1
|
Nie Y, Mu Q, Sun Y, Ferdous Z, Wang L, Chen C, Nakajima T, Gong JP, Tanaka S, Tsuda M. Mechanochemistry-Induced Universal Hydrogel Surface Modification for Orientation and Enhanced Differentiation of Skeletal Muscle Myoblasts. ACS APPLIED BIO MATERIALS 2025; 8:3144-3155. [PMID: 40106521 DOI: 10.1021/acsabm.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Micropatterned surface substrates containing topographic cues offer the possibility of programming tissue organization as a cell template by guiding cell alignment, adhesion, and function. In this study, we developed and used a force stamp method to grow aligned micropatterns with tunable chemical properties and elasticity on the surface of hydrogels based on a force-triggered polymerization mechanism of double-network hydrogels to elucidate the underlying mechanisms by which cells sense and respond to their mechanical and chemical microenvironments. In this work, we describe the impact of aligned micropatterns on the combined effects of microstructural chemistry and mechanics on the selective adhesion, directed migration, and differentiation of myoblasts. Our investigations revealed that topographically engineered substrates with hydrophobic and elevated surface roughness significantly enhanced myoblast adhesion kinetics. Concurrently, spatially ordered architectures facilitated cytoskeletal reorganization in myocytes, establishing biomechanically favorable niches for syncytial myotube development through extracellular matrix (ECM) physical guidance. Reverse transcription PCR analysis and immunofluorescence revealed that the expression of differentiation-specific genes, myosin heavy chain, and myogenic regulatory factors Myf5 and MyoD was upregulated in muscle cells on the aligned patterned scaffolds. These results suggest that the aligned micropatterns can promote muscle cell differentiation, making them potential scaffolds for enhancing skeletal differentiation.
Collapse
Affiliation(s)
- Yuheng Nie
- Graduate School of Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Qifeng Mu
- Graduate School of Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Yanpeng Sun
- Graduate School of Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Zannatul Ferdous
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Cewen Chen
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
- Department of Surgical Pathology, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo 060-8648, Japan
| | - Masumi Tsuda
- Graduate School of Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Lin Y, Wu A, Zhang Y, Duan H, Zhu P, Mao Y. Recent progress of nanomaterials-based composite hydrogel sensors for human-machine interactions. DISCOVER NANO 2025; 20:60. [PMID: 40156703 PMCID: PMC11954787 DOI: 10.1186/s11671-025-04240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Hydrogel-based flexible sensors have demonstrated significant advantages in the fields of flexible electronics and human-machine interactions (HMIs), including outstanding flexibility, high sensitivity, excellent conductivity, and exceptional biocompatibility, making them ideal materials for next-generation smart HMI sensors. However, traditional hydrogel sensors still face numerous challenges in terms of reliability, multifunctionality, and environmental adaptability, which limit their performance in complex application scenarios. Nanomaterial-based composite hydrogels significantly improve the mechanical properties, conductivity, and multifunctionality of hydrogels by incorporating conductive nanomaterials, thereby driving the rapid development of wearable sensors for HMIs. This review systematically summarizes the latest research progress on hydrogels based on carbon nanomaterials, metal nanomaterials, and two-dimensional MXene nanomaterials, and provides a comprehensive analysis of their sensing mechanisms in HMI, including triboelectric nanogenerator mechanism, stress-resistance response mechanism, and electrophysiological acquisition mechanism. The review further explores the applications of composite hydrogel-based sensors in personal electronic device control, virtual reality/augmented reality (VR/AR) game interaction, and robotic control. Finally, the current technical status and future development directions of nanomaterial composite hydrogel sensors are summarized. We hope that this review will provide valuable insights and inspiration for the future design of nanocomposite hydrogel-based flexible sensors in HMI applications.
Collapse
Affiliation(s)
- Yuyang Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Aobin Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Yitao Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyang Duan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Jolfaei MA, Zhao Y, Spinks GM, Jiang Z. Designing fast-response porous hydrogel actuators with improved toughness. Chem Commun (Camb) 2024. [PMID: 39555598 DOI: 10.1039/d4cc04379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A design concept for porous hydrogel actuators is demonstrated, combining lower critical solution temperature (LCST)-type phase separation with crystallinity formation. In contrast to the existing methods of producing porous hydrogels, our concept could not only generate fast actuation speed, but also greatly enhance the hydrogel tensile strength and toughness.
