1
|
Bai W, Zhao Z, Zhang T, Chai H, Gao L. Two ratiometric fluorescent sensors originating from functionalized R6G@UiO-66s for selective determination of formaldehyde and amine compounds. RSC Adv 2025; 15:14532-14544. [PMID: 40330033 PMCID: PMC12054354 DOI: 10.1039/d5ra01251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Residual small amounts of harmful substances in food or medicine are potential threats to human health. In this work, amino-functionalized UiO-66 was firstly prepared, namely UiO-66-(a), then it was further treated with phosgene to obtain UiO-66-(b) with abundant carboxyl groups. By doping, the fluorescent Rhodamine 6G (R6G) was incorporated into the structures of the two functional UiO-66s to obtain R6G@UiO-66-(a) and R6G@UiO-66-(b), respectively. These two materials can both emit fluorescence based on UiO-66s and R6G, therefore, were employed as fluorescent probes to construct two ratiometric fluorescent sensors to detect formaldehyde and amine compounds, respectively. Based on the aldehyde-amine condensation reaction between -NH2 and -CHO and the specific condensation reaction between -COOH and -NH2, formaldehyde molecules and amine compounds can react with these two materials, respectively. Causing a change in the relative fluorescence intensity of functionalized MOFs, resulting in selective detection of formaldehyde and amine compounds with the detection limit of 0.058 μM and 0.0017 μM (ethylenediamine), respectively. These two ratiometric fluorescent probes were successfully applied for quantitative detection of formaldehyde in beer and ethylenediamine in anti-inflammatory agents, demonstrating great practical potential for residual hazardous substance monitoring in food or medicine.
Collapse
Affiliation(s)
- Wanqiao Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Zhuojun Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Ting Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Hongmei Chai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| | - Loujun Gao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University Yan'an 716000 P. R. China +86 911 2650317
| |
Collapse
|
2
|
Yang L, Liu R, Xie M, Yang F. Construction of a MIL-101-DGA (MOF) Coupling Betaine Hydrochloride System for the Green and Efficient Separation of Zirconium and Hafnium. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24369-24381. [PMID: 40209173 DOI: 10.1021/acsami.5c02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Metal-organic framework materials (MOFs) have potential for practical applications in solid-phase separation technology. However, no studies of the separation of hafnium and zirconium using MOFs have been performed. This work synthesized MIL-101-DGA solid-phase adsorbent material, which was synthesized using amino-containing MIL-101-NH2 as a matrix material by introducing diglycolic acid (DGA) functional groups through a one-step ring-opening reaction. Betaine hydrochloride was selected as the complexing agent to establish the MIL-101-DGA coupling betaine hydrochloride push-pull system; this system could act as an alternative to the traditional MIBK-HSCN separation system. We are the first to report that this MIL-101-DGA coupling betaine hydrochloride system could obtain separation coefficients (βZr/Hf) of 19.7 at pH 0.50 and 8.2 at pH 1.46. Furthermore, the highest adsorption capacity of MIL-101-DGA for Zr was 63.7 mg/g. These results demonstrated that MIL-101-DGA had excellent separation performance for zirconium and hafnium in the betaine hydrochloride medium. This system also exhibited an outstanding cycling performance and immersion stability. After multiple adsorption/desorption cycles and 1 week of immersion in various solutions, the structure and adsorption capability essentially remained unchanged. The adsorption mechanism was thoroughly examined using a suite of analysis and detection methods, including the slope method, FT-IR, XPS, and DFT. In conclusion, we propose that the MIL-101-DGA coupling betaine hydrochloride system, which is an efficient and green separation system, could replace the traditional MIBK-HSCN separation system; our study provides a concept for the industrialization of zirconium and hafnium separation from key mineral resources.
Collapse
Affiliation(s)
- Luyao Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiying Xie
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- China Rare Earth Group Research-Institute, Shenzhen 518000, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Ganzhou 341000, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, China
| |
Collapse
|
3
|
Lan Z, Ma L, Yu Y, Qing J, Meng T, Zhou W, Xu Z, Chen ML, Wen L, Cheng Y, Wang L, Ding L. Enhanced solid-liquid synergistic microextraction of nine bisphenols in serum using polyaniline functionalized metal-organic framework nanocomposites/methyl tert-butyl ether. Anal Bioanal Chem 2025; 417:1619-1634. [PMID: 39890622 DOI: 10.1007/s00216-025-05752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Bisphenols, as a new class of environmental endocrine disruptors (EED), can interfere with the endocrine system of the human body and lead to various diseases. In this study, a novel polyaniline functionalized metal-organic framework (PANI@MIL-101@HF) was synthesized by utilizing hollow fibers (HF) as the the immobilization carrier, and combined with methyl tert-butyl ether (MTBE) for solid-liquid cooperative adsorption to determine bisphenols (BPs) in serum samples. The immobilized adsorbent exhibited excellent high stability and hydrophobicity. Furthermore, the inclusion of amino and benzene rings in PANI enhanced the adsorption efficiency of BPs through π-π and hydrogen bond interactions. Surprisingly, owing to the synergies of size exclusion effect of the MIL-101 and HF, the exclusion rate of protein reached as high as 99.2-99.9%. Based on its excellent adsorption properties and protein exclusion effect, the immobilized adsorbent PANI@MIL-101@HF was successfully used as a new restricted material for the high extraction performance with solid-liquid synergy of nine bisphenols (BPs) in serum samples. The operation process has also become more convenient without centrifuging. Integrated with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the nine BPs in serum samples have a wide linear range (2-200 ng mL-1) with low quantitative limits of 0.02 ng mL-1, and the recoveries ranged from 84.65 to 112.56%. The proposed method could be widely applied in convenient, green, and sensitive detection of endocrine disruptors from serum samples.
Collapse
Affiliation(s)
- Zirong Lan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Linlin Ma
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Yanjun Yu
- Technical Center, Tianjin Customs, Tianjin, 300041, P. R. China
| | - Jiang Qing
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai, 200135, China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha, 410000, P. R. China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha, 410000, P. R. China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Mao Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Libing Wang
- Technical Center, Tianjin Customs, Tianjin, 300041, P. R. China.
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China.
| |
Collapse
|
4
|
Rao RS, Bashri M, Mohideen MIH, Yildiz I, Shetty D, Shaya J. Recent advances in heterogeneous porous Metal-Organic Framework catalysis for Suzuki-Miyaura cross-couplings. Heliyon 2024; 10:e40571. [PMID: 39687170 PMCID: PMC11647841 DOI: 10.1016/j.heliyon.2024.e40571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC. The molecular fence effect, attributed to MOF surface functionalization, helps preventing catalyst deactivation by aggregation, migration, and leaching during catalysis. Recent reports demonstrate the enhanced catalytic activity, selectivity, stability, application scopes, and potential of MOFs in developing greener heterogeneous synthetic methodologies. This review focuses on the catalytic applications of MOFs in SMC reactions, emphasizing developments after 2016. It critically examines the synthesis and incorporation of active metal species into MOFs, focusing on morphology, crystallinity, and dimensionality for catalytic activity induction. MOF catalysts are categorized based on their metal nodes in subsections, with comprehensive discussion on Pd incorporation strategies, catalyst structures, optimal SMC conditions, and application scopes, concluding with insights into challenges and future research directions in this important emerging area of MOF applications.
