductive MXene Nanocomposite Hydrogels for Soft Manipulators and Sensitive Strain Sensors. Macromol Rapid Commun 2021; 42:e2100499. [PMID: 34480782 DOI: 10.1002/marc.202100499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Stimulus-responsive hydrogels are of great significance in soft robotics, wearable electronic devices, and sensors. Near-infrared (NIR) light is considered an ideal stimulus as it can trigger the response behavior remotely and precisely. In this work, a smart flexible stimuli-responsive hydrogel with excellent photothermal property and decent conductivity are prepared by incorporating MXene nanosheets into the physically cross-linked poly(N-isopropyl acrylamide) hydrogel matrix. Because of outstanding photothermal effect and dispersion of MXene, the composite hydrogel exhibits rapid photothermal responsiveness and excellent photothermal stability under the NIR irradiation. Furthermore, the anisotropic bilayer hydrogel actuator shows fast and controllable light-driven bending behavior, which can be used as a light-controlled soft manipulator. Meanwhile, the hydrogel sensor exhibits cycling stability and good durability in detecting various deformation and real-time human activities. Therefore, the present study involving the fabrication of MXene nanocomposite hydrogels for potential applications in remotely controlled actuator and wearable electronic device provides a new method for the development of photothermal responsive conductive hydrogels.
Collapse
Affiliation(s)
- Zhichao Sun
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Changyuan Song
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Junjie Zhou
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Chaobo Hao
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Jianfeng Wang
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingcheng Yang
- Henan Academy of Sciences, Isotope Institute Co., Ltd., 7 Songshan South Road, Zhengzhou, 450015, China
| |
Collapse
|
45
|
Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti 3C 2T x MXene-Decorated Nanoporous Polyethylene Textile for Passive and Active Personal Precision Heating. ACS NANO 2021; 15:11396-11405. [PMID: 34165297 DOI: 10.1021/acsnano.1c00903] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heating the human body to maintain a relatively constant temperature is pivotal for various human functions. However, most of the current heating strategies are energy-consuming and energy-wasting and cannot cope with the complex and changing environment. Developing materials and systems that can heat the human body precisely via an efficient energy-saving approach no matter indoors/outdoors, day/night, and sunny/cloudy is highly anticipated for mitigating the growing energy crisis and global warming but is still a great challenge. Here, we demonstrate the low mid-infrared radiative (mid-IR) emissivity characteristic of Ti3C2Tx MXene and then apply it for energy-free passive radiative heating (PRH) on the human body. Our strategy is realized by simply decorating the cheap nanoporous polyethylene (nanoPE) textile with MXene. Impressively, the as-obtained 12 μm thick MXene/nanoPE textile shows a low mid-IR emissivity of 0.176 at 7-14 μm and outstanding indoor PRH performance on the human body, which enhances by 4.9 °C compared with that of traditional 576 μm thick cotton textile. Meanwhile, the MXene/nanoPE textile exhibits excellent active outdoor solar heating and indoor/outdoor Joule heating capability. The three heating modes integrated in this wearable MXene/nanoPE heating system can be switched easily or combined arbitrarily, making this thin heating system able to heat the human body precisely in various scenarios like indoors/outdoors, day/night, and sunny/cloudy, providing multiple promising and energy-saving solutions for future all-day personal precision thermal management.
Collapse
Affiliation(s)
- Mengke Shi
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Mingming Shen
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyi Guo
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuxiu Jin
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yanxia Cao
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Wanjie Wang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
46
|
Zhou Z, Song Q, Huang B, Feng S, Lu C. Facile Fabrication of Densely Packed Ti 3C 2 MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. ACS NANO 2021; 15:12405-12417. [PMID: 34251191 DOI: 10.1021/acsnano.1c04526] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of modern electronics has raised great demand for multifunctional materials to protect electronic instruments against electromagnetic interference (EMI) radiation and ice accretion in cold weather. However, it is still a great challenge to prepare high-performance multifunctional films with excellent flexibilty, mechanical strength, and durability. Here, we propose a layer-by-layer assembly of cellulose nanofiber (CNF)/Ti3C2Tx nanocomposites (TM) on a bacterial cellulose (BC) substrate via repeated spray coating. CNFs are hybridized with Ti3C2Tx nanoflakes to improve the mechanical properties of the functional coating layer and its adhesion with the BC substrate. The densely packed hierarchical structure and strong interfacial interactions endows the TM/BC films with good flexibility, ultrahigh mechanical strength (>250 MPa), and desirable toughness (>20 MJ cm-3). Furthermore, benefiting from the densely packed hierarchical structure, the resultant TM/BC films present outstanding EMI shielding effictiveness of 60 dB and efficient electro-/photothermal heating performance. Silicone encapsulation further imparts high hydrophobicity and exceptional durability against solutions and deformations to the multifunctional films. Impressively, the silicone-coated TM/BC film (Si-TM/BC) exhibits desirable low voltage-driven Joule heating and excellent photoresponsive heating performance, which demonstrates great feasibility for efficient thermal deicing under actual conditions. Therefore, we believe that the Si-TM/BC film with excellent mechanical properties and durability holds great promise for the practical applications of EMI shielding and ice accretion elimination.