Collapse
Affiliation(s)
- Maryam Adavoudi Jolfaei
- School of Mechanical Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Yufeng Zhao
- Molecular Horizons Institute, Faculty of Science, Medicine and Health, University of Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, NSW 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Zhen Jiang
- School of Mechanical Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
4
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
5
|
Amin Y, Nugroho N, Bahtiar ET, Dwianto W, Lubis MAR, Adzkia U, Karlinasari L. Surface Roughness, Dynamic Wettability, and Interphase of Modified Melamine Formaldehyde-Based Adhesives on Jabon Wood. Polymers (Basel) 2024; 16:1084. [PMID: 38675002 PMCID: PMC11054265 DOI: 10.3390/polym16081084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The surface roughness and wettability of wood are critical aspects to consider when producing laminated wood products with adhesive applications. This study aims to investigate the surface roughness and dynamic wettability of Jabon wood in the presence of melamine formaldehyde (MF)-based adhesives. Commercial MF adhesives (MF-0) and modified MF adhesives (MF-1) were applied to Jabon wood, which includes tangential (T), radial (R), and semi-radial (T/R) surfaces. The surface roughness of Jabon wood was assessed using a portable stylus-type profilometer. The low-bond axisymmetric drop shape analysis (LB-ADSA) method was employed to identify the contact angle (θ) of the MF-based adhesives on Jabon wood. The wettability was determined by evaluating the constant contact angle change rate (K value) using the Shi and Gardner (S/G) model. Dynamic mechanical analysis (DMA) was employed to investigate the viscoelastic characteristics of the interphase analysis of the wood and MF-based adhesives. The roughness level (Ra) of the Jabon board ranged from 5.62 to 6.94 µm, with the T/R having a higher level of roughness than the R and T. MF-0 exhibited a higher K value (0.262-0.331) than MF-1 (0.136-0.212), indicating that MF-0 wets the surface of Jabon wood more easily than MF-1. The wood-MF-0 interphase reached a maximum stiffness of 957 N/m at 123.0 °C, while the wood-MF-1 had a maximum stiffness of 2734 N/m at 110.5 °C. In addition, the wood-MF-0 had a maximum storage modulus of 12,650 MPa at a temperature of 128.9 °C, while the wood-MF-1 had a maximum storage modulus of 22,950 MPa at 113.5 °C.
Collapse
Affiliation(s)
- Yusup Amin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (W.D.); (M.A.R.L.)
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (N.N.); (E.T.B.); (U.A.)
| | - Naresworo Nugroho
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (N.N.); (E.T.B.); (U.A.)
| | - Effendi Tri Bahtiar
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (N.N.); (E.T.B.); (U.A.)
| | - Wahyu Dwianto
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (W.D.); (M.A.R.L.)
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (W.D.); (M.A.R.L.)
| | - Ulfa Adzkia
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (N.N.); (E.T.B.); (U.A.)
| | - Lina Karlinasari
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (N.N.); (E.T.B.); (U.A.)
| |
Collapse
|
6
|
Mu Q, Hu J. Polymer mechanochemistry: from single molecule to bulk material. Phys Chem Chem Phys 2024; 26:679-694. [PMID: 38112120 DOI: 10.1039/d3cp04160c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The field of polymer mechanochemistry has experienced a renaissance over the past decades, primarily propelled by the rapid development of force-sensitive molecular units (i.e., mechanophores) and principles governing the reactivity of polymer networks for mechanochemical transduction or material strengthening. In addition to fundamental guidelines for converting mechanical energy input into chemical output, there has also been increasing focus on engineering applications of polymer mechanochemistry for specific functions, mechanically adaptive material systems, and smart devices. These endeavors are made possible by multidisciplinary approaches involving the development of multifunctional mechanophores for mechanoresponsive polymer systems, mechanochemical catalysis and synthesis, three-dimensional (3D) printed mechanochromic materials, reasonable design of polymer network topology, and computational modeling. The aim of this minireview is to provide a summary of recent advancements in covalent polymer mechanochemistry. We specifically focus on productive mechanophores, mechanical remodeling of polymeric materials, and the development of theoretical concepts.