Collapse
Affiliation(s)
- Ravulakollu Srinivasa Rao
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mahira Bashri
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mohamed Infas Haja Mohideen
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Ibrahim Yildiz
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Functional Biomaterials Group, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Janah Shaya
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| |
Collapse
|
5
|
Wu H, Osawa N, Kubota M, Kim SY. Preparation of a covalent organic framework-modified silica-gel composite for the effective adsorption of Pd(II), Zr(IV) and Mo(VI) from nitric acid solution. ANAL SCI 2024; 40:2287-2293. [PMID: 39300045 DOI: 10.1007/s44211-024-00666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
In this study, a novel covalent organic framework-modified silica-gel composite (Si-COF) was synthesized for the adsorption of palladium [Pd(II)], zirconium [Zr(IV)], and molybdenum [Mo(VI)] from nitric acid solutions and its adsorption behaviors were systemically investigated under the effects of contact time, nitric acid concentration, solution temperature and others. The pseudo-second-order kinetic model governed the adsorption of these metal ions onto the Si-COF composite, and the Langmuir isotherm model well-matched with the experimental data, with maximum adsorption capacities of 0.588, 0.221, and 0.417 mmol/g for Pd(II), Zr(IV) and Mo(VI), respectively. The adsorption of these metal ions was clarified to originate from the interaction with the abundant nitrogenous groups on the Si-COF composite by the X-ray photoelectron spectroscopy (XPS) method.
Collapse
Affiliation(s)
- Hao Wu
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Naoki Osawa
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Masahiko Kubota
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Seong-Yun Kim
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| |
Collapse
|
6
|
Zhang Z, Wu P, Liu J, Li Q, Hu L, Wu Y, Kong Q, Yuan X, Li X, Cai Y, Yuan L, Feng W. Conjugated Porous Organic Polymers Featuring Both Soft-Hard Combined Coordination Sites and Photoelectrochemical Properties for Palladium Capture and Subsequent Photocatalysis. Inorg Chem 2024; 63:18676-18688. [PMID: 39312639 DOI: 10.1021/acs.inorgchem.4c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Palladium (Pd) capture from high-level liquid waste for subsequent photocatalytic applications is desirable for the development of nuclear energy and the reutilization of valuable resources. Herein, we approach our design with a unique porous organic polymer containing thiazolo[5,4-d]thiazole units (denoted as TzPOP-OH). It possesses two potential soft-hard (N-O and S-O) combined coordination sites for Pd(II) coordination and features strong donor-acceptor repeating units and high planarity of linkage enforced by hydrogen bonds for subsequent photocatalysis. Accordingly, TzPOP-OH with three hydroxyl groups on the linkage exhibits a high Pd(II) capacity of 369 mg g-1 at 3 M HNO3, considerably surpassing those of the controlled polymer TzPOP without hydroxyl groups and most other reported materials. Additionally, TzPOP-OH boasts other merits, including outstanding acid tolerance, extraordinary radiation stability, good reusability, and remarkable selectivity. After palladium adsorption, Pd@TzPOP-OH demonstrates impressive photodegradation efficiency to reduce the concentration of rhodamine B in contaminated urban water from 10 to less than 0.1 ppm. This work provides a feasible approach to designing materials with both suitable coordination microenvironments and semiconductor properties for metal separation and photocatalysis.
Collapse
Affiliation(s)
- Zeqian Zhang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Pengcheng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiayi Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Liancheng Hu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yida Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Qiongying Kong
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiaowei Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Li M, Zhao Y, Yang Y, Zhang R, Wang Y, Teng Y, Su Z, Zhang J. High-Efficiency Photocatalytic Oxidation of Benzyl Alcohol by NH 2-UiO-66-(Indole-2,3-Dione)-Fe. Chem Asian J 2024; 19:e202400346. [PMID: 38878296 DOI: 10.1002/asia.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Indexed: 08/06/2024]
Abstract
The photocatalytic oxidation of biomass-derived benzyl alcohol provides a promising way for the synthesis of benzoic acid, which is an important intermediate with wide applications. To improve the efficiency of photocatalytic benzyl alcohol oxidation to benzoic acid is of great interest. In this work, we propose the utilization of NH2-UiO-66-ID-Fe catalyst for photocatalytic oxidation of benzyl alcohol to benzoic acid, where NH2-UiO-66 is a typically used metal-organic framework, ID is indole-2,3-dione (ID) that has biocompatibility, light absorption property and can be covalently combined with amino-functionalized substances. The NH2-UiO-66-ID-Fe catalyst exhibits improved light absorption and photo-generated electron-hole separation ability compared with NH2-UiO-66. The photocatalytic performance of NH2-UiO-66-ID-Fe was examined for the oxidation of bio-based benzyl alcohol under mild conditions of air atmosphere, room temperature and no additive or additional oxidant involved. The results show that the conversion of benzyl alcohol and the selectivity to benzoic acid could both reach over 99 % in 6 h, and the generation rate of benzoic acid per gram of catalyst is 3.36 mmol g-1 h-1. The reaction mechanism was detected by radical trapping method and in situ electron paramagnetic resonance. This study presents an efficient and environmentally benign avenue for the synthesis of carboxylic acid compounds.
Collapse
Affiliation(s)
- Meiling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjie Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunan Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Ahmed KH, Saleh TA, Abdulazeez I, Asmaly HA. Synthesis of Thiol Functionalized MOF-808 and its Efficiency for Mercury Removal. Chem Asian J 2024:e202400306. [PMID: 39083306 DOI: 10.1002/asia.202400306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/29/2024] [Indexed: 10/25/2024]
Abstract
A thiol-functionalized MOF-808 was produced and used to remove mercury by post-synthetic modification using 6-mercaponicotinic acid (6mna). Parent MOF-808 was impregnated for varied periods in the 6mna solution to create modified MOF-808 materials, known as MOF-808-6mna-x, where x refers to the impregnation time. Diffraction and several spectroscopic techniques were employed to quantify and confirm the coordination of 6mna into MOF-808 framework. The amount of grafted 6man and the ability for adsorption of mercury (Hg) was shown to be linearly associated; the functionalized MOF-808-6mna-36 demonstrated improved Hg(II) removal, with an adsorption capacity of 250 mg/g.
Collapse
Affiliation(s)
- Khaled H Ahmed
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Hamza A Asmaly
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
9
|
Moghadaskhou F, Tadjarodi A, Maleki A. Synthesis of UiO-66-Pyca-CuO by a Simple and Novel Method: MOF-based Metal Thin Film as Heterogeneous Catalysts for the Synthesis of α-Aminonitriles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051170 DOI: 10.1021/acsami.4c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as catalysts in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties, we report a general approach to synthesizing MOF thin films (UiO-66-Pyca-CuO). First, functionalization of UiO-66-NH2 was done with 3-pyridine carboxaldehyde by the postsynthesis method, and then, UiO-66-Pyca was entangled on the surface of copper oxide nanoparticles with a modern strategy (MOF thin film). The morphology and structure of the synthesized UiO-66-Pyca-CuO were determined by using X-ray diffraction, Fourier transform infrared, field-emission scanning electron microscopy, energy-dispersive analysis of X-ray, inductively coupled plasma-mass spectrometry, elemental analyses of CHNOS, temperature-programmed desorption of ammonia, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. We studied the catalytic action of the UiO-66-Pyca-CuO thin film in the synthesis of α-aminonitriles via Strecker reaction. Our studies show that this catalysis can be a suitable catalyst in the synthesis of α-aminonitriles because of having advantages such as using the solvent being environmentally friendly, easy separation of the catalyst (only by picking up the MOF thin film from inside the solution), the reaction at room temperature, high yield, and reusability.