Collapse
Affiliation(s)
- Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Quancheng Song
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Bingxue Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Yang S, Yan DX, Li Y, Lei J, Li ZM. Flexible Poly(vinylidene fluoride)-MXene/Silver Nanowire Electromagnetic Shielding Films with Joule Heating Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01632] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Song Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
48
|
Li C, Gao Y, Wang L, Li J, Guo S. Fabrication, structure, and properties of Poly-(Lactide) multilayers with ultrahigh content, ordered, and continuous transcrystallinity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Zhao B, Bai P, Wang S, Ji H, Fan B, Zhang R, Che R. High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29101-29112. [PMID: 34114791 DOI: 10.1021/acsami.1c05327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly efficient electrical heaters along with excellent electromagnetic interference (EMI) shielding properties are urgently required for the progress of miniaturization electronics, artificial intelligence, and smart heating management setups. Herein, lignin removal, which comprises two efficient and versatile steps, followed by carbonization produces multifunctional carbon monoliths derived from natural wood. The obtained carbonized wood exhibits a high specific surface area (655.14 m2/g) and electrical (17.5 S/cm) and thermal conductivity (0.58 W/m·K), superhydrophilicity (contact angle of ∼0°), and excellent EMI shielding ability and Joule heating performance. The high electrical conductivity renders a low-voltage-actuated Joule heating performance and fascinating EMI shielding effectiveness of 55 dB, primarily resulting from the absorption mechanism. Moreover, regulation of the carbonized woods derived from the longitudinal to the radial direction enables transformation of hydrophilicity, strong thermal conductivity, and absorption-dominated EMI shielding to hydrophobicity, thermal insulation, and reflection-dominated EMI shielding. This is attributed to the unique anisotropic microstructure of carbon scaffolds. It is believed that these multifunctional carbon scaffolds can be used for intelligent electronics, EMI shielding, and thermal heating instruments.
Collapse
Affiliation(s)
- Biao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, P. R. China
| | - Pengwei Bai
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, P. R. China
| | - Shuai Wang
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, P. R. China
| | - Hanyu Ji
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, P. R. China
| | - Bingbing Fan
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Rui Zhang
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
50
|
Wang B, Lai X, Li H, Jiang C, Gao J, Zeng X. Multifunctional MXene/Chitosan-Coated Cotton Fabric for Intelligent Fire Protection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23020-23029. [PMID: 33949192 DOI: 10.1021/acsami.1c05222] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multifunctional intelligent fireproof cotton fabrics are urgently demanded in the era of the Internet of Things. Herein, a novel high fire safety cotton fabric (denoted as MXene/CCS@CF) with temperature sensing, fire-warning, piezoresistivity, and Joule heating performance was developed by coating MXene nanosheet and carboxymethyl chitosan (CCS) via an eco-friendly layer-by-layer assembly method. Benefiting from the thermoelectric characteristic and high conductivity of MXene nanosheet, MXene/CCS@CF exhibited accurate wide-range temperature sensing performance. When being burned, it could repeatedly trigger the fire-warning system in less than 10 s. More importantly, MXene/CCS@CF showed outstanding flame retardancy because of the synergistic carbonization between MXene and CCS. The limiting oxygen index of MXene/CCS@CF was as high as 45.5%, and the char length was only 33 mm after the vertical burning test. Meanwhile, its peak heat release rate reduced more than 66%. Besides, the obtained fabric could detect a variety of human motions. Moreover, the controllable Joule heating performance enabled the fabric to be used in extreme cold weather. This work provides a facile approach to fabricating a next-generation high fire safety cotton fabric, showing promising applications in firefighting, home automation, and smart transportation.
Collapse
Affiliation(s)
- Binglin Wang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Changcheng Jiang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| |
Collapse
|