Collapse
Affiliation(s)
- Qifeng Mu
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jian Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
7
|
Razzaq MY, Balk M, Mazurek-Budzyńska M, Schadewald A. From Nature to Technology: Exploring Bioinspired Polymer Actuators via Electrospinning. Polymers (Basel) 2023; 15:4029. [PMID: 37836078 PMCID: PMC10574948 DOI: 10.3390/polym15194029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Nature has always been a source of inspiration for the development of novel materials and devices. In particular, polymer actuators that mimic the movements and functions of natural organisms have been of great interest due to their potential applications in various fields, such as biomedical engineering, soft robotics, and energy harvesting. During recent years, the development and actuation performance of electrospun fibrous meshes with the advantages of high permeability, surface area, and easy functional modification, has received extensive attention from researchers. This review covers the recent progress in the state-of-the-art electrospun actuators based on commonly used polymers such as stimuli-sensitive hydrogels, shape-memory polymers (SMPs), and electroactive polymers. The design strategies inspired by nature such as hierarchical systems, layered structures, and responsive interfaces to enhance the performance and functionality of these actuators, including the role of biomimicry to create devices that mimic the behavior of natural organisms, are discussed. Finally, the challenges and future directions in the field, with a focus on the development of more efficient and versatile electrospun polymer actuators which can be used in a wide range of applications, are addressed. The insights gained from this review can contribute to the development of advanced and multifunctional actuators with improved performance and expanded application possibilities.
Collapse
Affiliation(s)
- Muhammad Yasar Razzaq
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| | - Maria Balk
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, D-14513 Teltow, Germany
| | | | - Anke Schadewald
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| |
Collapse
|
8
|
Pan S, Zhang N, He X, Fang Z, Wu Y, Wei Y, Tao L. Poly(vinyl alcohol) Modified via the Hantzsch Reaction for Biosafe Antioxidant Self-Healing Hydrogel. ACS Macro Lett 2023; 12:1037-1044. [PMID: 37440314 DOI: 10.1021/acsmacrolett.3c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Efficient routes for the preparation of functional self-healing hydrogels from functional polymers are needed. In this study, we developed a strategy to effectively produce a vanillin-modified poly(vinyl alcohol) (PVA-vanillin) through the Hantzsch reaction. This polymer was cross-linked with a phenylboronic acid-containing polymer (PB) that was also prepared using the Hantzsch reaction to fabricate a hydrogel through borate ester linkages under mild conditions (25 °C, pH ∼ 7.4). This hydrogel had excellent antioxidant abilities due to the 1,4-dihydropyridine (DHP) rings and the vanillin moieties in the hydrogel structures; it was also self-healable and injectable owing to the dynamic borate ester linkages. Furthermore, the antioxidant self-healing hydrogel had low cytotoxicity and exhibited favorable safety in animal experiments, indicating its potential as a safe implantable cell or drug carrier. This study developed a method for preparing functional polymers and related self-healing hydrogels in a facile manner; it demonstrated the value of the Hantzsch reaction in exploiting antioxidant self-healing hydrogels for biomedical applications, which may provide insight into the design of other functional self-healing hydrogels through different multicomponent reactions.
Collapse
Affiliation(s)
- Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Wang SC, Du ST, Hashmi S, Cui SM, Li L, Handschuh-Wang S, Zhou X, Stadler FJ. Understanding Gel-Powers: Exploring Rheological Marvels of Acrylamide/Sodium Alginate Double-Network Hydrogels. Molecules 2023; 28:4868. [PMID: 37375423 DOI: 10.3390/molecules28124868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the rheological properties of dual-network hydrogels based on acrylamide and sodium alginate under large deformations. The concentration of calcium ions affects the nonlinear behavior, and all gel samples exhibit strain hardening, shear thickening, and shear densification. The paper focuses on systematic variation of the alginate concentration-which serves as second network building blocks-and the Ca2+-concentration-which shows how strongly they are connected. The precursor solutions show a typical viscoelastic solution behavior depending on alginate content and pH. The gels are highly elastic solids with only relatively small viscoelastic components, i.e., their creep and creep recovery behavior are indicative of the solid state after only a very short time while the linear viscoelastic phase angles are very small. The onset of the nonlinear regime decreases significantly when closing the second network (alginate) upon adding Ca2+, while at the same time the nonlinearity parameters (Q0, I3/I1, S, T, e3/e1, and v3/v1) increase significantly. Further, the tensile properties are significantly improved by closing the alginate network by Ca2+ at intermediate concentrations.