Collapse
Affiliation(s)
- Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| |
Collapse
|
10
|
Wang L, Zhang L, Wang H, Lan H, Zhang W, Xiong J, Luo F. Separation of Palladium by an Imine-Linked Cu(I)-Organic Framework. Inorg Chem 2024; 63:11930-11934. [PMID: 38874494 DOI: 10.1021/acs.inorgchem.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Selective capture of palladium (Pd) is one of the important works in science due to its high application and low content in the Earth's crust. To this end, we present herein a new Cu(I)-organic framework (ECUT-MOF-1) by introducing pyridine N active sites to chelate Pd(II). ECUT-MOF-1 demonstrated that the maximal adsorption capacity of Pd(II) was 350 mg/g in pH = 3 solution. In addition, kinetic analysis, cycle performance, selectivity, and adsorption mechanisms were also investigated. All of the results suggested its superior application in the recovery of Pd(II).
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| | - Lingli Zhang
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| | - Haili Wang
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| | - Haojia Lan
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| | - Wenhui Zhang
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| | - Jianbo Xiong
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| | - Feng Luo
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
11
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
12
|
Schertenleib T, Karve VV, Stoian D, Asgari M, Trukhina O, Oveisi E, Mensi M, Queen WL. A post-synthetic modification strategy for enhancing Pt adsorption efficiency in MOF/polymer composites. Chem Sci 2024; 15:8323-8333. [PMID: 38846398 PMCID: PMC11151820 DOI: 10.1039/d4sc00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Growing polymers inside porous metal-organic frameworks (MOFs) can allow incoming guests to access the backbone of otherwise non-porous polymers, boosting the number and/or strength of available adsorption sites inside the porous support. In the present work, we have devised a novel post-synthetic modification (PSM) strategy that allows one to graft metal-chelating functionality onto a polymer backbone while inside MOF pores, enhancing the material's ability to recover Pt(iv) from complex liquids. For this, polydopamine (PDA) was first grown inside of a MOF, known as Fe-BTC (or MIL-100 Fe). Next, a small thiol-containing molecule, 2,3-dimercapto-1-propanol (DIP), was grafted to the PDA via a Michael addition. After the modification of the PDA, the Pt adsorption capacity and selectivity were greatly enhanced, particularly in the low concentration regime, due to the high affinity of the thiols towards Pt. Moreover, the modified composite was found to be highly selective for precious metals (Pt, Pd, and Au) over common base metals found in electronic waste (i.e., Pb, Cu, Ni, and Zn). X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption spectroscopy (XAS) provided insight into the Pt adsorption/reduction process. Last, the PSM was extended to various thiols to demonstrate the versatility of the chemistry. It is hoped that this work will open pathways for the future design of novel adsorbents that are fine-tuned for the rapid, selective retrieval of high-value and/or critical metals from complex liquids.
Collapse
Affiliation(s)
- Till Schertenleib
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Vikram V Karve
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Research Facilities (ESRF) BP 220 Grenoble France
| | - Mehrdad Asgari
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
- Department of Chemical Engineering and Biotechnology, University of Cambridge CB3 0AS Cambridge UK
| | - Olga Trukhina
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Emad Oveisi
- Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Mounir Mensi
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Wendy L Queen
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| |
Collapse
|
13
|
Shah SJ, Luan X, Yu X, Su W, Wang Y, Zhao Z, Zhao Z. Construction of 3D-graphene/NH 2-MIL-125 nanohybrids via amino-ionic liquid dual-mode bonding for advanced acetaldehyde photodegradation under high humidity. J Colloid Interface Sci 2024; 663:491-507. [PMID: 38422975 DOI: 10.1016/j.jcis.2024.02.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
The development of metal organic framework (MOF)-based π-π conjugated structures capable of effectively transforming H2O from humid air to •OH radicals for VOCs photodegradation is a significant but difficult task. Herein, an amino-ionic liquid (NH2-IL) based dual-mode bridging strategy was proposed to connect 3D-graphene with NH2-MIL-125 forming IL-3DGr/NM(Ti) nanohybrids for advanced acetaldehyde photodegradation. The rational integration of these components was responsible for: (1) maintaining π-π conjugated electron transport system; (2) generating abundant coordinatively unsaturated sites and oxygen vacancies; (3) increasing surface area of the nanohybrids. With these attributes, IL-3DGr/NM(Ti) demonstrated enhanced charge separation and transportation electrochemical impedance spectroscopy (EIS): 7-times), acetaldehyde adsorption (22 %), light absorption (bandgap: 1.51 eV). The rapid H2O adsorption and photoconversion to •OH radicals by IL-3DGr/NM(Ti) enabled it to demonstrate superior CH3CHO photodegradation rate under high humidity, surpassing many state-of-the-art photocatalysts by 9 to 187 times under static air conditions and with nearly similar catalyst dosages* (photocatalyst weight and initial acetaldehyde concentration (mg ppm-1) ratio). Interestingly, the IL-3DGr/NM(Ti) photocatalytic activity was enhanced by increasing RH% up-to 80 %. Besides, the nanohybrids demonstrated tremendous stability, with only a 3.9 % decline observed after 5 consecutive-cycles. This strategy provides new prospects to improve the compatibility of graphene/MOF materials for futuristic photoelectrical applications under high humidity.
Collapse
Affiliation(s)
- Syed Jalil Shah
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
| | - Xinqi Luan
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Xin Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Weige Su
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Yucheng Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Zhongxing Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Tavakoli E, Sepehrmansourie H, Zolfigol MA, Khazaei A, Mohammadzadeh A, Ghytasranjbar E, As'Habi MA. Synthesis and Application of Task-Specific Bimetal-Organic Frameworks in the Synthesis of Biological Active Spiro-Oxindoles. Inorg Chem 2024; 63:5805-5820. [PMID: 38511836 DOI: 10.1021/acs.inorgchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The use of click chemistry as a smart and suitable method for the development of new heterogeneous catalysts is based on metal-organic frameworks as well as the production of organic compounds. The development of the click chemistry method can provide a new strategy to achieve superior properties of MOFs. Here, the two metals Co and Fe are used to create a bimetallic-organic framework. In the following, the click chemistry and postmodification method are well organized and an acidic heterogeneous porous catalyst is developed. This prepared catalyst was used as a highly efficient catalyst for the preparation of new spiro-oxindoles obtained through click chemistry with good to excellent yields (80-94%). This presented catalytic system can compete with the best reported catalytic systems. The findings showed that the presence of Co and Fe metals in the MOF, and the presence of the triazole ring on the catalyst, can increase the catalytic efficiencies. This study offers novel insights into the architecture of Metal-Organic Frameworks (MOFs), click chemistry, and biologically active compounds. Additionally, the research explores the antibacterial properties of the synthesized spiro-oxindoles and catalysts. The findings reveal significant antibacterial activities of the synthesized compounds against S. aureus, MRSA, and E. coli bacteria.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Elaheh Ghytasranjbar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
15
|
Piri A, Kaykhaii M, Khajeh M, Oveisi AR. Application of a magnetically separable Zr-MOF for fast extraction of palladium before its spectrophotometric detection. BMC Chem 2024; 18:63. [PMID: 38555428 PMCID: PMC10981821 DOI: 10.1186/s13065-024-01171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
In this research, a novel magnetic zirconium-based metal-organic framework (Fe3O4@SiO2@MIP-202, MMOF), was fabricated, fully characterized, and applied for the batch-mode solid phase extraction of trace amounts of Pd2+ ions from water and wastewater samples before its spectrophotometric detection. Pd2+ ions were desorbed from MMOF by nitric acid and were complexed by treating with KI solution to have a maximum absorbance at 410 nm. The synthesized MMOF composite showed a very large surface area (65 m2.g- 1), good magnetization (1.7 emu.g- 1) and a large pore volume (0.059 cm3.g- 1) with adsorption capacity of 194.5 mg of Pd2+ ions/g of the adsorbent. This nanosorbent boasts chemo-mechanical stability, high adsorption capacity due to its vast active sites, and facile recovery facilitated by its magnetic properties. Parameters affecting the extraction efficiency of the method were optimized as pH of the sample 7.4, volume of the sample 25 mL, 15 mg adsorbent, 1 mL of 0.1 M HNO3 eluent, with 10 and 15 min as the extraction and desorption times, respectively. The calibration curve was found to be linear across the 10.0-1500.0 µg.L- 1 range with a limit of detection of 1.05 µg.L- 1. The obtained extraction efficiency and enrichment were 98% and 245, respectively. The total analysis time was less than 30 min. This MMOF has never been used for the extraction of Pd2+ ions before.
Collapse
Affiliation(s)
- Amin Piri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran
| | - Massoud Kaykhaii
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| |
Collapse
|
16
|
Dai Y, Zhu Y, Li Z, Zhang T, Yue X, Pan J, Xue S, Li C, Qiu F. Support Platform of Functionalized Sustainable Cellulose Self-Entanglement Monolithic Adsorbents for Efficient Adsorption of Cadmium(II) Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4927-4939. [PMID: 38377532 DOI: 10.1021/acs.langmuir.3c03912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Serious water contamination induced by massive discharge of cadmium(II) ions is becoming an emergent environmental issue due to high toxicity and bioaccumulation; thus, it is extremely urgent to develop functional materials for effectively treating with Cd2+ from wastewater. Benefiting from abundant binding sites, simple preparation process, and adjustable structure, UiO-66-type metal-organic frameworks (MOFs) had emerged as promising candidates in heavy metal adsorption. Herein, monolithic UiO-66-(COOH)2-functionalized cellulose fiber (UCLF) adsorbents were simply fabricated by incorporating MOFs into cellulose membranes through physical blending and self-entanglement. A two-dimensional structure was facilely constructed by cellulose fibers from sustainable biomass agricultural waste, providing a support platform for the integration of eco-friendly UiO-66-(COOH)2 synthesized with lower temperature and toxicity solvent. Structure characterization and bath experiments were performed to determine operational conditions for the maximization of adsorption capacity, thereby bringing out an excellent adsorption capacity of 96.10 mg/g. UCLF adsorbent holding 10 wt % loadings of UiO-66-(COOH)2 (UCLF-2) exhibited higher adsorption capacity toward Cd2+ as compared to other related adsorbents. Based on kinetics, isotherms, and thermodynamics, the adsorption behavior was spontaneous, exothermic, as well as monolayer chemisorption. Coordination and electrostatic attraction were perhaps mechanisms involved in the adsorption process, deeply unveiled by the effects of adsorbate solution pH and X-ray photoelectron spectroscopy. Moreover, UCLF-2 adsorbent with good mechanical strength offered a structural guarantee for the successful implementation of practical applications. This study manifested the feasibility of UCLF adsorbents used for Cd2+ adsorption and unveiled a novel strategy to shape MOF materials for wastewater decontamination.
Collapse
Affiliation(s)
- Yuting Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Green Chemistry and Chemical Technology, Zhenjiang 212013, China
| | - Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Green Chemistry and Chemical Technology, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Ryu U, Chien PN, Jang S, Trinh XT, Lee HS, Van Anh LT, Zhang XR, Giang NN, Van Long N, Nam SY, Heo CY, Choi KM. Zirconium-Based Metal-Organic Framework Capable of Binding Proinflammatory Mediators in Hydrogel Form Promotes Wound Healing Process through a Multiscale Adsorption Mechanism. Adv Healthc Mater 2024; 13:e2301679. [PMID: 37931928 DOI: 10.1002/adhm.202301679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/30/2023] [Indexed: 11/08/2023]
Abstract
The regulation of proinflammatory mediators has been explored to promote natural healing without abnormal inflammation or autoimmune response induced by their overproduction. However, most efforts to control these mediators have relied on pharmacological substances that are directly engaged in biological cycles. It is believed that functional porous materials removing target mediators provide a new way to promote the healing process using their adsorption mechanisms. In this study, the Zr-based metal-organic frameworks (MOF)-808 (Zr6 O4 (OH)4 (BTC)2 (HCOO)6 ) crystals are found to be effective at removing proinflammatory mediators, such as nitric oxide (NO), cytokines, and reactive oxygen species (ROS) in vitro and in vivo, because of their porous structure and surface affinity. The MOF-808 crystals are applied to an in vivo skin wound model as a hydrogel dispersion. Hydrogel containing 0.2 wt% MOF-808 crystals shows significant improvement in terms of wound healing efficacy and quality over the corresponding control. It is also proven that the mode of action is to remove the proinflammatory mediators in vivo. Moreover, the application of MOF-808-containing hydrogels promotes cell activation, proliferation and inhibits chronic inflammation, leading to increased wound healing quality. These findings suggest that Zr-based MOFs may be a promising drug-free solution for skin problems related to proinflammatory mediators.
Collapse
Affiliation(s)
- UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Suin Jang
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyeon Shin Lee
- R&D Center, LabInCube Co. Ltd., Cheongju, 28116, Republic of Korea
| | - Le Thi Van Anh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Nguyen Van Long
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
18
|
Tan L, Liu M, Wang L, Zhao G, Zhang Y. Flow cytometry-based high-throughput screening of synthetic peptides for palladium adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132656. [PMID: 37793255 DOI: 10.1016/j.jhazmat.2023.132656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Conventionally, the measurement of metal ion adsorption capacity in biosorbent relies on expensive and time-consuming ICP-OES technique. Herein, a semi-quantitative method to measure Pd(II) adsorption capacity of single cells has been presented by analyzing side scatter (SSC) intensity in flow cytometry. Within the sensitive range and applicable conditions, excellent linearity correlation (R2 ranges from 0.89 to 0.96) between the amount of Pd(II) absorbed on yeast and the fold increase in SSC intensity has been observed. Using this method, six strains with high Pd adsorption capacities have sorted from a yeast library with metal-binding peptides displayed (up to 107 strains) based on SSC signal intensity. The optimal peptide (EF1) displayed on yeast and E. coli surface demonstrated Pd adsorption improvements of ∼32% and ∼200%, respectively. In summary, our study proposes an alternative high-throughput method for analyzing the Pd(II) adsorption capacity of individual yeast cells, enabling the screening of specific peptides/proteins with high Pd(II) affinity from extensive libraries.