Collapse
Affiliation(s)
- Shi-Chang Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Shu-Tong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Saud Hashmi
- Department of Polymer & Petrochemical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
| | - Shu-Ming Cui
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Ling Li
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
10
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
11
|
Selective Photocatalytic Reduction of Nitrobenzene to Aniline Using TiO 2 Embedded in sPS Aerogel. Polymers (Basel) 2023; 15:polym15020359. [PMID: 36679240 PMCID: PMC9863058 DOI: 10.3390/polym15020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
In recent years, aromatic substances have become the focus of environmental pollution-related concern due to their high stability and mutagenicity. In this regard, researchers have focused their attention on the development of photocatalytic processes to convert nitroaromatic compounds into aniline. In this work, the photocatalytic conversion of nitrobenzene (NB) to aniline (AN) was studied. The photocatalytic reaction was performed using commercial TiO2 (P25) and a photocatalytic aerogel, based on P25 embedded in syndiotactic polystyrene (sPS) aerogel (sPS/P25 aerogel) as photocatalysts. Different alcohols were used as hydrogen sources during the photocatalytic experiments. At the optimized operating conditions (photocatalysts dosage: 0.5 mg/L and 50% (v/v) EtOH%), an AN yield of over 99% was achieved. According to the results, this work could open avenues toward effective production of AN from NB using mild reaction conditions with sPS/P25 aerogel-in view of a possible scale-up of the photocatalytic process.
Collapse
|
12
|
Taweekarn T, Wongniramaikul W, Boonkanon C, Phanrit C, Sriprom W, Limsakul W, Towanlong W, Phawachalotorn C, Choodum A. Starch Biocryogel for Removal of Methylene Blue by Batch Adsorption. Polymers (Basel) 2022; 14:polym14245543. [PMID: 36559910 PMCID: PMC9787997 DOI: 10.3390/polym14245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
A green monolithic starch cryogel was prepared and applied for the removal of methylene blue (MB) using a batch system. The influence of various experimental parameters on MB adsorption was investigated. High removal efficiency (81.58 ± 0.59%) and adsorption capacity (34.84 mg g-1) were achieved. The Langmuir model better fitted the experimental data (determination coefficient (R2) = 0.9838) than the Freundlich one (R2 = 0.8542), while the kinetics of MB adsorption on the cryogel followed a pseudo-second-order model. The adsorption process was spontaneous and endothermic with an activation energy of 37.8 kJ mol-1 that indicated physical adsorption. The starch cryogel was used for MB removal from a wastewater sample collected from a local Batik production community enterprise in Phuket, Thailand, and a removal efficiency of 75.6% was achieved, indicating that it has a high potential as a green adsorbent for MB removal.
Collapse
Affiliation(s)
- Tarawee Taweekarn
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Worawit Wongniramaikul
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Chanita Boonkanon
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Chonthicha Phanrit
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Wilasinee Sriprom
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Wadcharawadee Limsakul
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Wanchitra Towanlong
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Chanadda Phawachalotorn
- King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Aree Choodum
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
- Correspondence: ; Tel.: +66-(0)-7627-6481
| |
Collapse
|
13
|
Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat Commun 2022; 13:6213. [PMID: 36266283 PMCID: PMC9585076 DOI: 10.1038/s41467-022-34044-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Living organisms share the ability to grow various microstructures on their surface to achieve functions. Here we present a force stamp method to grow microstructures on the surface of hydrogels based on a force-triggered polymerisation mechanism of double-network hydrogels. This method allows fast spatial modulation of the morphology and chemistry of the hydrogel surface within seconds for on-demand functions. We demonstrate the oriented growth of cells and directional transportation of water droplets on the engineered hydrogel surfaces. This force-triggered method to chemically engineer the hydrogel surfaces provides a new tool in addition to the conventional methods using light or heat, and will promote the wide application of hydrogels in various fields.
Collapse
|
14
|
He J, Khalesi H, Zhang Y, Zhao Y, Fang Y. Jerky-Inspired Fabrication of Anisotropic Hydrogels with Widely Tunable Mechanical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10986-10993. [PMID: 36045549 DOI: 10.1021/acs.langmuir.2c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Jerky is a type of meat product traditionally produced using a hang-drying process to achieve desirable textural properties. Inspired by the jerky processing, we present a strategy for fabricating strong alginate hydrogels with highly anisotropic structures via stretching and drying under constant stress. The tunable stretching process endowed the alginate hydrogels with adjustable mechanical properties and structural features by promoting the orientation and aggregation of the constituent polymers. At a high water content of about 80%, the tensile strength of the obtained hydrogel was increased to 20 MPa, which was 10 times higher than that of the hydrogel without the stretching process. Moreover, these hydrogels can be favorably compared with other common structural materials. This paper introduces a facile strategy to tune the structural alignment and mechanical properties of hydrogels, which will expand the applicability of the natural hydrogels formed by non-covalent interactions.
Collapse
Affiliation(s)
- Jun He
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hoda Khalesi
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yiguo Zhao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Thermoresponsive PEDOT:PSS/PNIPAM conductive hydrogels as wearable resistive sensors for breathing pattern detection. Polym J 2022. [DOI: 10.1038/s41428-022-00626-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Gao Y, Qiu Z, Liu L, Li M, Xu B, Yu D, Qi D, Wu J. Multifunctional fibrous wound dressings for refractory wound healing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Zhiye Qiu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Mengmeng Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
17
|
Xu X, He C, Luo F, Wang H, Peng Z. Robust Conductive Hydrogels with Ultrafast Self-Recovery and Nearly Zero Response Hysteresis for Epidermal Sensors. NANOMATERIALS 2021; 11:nano11071854. [PMID: 34361240 PMCID: PMC8308457 DOI: 10.3390/nano11071854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Robust conductive hydrogels are in great demand for the practical applications of smart soft robots, epidermal electronics, and human–machine interactions. We successfully prepared nanoparticles enhanced polyacrylamide/hydroxypropyl guar gum/acryloyl-grafted chitosan quaternary ammonium salt/calcium ions/SiO2 nanoparticles (PHC/Ca2+/SiO2 NPs) conductive hydrogels. Owing to the stable chemical and physical hybrid crosslinking networks and reversible non-covalent interactions, the PHC/Ca2+/SiO2 NPs conductive hydrogel showed good conductivity (~3.39 S/m), excellent toughness (6.71 MJ/m3), high stretchability (2256%), fast self-recovery (80% within 10 s, and 100% within 30 s), and good fatigue resistance. The maximum gauge factor as high as 66.99 was obtained, with a wide detectable strain range (from 0.25% to 500% strain), the fast response (25.00 ms) and recovery time (86.12 ms), excellent negligible response hysteresis, and good response stability. The applications of monitoring the human’s body movements were demonstrated, such as wrist bending and pulse tracking.
Collapse
Affiliation(s)
- Xiuru Xu
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronic Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.X.); (F.L.)
- Center for Stretchable Electronics and Nano Sensors, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Chubin He
- Center for Stretchable Electronics and Nano Sensors, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Feng Luo
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronic Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.X.); (F.L.)
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronic Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.X.); (F.L.)
- Correspondence: (H.W.); (Z.P.)
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nano Sensors, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
- Correspondence: (H.W.); (Z.P.)
| |
Collapse
|
18
|
Das D, Alhusaini QFM, Kaur K, Raoufi M, Schönherr H. Enzyme-Responsive Biopolymeric Nanogel Fibers by Extrusion: Engineering of High-Surface-Area Hydrogels and Application in Bacterial Enzyme Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12928-12940. [PMID: 33709691 DOI: 10.1021/acsami.1c00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fabrication of covalently cross-linked high-surface-area biopolymeric nanogel fibers by nanopore extrusion is reported for the first time. The biopolymer pullulan was functionalized with tert-butyl acetoacetate via a transesterification reaction to synthesize the water-soluble ketone-rich precursor pullulan acetoacetate (PUAA). PUAA and carbonic dihydrazide (CDH) as cross-linker were extruded through anodic aluminum oxide (AAO) nanoporous membranes, which possessed an average pore diameter of 61 ± 2 nm. By changing the concentration of PUAA, the flow rate, and extrusion time, the step polymerization cross-linking reaction was controlled so that the polymer can be extruded gradually during cross-linking through the membrane, avoiding the formation of macroscopic bulk hydrogels and rupture of the AAO membrane. Fibers with diameters on the order of 250 nm were obtained. This approach was also expanded to functionalized PUAA derivatives together with the fluorogenic substrate 4-methylumbelliferyl-β-d-glucuronide MUGlcU in (PUAA-MUGlcU), which exhibited a mean equilibrium swelling ratio of 5.7 and 9.0 in Milli-Q water and in phosphate-buffered saline, respectively. β-Glucuronidase was sensitively detected via fluorescence of 4-methylumbelliferone, which was liberated in the enzymatic hydrolysis reaction of PUAA-MUGlcU. Compared to hydrogel slabs, the rate of the hydrolysis was >20% higher in the nanogel fibers, facilitating the rapid detection of β-glucuronidase-producing Escherichia coli (E. coli Mach1-T1). Nanopore extruded nanogel fibers are therefore considered a viable approach to enhance the functionality of hydrogels in surface-dominated processes.
Collapse
Affiliation(s)
- Dipankar Das
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| | - Qasim F M Alhusaini
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| | - Kawaljit Kaur
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| |
Collapse
|