Collapse
Affiliation(s)
- Ling Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Meizi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
19
|
Zhang L, Li B, Shao P, Zhou X, Li D, Hu Z, Dong H, Yang L, Shi H, Luo X. Selective capture of palladium from acid wastewater by thiazole-modified activated carbon: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 238:117253. [PMID: 37778599 DOI: 10.1016/j.envres.2023.117253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
As a kind of scarce metal, palladium is widely used in many chemical industries. It essential to recover palladium from secondary resources, especially acidic media, owing to high content of palladium in secondary wastes and widespread extraction of palladium via strong acids. Chemically modified carbon materials not only have the advantage of activated carbon but also achieve the precise removal of specific pollutants, which is a kind of adsorption material with broad application prospects. In this direction, we report a solid carbon material named AT-C, which is obtained by one-step synthesis of 2-aminothiazoles grafted to the carbon surface by amidation. The present adsorbent delivers a high palladium adsorption capacity of 178.9 mg g-1, and desirable thermal and chemical stability. The uniform presence of abundant sulfur atoms and CO in the porous network enables AT-C to achieve selective absorption and rapid adsorption kinetics of Pd2+ in the complex water mixture containing many competing ions in the acidic pH range. For the strongly acidic leachates of catalysts, AT-C exhibits outstanding stability in cyclic experiments. Meanwhile, the fixed-bed column test indicates that 1076 bed volumes of the feeding streams can be effectively treated. In addition, AT-C exhibits superior adsorption selectivity, and the recovery efficiency of Pd2+ in actual industrial wastewater is 96.6%. This work realizes an efficient, rapid, and selective removal of palladium under acidic conditions, and provides a reference for complex industrial water treatment and resource recovery of precious metals.
Collapse
Affiliation(s)
- Li Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Bo Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Xiaoyu Zhou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Dewei Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zichao Hu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hao Dong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Life Science, Jinggangshan University, Ji'an, 343009, PR China.
| |
Collapse
|
20
|
Kaur M, Kumar S, Yusuf M, Lee J, Malik AK, Ahmadi Y, Kim KH. Schiff base-functionalized metal-organic frameworks as an efficient adsorbent for the decontamination of heavy metal ions in water. ENVIRONMENTAL RESEARCH 2023; 236:116811. [PMID: 37541413 DOI: 10.1016/j.envres.2023.116811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Adsorptive removal of heavy metal ions from water is an energy- and cost-effective water decontamination technology. Schiff base functionalities can be incorporated into the pore cages of metal-organic frameworks (MOFs) via direct synthesis, post-synthetic modification, and composite formation. Such incorporation can efficiently enhance the interactions between the MOF adsorbent and target heavy metal ions to promote the selective adsorption of the latter. Accordingly, Schiff base-functionalized MOFs have great potential to selectively remove a particular metal ion from the aqueous solutions in the presence of coexisting (interfering) metal ions through the binding sites within their pore cages. Schiff base-functionalized MOFs can bind divalent metal ions (e.g., Pb(II), Co(II), Cu(II), Cd (II), and Hg (II)) more strongly than trivalent metal ions (e.g., Cr(III)). The adsorption capacity range of Schiff base-functionalized MOFs for divalent ions is thus much more broad (22.4-713 mg g-1) than that of trivalent metal ions (118-127 mg g-1). To evaluate the adsorption performance between different adsorbents, the two parameters (i.e., adsorption capacity and partition coefficient (PC)) are derived and used for comparison. Further, the possible interactions between the Schiff base sites and the target heavy metal ions are discussed to help understand the associated removal mechanisms. This review delivers actionable knowledge for developing Schiff-base functionalized MOFs toward the adsorptive removal of heavy metal ions in water in line with their performance evaluation and associated removal mechanisms. Finally, this review highlights the challenges and forthcoming research and development needs of Schiff base-functionalized MOFs for diverse fields of operations.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala, 147 001, Punjab, India
| | - Mohamad Yusuf
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
21
|
Butt FS, Lewis A, Rea R, Mazlan NA, Chen T, Radacsi N, Mangano E, Fan X, Yang Y, Yang S, Huang Y. Highly-Controlled Soft-Templating Synthesis of Hollow ZIF-8 Nanospheres for Selective CO 2 Separation and Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:31740-31754. [PMID: 37345663 PMCID: PMC10326808 DOI: 10.1021/acsami.3c06502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Global warming is an ever-rising environmental concern, and carbon dioxide (CO2) is among its major causes. Different technologies, including adsorption, cryogenic separation, and sequestration, have been developed for CO2 separation and storage/utilization. Among these, carbon capture using nano-adsorbents has the advantages of excellent CO2 separation and storage performance as well as superior heat- and mass-transfer characteristics due to their large surface area and pore volume. In this work, an environmentally friendly, facile, bottom-up synthesis of ZIF-8 hollow nanospheres (with reduced chemical consumption) was developed for selective CO2 separation and storage. During this soft-templating synthesis, a combined effect of ultra-sonication and low-temperature hydrothermal synthesis showed better control over an oil-in-water microemulsion formation and the subsequent growth of large-surface-area hollow ZIF-8 nanospheres having excellent particle size distribution. Systematic studies on the synthesis parameters were also performed to achieve fine-tuning of the ZIF-8 crystallinity, hollow structures, and sphere size. The optimized hollow ZIF-8 nanosphere sample having uniform size distribution exhibited remarkable CO2 adsorption capability (∼2.24 mmol g-1 at 0 °C and 1.75 bar), a CO2/N2 separation selectivity of 12.15, a good CO2 storage capacity (1.5-1.75 wt %), and an excellent cyclic adsorption/desorption performance (up to four CO2 adsorption/desorption cycles) at 25 °C. In addition, the samples showed exceptional structural stability with only ∼15% of overall weight loss up to 600 °C under a nitrogen environment. Therefore, the hollow ZIF-8 nanospheres as well as their highly controlled soft-templating synthesis method reported in this work are useful in the course of the development of nanomaterials with optimized properties for future CO2 capture technologies.
Collapse
Affiliation(s)
- Fraz Saeed Butt
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Allana Lewis
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Riccardo Rea
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Nurul A. Mazlan
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Ting Chen
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Norbert Radacsi
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Enzo Mangano
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Xianfeng Fan
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Yaohao Yang
- Jiangsu
Dingying New Materials Co., Ltd., Changzhou, Jiangsu 213031, China
| | - Shuiqing Yang
- Jiangsu
Dingying New Materials Co., Ltd., Changzhou, Jiangsu 213031, China
| | - Yi Huang
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| |
Collapse
|
22
|
Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg(II) adsorption. Int J Biol Macromol 2023; 232:123329. [PMID: 36669630 DOI: 10.1016/j.ijbiomac.2023.123329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel modified chitosan composite adsorbent (UNCS) was prepared by crosslinking between chitosan and metal organic frameworks (MOFs) material UiO-66-NH2 using epichlorohydrin as crosslinker. The influence of the prepared conditions was investigated. The structure and morphology of the composite were characterized by FT-IR, XRD, SEM, TGA, BET and zeta potential analysis. Effects of different variables for adsorption of Hg(II) on this adsorbent were explored. The kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic model and the adsorption equilibrium could be reached within 2 h. The adsorption was mainly controlled by chemical process. Adsorption isothermal studies illustrated that the adsorption fitted Langmuir isotherm model, implying the homogeneous adsorption on the surface of the adsorbent. The adsorbent exhibited high uptake and the maximum capacity from Langmuir model could reach 896.8 mg g-1 at pH 6. Thermodynamic studies showed the spontaneous nature and exothermic nature of the adsorption process. Additionally, the removal of Hg(II) on UNCS could achieve over 90 %. The adsorption-desorption cycled experiments indicated the appropriate reusability of the adsorbent. Hence, this adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
|
23
|
Albino M, Burden TJ, Piras CC, Whitwood AC, Fairlamb IJS, Smith DK. Mechanically Robust Hybrid Gel Beads Loaded with "Naked" Palladium Nanoparticles as Efficient, Reusable, and Sustainable Catalysts for the Suzuki-Miyaura Reaction. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1678-1689. [PMID: 36778525 PMCID: PMC9906743 DOI: 10.1021/acssuschemeng.2c05484] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Indexed: 05/27/2023]
Abstract
The increase in demand for Pd and its low abundance pose a significant threat to its future availability, rendering research into more sustainable Pd-based technologies essential. Herein, we report Pd scavenging mechanically robust hybrid gel beads composed of agarose, a polymer gelator (PG), and an active low-molecular-weight gelator (LMWG) based on 1,3:2,4-dibenzylidenesorbitol (DBS), DBS-CONHNH 2 . The robustness of the PG and the ability of the LMWG to reduce Pd(II) in situ to generate naked Pd(0) nanoparticles (PdNPs) combine within these gel beads to give them potential as practical catalysts for Suzuki-Miyaura cross-coupling reactions. The optimized gel beads demonstrate good reusability, green metrics, and most importantly the ability to sustain stirring, improving reaction times and energy consumption compared to previous examples. In contrast to previous reports, the leaching of palladium from these next-generation beads is almost completely eliminated. Additionally, for the first time, a detailed investigation of these Pd-loaded gel beads explains precisely how the nanoparticles are formed in situ without a stabilizing ligand. Further, detailed catalytic investigations demonstrate that catalysis occurs within the gel beads. Hence, these beads can essentially be considered as robust "nonligated" heterogeneous PdNP catalysts. Given the challenges in developing ligand-free, naked Pd nanoparticles as stable catalysts, these gel beads may have future potential for the development of easily used systems to perform chemical reactions in "kit" form.
Collapse
|
24
|
Kancharla S, Sasaki K. Selective extraction of precious metals from simulated automotive catalyst waste and its conversion to carbon supported PdPt nanoparticle catalyst. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
25
|
A novel composite (ZIF-8@PEI-CC) with enhanced adsorption capacity and kinetics of methyl orange. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Moghadaskhou F, Tadjarodi A, Mollahosseini A, Maleki A. Synthesis of UiO-66-Sal-Cu(OH) 2 by a Simple and Novel Method: MOF-Based Metal Thin Film as a Heterogeneous Catalyst for Olefin Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4021-4032. [PMID: 36633596 DOI: 10.1021/acsami.2c18907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as a catalyst in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties for the epoxidation of olefins, we report a general approach to synthesizing MOF thin films (UiO-66-Sal-Cu(OH)2). Using the postsynthesis method (PSM), UiO-66-NH2 was functionalized with salicylaldehyde and entrapped on copper hydroxide nanoparticle surfaces using a modern strategy (MOF thin film). We used field-emission scanning electron microscopy (FE-SEM), EDX (energy-dispersive X-ray analysis), XRD (X-ray diffraction), FT-IR (Fourier transform infrared), BET (Brunauer-Emmett-Teller), TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and ICP-MS (inductively coupled plasma mass spectrometry) to determine the structure and morphology of the synthesized UiO-66-Sal-Cu(OH)2. The oxidation of cyclooctene by the UiO-66-Sal-Cu(OH)2 thin film was studied. Due to its advantages, such as being environmentally friendly (base metal-loaded catalyst, room temperature, solvent-free reaction), reusability, and high yield, this compound can be an appropriate catalyst for the oxidation of olefins.
Collapse
Affiliation(s)
- Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| |
Collapse
|
27
|
Wu F, Li H, Pan Y, Sun Y, Pan J. Bioinspired construction of magnetic nano stirring rods with radially aligned dual mesopores and intrinsic rapid adsorption of palladium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129917. [PMID: 36099737 DOI: 10.1016/j.jhazmat.2022.129917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Quick and precise recovery of palladium (Pd) from electronic waste remains a serious task, owing to the strong acid and complexity of chemical compounds in leachate. Here, bioinspired construction of magnetic nano stirring rod with radially aligned dual mesopores and abundant 8-aminoquinoline (MNSR-DM-AQ) is proposed for selective and rapid extraction of Pd(II) from highly acidic sample solutions. Benefit from the unique dual mesoporous (12.4 nm and 3.6 nm) and the stirring motion under an external magnetic field, MNSR-DM-AQ possesses enhanced adsorption capacity and kinetics, achieving 11.62 mg g-1 (97.2 % of the maximum adsorption capacity) in 15 min. Distribution coefficient (KD = 299.0 mL g-1), separation factor (α above 25.54) and concentration factor (CF = 230.2 mL g-1) reveal the excellent selectivity of MNSR-DM-AQ towards Pd(II) when comparing with the coexisting ions (Ca(II), Co(II), Cu(II), Fe(II), Mg(II), Ni(II), Pb(II), Zn(II)). The adsorption mechanisms of MNSR-DM-AQ are ion exchange and chelation due to a strong affinity between Pd(II) and N. Meanwhile, 96.82 % of the captured Pd(II) can be easily eluted within 15 min, and the adsorption capacity remains stable after five adsorption-desorption cycles. It is worthwhile to mention that MNSR-DM-AQ exhibits a high adsorption capacity of 8.39 mg g-1 from leachate of abandoned high-voltage patch capacitor, which is greatly desired in Pd(II) extraction from electronic waste.
Collapse
Affiliation(s)
- Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, Anhui, China.
| | - Yang Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yonghui Sun
- Jiangsu Agrochem Laboratory Co., Ltd, Changzhou 213022, Jiangsu, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, Anhui, China.
| |
Collapse
|
28
|
Preparation of metal-organic framework composite beads for selective adsorption and separation of palladium: Properties, mechanism and practical application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Selective adsorption of palladium ions from wastewater by ion-imprinted MIL-101(Cr) derived from waste polyethylene terephthalate: Isotherms and Kinetics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Efficient and selective adsorption of Pd(II) by amino acid-functionalized cellulose microspheres and their applications in palladium recovery from PCBs leaching solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Hu SZ, Huang T, Zhang N, Lei YZ, Wang Y. Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Maponya TC, Makgopa K, Somo TR, Modibane KD. Highlighting the Importance of Characterization Techniques Employed in Adsorption Using Metal-Organic Frameworks for Water Treatment. Polymers (Basel) 2022; 14:3613. [PMID: 36080689 PMCID: PMC9460637 DOI: 10.3390/polym14173613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The accumulation of toxic heavy metal ions continues to be a global concern due to their adverse effects on the health of human beings and animals. Adsorption technology has always been a preferred method for the removal of these pollutants from wastewater due to its cost-effectiveness and simplicity. Hence, the development of highly efficient adsorbents as a result of the advent of novel materials with interesting structural properties remains to be the ultimate objective to improve the adsorption efficiencies of this method. As such, advanced materials such as metal-organic frameworks (MOFs) that are highly porous crystalline materials have been explored as potential adsorbents for capturing metal ions. However, due to their diverse structures and tuneable surface functionalities, there is a need to find efficient characterization techniques to study their atomic arrangements for a better understanding of their adsorption capabilities on heavy metal ions. Moreover, the existence of various species of heavy metal ions and their ability to form complexes have triggered the need to qualitatively and quantitatively determine their concentrations in the environment. Hence, it is crucial to employ techniques that can provide insight into the structural arrangements in MOF composites as well as their possible interactions with heavy metal ions, to achieve high removal efficiency and adsorption capacities. Thus, this work provides an extensive review and discussion of various techniques such as X-ray diffraction, Brunauer-Emmett-Teller theory, scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectroscopy, and X-ray photoelectron spectroscopy employed for the characterization of MOF composites before and after their interaction with toxic metal ions. The review further looks into the analytical methods (i.e., inductively coupled plasma mass spectroscopy, ultraviolet-visible spectroscopy, and atomic absorption spectroscopy) used for the quantification of heavy metal ions present in wastewater treatment.
Collapse
Affiliation(s)
- Thabiso C. Maponya
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Thabang R Somo
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa
| | - Kwena D. Modibane
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa
| |
Collapse
|
33
|
Daliran S, Khajeh M, Oveisi AR, Albero J, García H. CsCu 2I 3 Nanoparticles Incorporated within a Mesoporous Metal-Organic Porphyrin Framework as a Catalyst for One-Pot Click Cycloaddition and Oxidation/Knoevenagel Tandem Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36515-36526. [PMID: 35939817 PMCID: PMC9940116 DOI: 10.1021/acsami.2c04364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and metal halide perovskites are currently under much investigation due to their unique properties and applications. Herein, an innovative strategy has been developed combining an iron-porphyrin MOF, PCN-222(Fe), and an in situ-grown CsCu2I3 nontoxic lead-free halide perovskite based on an earth-abundant metal that becomes incorporated within the MOF channels [CsCu2I3@PCN-222(Fe)]. Encapsulation was designed to decrease and control the particle size and increase the stability of CsCu2I3. The hybrid materials were characterized by various techniques including FE-SEM, elemental mapping and line scanning EDX, TEM, PXRD, UV-Vis DRS, BET surface area, XPS, and photoemission measurements. Hybrid CsCu2I3@PCN-222(Fe) materials were examined as heterogeneous multifunctional (photo)catalysts for copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and one-pot selective photo-oxidation/Knoevenagel condensation cascade reaction. Interestingly, CsCu2I3@PCN-222(Fe) outperforms not only its individual components CsCu2I3 and PCN-222(Fe) but also other reported (photo)catalysts for these transformations. This is attributed to cooperation and synergistic effects of the PCN-222(Fe) host and CsCu2I3 nanocrystals. To understand the catalytic and photocatalytic mechanisms, control and inhibition experiments, electron paramagnetic resonance (EPR) measurements, and time-resolved phosphorescence were performed, revealing the main role of active species of Cu(I) in the click reaction and the superoxide ion (O2•-) and singlet oxygen (1O2) in the photocatalytic reaction.
Collapse
Affiliation(s)
- Saba Daliran
- Department
of Chemistry, University of Zabol, P.O. Box 98615-538, Zabol 98615-538, Iran
| | - Mostafa Khajeh
- Department
of Chemistry, University of Zabol, P.O. Box 98615-538, Zabol 98615-538, Iran
| | - Ali Reza Oveisi
- Department
of Chemistry, University of Zabol, P.O. Box 98615-538, Zabol 98615-538, Iran
| | - Josep Albero
- Departamento
de Química and Instituto de Tecnología Química
CSIC-UPV, Universitat Politècnica
de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Hermenegildo García
- Departamento
de Química and Instituto de Tecnología Química
CSIC-UPV, Universitat Politècnica
de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
34
|
Gao Y, Zhou RY, Yao L, Wang Y, Yue Q, Yu L, Yu JX, Yin W. Selective capture of Pd(II) from aqueous media by ion-imprinted dendritic mesoporous silica nanoparticles and re-utilization of the spent adsorbent for Suzuki reaction in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129249. [PMID: 35739768 DOI: 10.1016/j.jhazmat.2022.129249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient adsorptive material for the selective capture of Pd(II), and re-utilization of spent Pd(II)-loaded adsorbent as an efficient catalyst for organic synthesis are of great significance, but challenging. Particularly, the heterogeneous palladium-catalyzed Suzuki reaction in aqueous media is much more challenging than that of homogeneous. Herein, several novel Pd(II) ion-imprinted polymers (PIIPs) based on dendritic fibrous silica particles are constructed by surface ion imprinting technology (SIIT), using Schiff base and pyridine groups functionalized organosilicon as functional monomer. The PIIP-3 prepared by 3 g of functional monomer exhibits the best adsorption performance, and shows ultrafast (10 min) and selective capture of Pd(II) with high uptake capacity (382.5 mg/g). Moreover, the waste Pd(II) loaded PIIP-3 (PIIP-3-Pd) can serve as a catalyst towards the Suzuki reaction in water, affording 94.2 % yield of the desired product. Interestingly, the PIIP-3-Pd can be reused 12 times without an appreciable decrease in catalytic activity, which is probably due to the imprinted cavity and specific recognition site of PIIP-3 can match and recapture Pd active species in a complex catalytic environment. Thus, this work demonstrates huge potentials of SIIT to enhance the selectivity of adsorption process and increase the lifetime of catalysts.
Collapse
Affiliation(s)
- Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Ru-Yi Zhou
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Lifeng Yao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yi Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Lan Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jun-Xia Yu
- Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
35
|
Zhou L, Liu H, Pan PH, Deng B, Zhao SY, Liu P, Wang YY, Li JL. Development of Cationic Benzimidazole-Containing UiO-66 through Step-by-Step Linker Modification to Enhance the Initial Sorption Rate and Sorption Capacities for Heavy Metal Oxo-Anions. Inorg Chem 2022; 61:11992-12002. [PMID: 35866632 DOI: 10.1021/acs.inorgchem.2c01816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective and rapid capture of heavy metal oxo-anions from wastewater is a fascinating research topic, but it remains a great challenge. Herein, benzimidazole and -CH3 groups were integrated into UiO-66 in succession via a step-by-step linker modification strategy that was performed by presynthesis modification (to give Bim-UiO-66) and subsequently by postsynthetic ionization (to give Bim-UiO-66-Me). The UiO-66s (UiO-66, Bim-UiO-66, and Bim-UiO-66-Me) were applied in the removal of heavy metal oxo-anions from water. The two benzimidazole derivatives (Bim-UiO-66 and Bim-UiO-66-Me) showed much better performance than UiO-66, as both the initial sorption rate and sorption capacities decreased in the order Bim-UiO-66-Me > Bim-UiO-66 > UiO-66. The maximum performances of Bim-UiO-66 are 5.1 and 1.7 times those of UiO-66. Remarkably, Bim-UiO-66-Me shows 7.5 and 3.0 times better performance than UiO-66. The higher absorptivity of cationic Bim-UiO-66-Me compared with UiO-66 can be attributed to a strong Coulombic interaction as well as an anion-π interaction and hydrogen bonding between the benzimidazolium functional group and heavy metal oxo-anions. The as-synthesized Bim-UiO-66-Me not only provides a promising candidate for application in removal of heavy metal oxo-anions in wastewater treatment but also opens up a new strategy for the design of high-performance adsorbents.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
36
|
Daliran S, Khajeh M, Oveisi AR. A porous Fe‐based porphyrinic metal‐organic framework for highly effective removal of organic azo‐dye. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saba Daliran
- Department of Chemistry University of Zabol Zabol Iran
| | | | | |
Collapse
|
37
|
Wang X, Long H, Li L, Zhan L, Zhang X, Cui H, Shen J. Efficiently selective extraction of iron (III) in an aluminum‐based metal–organic framework with native N adsorption sites. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xu Wang
- College of Materials Science and Engineering Chongqing University of Technology Chongqing China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Haijun Long
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Lu Li
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
| | - Li Zhan
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Xin Zhang
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Hengqing Cui
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| | - Jun Shen
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
- Chongqing School University of Chinese Academy of Sciences Chongqing China
| |
Collapse
|
38
|
Gao L, Hu X, Qin S, Chu H, Tang Y, Li X, Wang B. One-pot synthesis of a novel chiral Zr-based metal-organic framework for capillary electrochromatographic enantioseparation. Electrophoresis 2022; 43:1161-1173. [PMID: 35312084 DOI: 10.1002/elps.202200020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022]
Abstract
A novel chiral stationary phase (CSP) of Zr-based metal-organic framework, l-Cys-PCN-224, was prepared by one-pot method and applied for the enantioseparation by capillary electrochromatography. The CSP was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential, and so on. The results revealed that the CSP had good crystallinity, high specific surface area (2580 m2 /g), and good thermal stability. Meanwhile, the cross-section of l-Cys-PCN-224-bonded open-tubular (OT) column was observed by a scanning electron microscope, which proved the successful bonding of l-Cys-PCN-224 particles to the inner wall. Relative standard deviations of the column efficiencies were 3.87%-9.14%, and not obviously changed after 200 runs, which indicated that l-Cys-PCN-224-bonded OT column had the better stability and reproducibility. Excellent chiral separation performance was verified with nine kinds of natural amino acids including acidic, neutral, and basic as the analytes. All amino acids studied achieved good separation with the resolution of 1.38-13.9 and selector factor of 1.11-3.71. These results demonstrated that the CSP had an excellent potential in the chiral separation field.
Collapse
Affiliation(s)
- Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Xingfang Hu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Yimin Tang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - Binbin Wang
- College of food and Bioengineering, Qiqihar University, Qiqihar, P. R. China
| |
Collapse
|
39
|
Nanomaterials with Excellent Adsorption Characteristics for Sample Pretreatment: A Review. NANOMATERIALS 2022; 12:nano12111845. [PMID: 35683700 PMCID: PMC9182308 DOI: 10.3390/nano12111845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment in analytical chemistry is critical, and the selection of materials for sample pretreatment is a key factor for high enrichment ability, good practicality, and satisfactory recoveries. In this review, the recent progress of the sample pretreatment methods based on various nanomaterials (i.e., carbon nanomaterials, porous nanomaterials, and magnetic nanomaterials) with excellent adsorption efficiency, selectivity, and reproducibility, as well as their applications, are presented. Due to the unique nanoscale physical–chemical properties, magnetic nanomaterials have been used for the extraction of target analytes by easy-to-handle magnetic separation under a magnetic field, which can avoid cumbersome centrifugation and filtration steps. This review also highlights the preparation process and reaction mechanism of nanomaterials used in the sample pretreatment methods, which have been applied for the extraction organophosphorus pesticides, fluoroquinolone antibiotics, phenoxy carboxylic acids, tetracycline antibiotics, hazardous metal ions, and rosmarinic acid. In addition, the remaining challenges and future directions for nanomaterials used as sorbents in the sample pretreatment are discussed.
Collapse
|
40
|
Yu F, Bai X, Liang M, Ma J. HKUST-1-Derived Cu@Cu(I)@Cu(II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Wu H, Kim SY, Ito T, Miwa M, Matsuyama S. One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Askari S, Khodaei MM, Jafarzadeh M. Heterogenized Phosphinic Acid on UiO-66-NH2: A Bifunctional Catalyst for the Synthesis of Polyhydroquinolines. Catal Letters 2022. [DOI: 10.1007/s10562-021-03734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Wu N, Guo H, Wang M, Peng L, Chen Y, Liu B, Pan Z, Liu Y, Yang W. A ratiometric sensor for selective detection of Hg 2+ ions by combining second-order scattering and fluorescence signals of MIL-68(In)-NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120858. [PMID: 35016060 DOI: 10.1016/j.saa.2022.120858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Ratio fluorescence has attracted much attention because of its self-calibration properties. However, it is difficult to obtain suitable fluorescent materials with well-resolved signals simultaneously under one excitation. In this work, we report a different strategy, using MIL-68(In)-NH2 as both the fluorescence element and the scattered light unit, and coupling the fluorescence and the scattered light to construct the fluorescence and scattered light ratio system. Based on the optical properties and the second-order scattering (SOS) of the material nanoparticles, the synthesized MIL-68(In)-NH2 can be used to realize the ratio detection of Hg2+. Because the scattering intensity of small particle MIL-68(In)-NH2 is weak, SOS is not obvious. When Hg2+ is introduced the coordination reaction between the amino nitrogen atoms of MIL-68(In)-NH2 and Hg2+ make the particles larger, resulting in the decrease of fluorescence and the enhancement of SOS. As a result, a novel Hg2+ ratiometric detection method is developed by using the dual signal responses of the fluorescence and scattering. Under the optimal conditions (pH = 6, reaction time 5 min, room temperature, and the maximum excitation wavelength 365 nm), the linear range of the method is 0-100 μM, and the detection limit is 5.8 nM (Ksv = 9.89 × 109 M-1). In addition, the probe is successfully used to evaluate Hg2+ in actual water samples. Compared with the traditional method of recording only the fluorescence signal, the proposed fluorescence-scattering method provides a new strategy for the design of ratiometric sensors.
Collapse
Affiliation(s)
- Ning Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Hao Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Mingyue Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Liping Peng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuan Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Bingqing Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhilan Pan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yinsheng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
44
|
Ren H, Tianxiang W. Electrochemical Synthesis Methods of Metal‐Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem 2022. [DOI: 10.1002/celc.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ren
- Nanjing Normal University School of Environment CHINA
| | - Wei Tianxiang
- Nanjing Normal University No. 1 Wenyuan Road, Qixia District Nanjing CHINA
| |
Collapse
|
45
|
Zhao P, Gao D, Lyu B, Zhu J, Zhou Y, Li Y, Ma J. A new type of multistage structure hydrotalcite material: To promote the absorption of chemicals in wet leather processing. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ping Zhao
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Jiamin Zhu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Yingying Zhou
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| | - Yun Li
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials Xi'an China
| |
Collapse
|
46
|
|
47
|
Ren Y, Zhang J, Ji C, Wang S, Lv L, Zhang W. Iron-based metal-organic framework derived pyrolytic materials for effective Fenton-like catalysis: Performance, mechanisms and practicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152201. [PMID: 34890672 DOI: 10.1016/j.scitotenv.2021.152201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, a new catalyst was fabricated by pyrolysis under nitrogen atmosphere with MIL-53(Fe) as the precursor, and was applied to catalyze Fenton-like process. Effects of calcination temperature and pH on decontamination performance, and stability of materials were investigated. Under optimal conditions (calcination temperature of 500 °C and pH of 5.0), the new Fenton-like system remained low iron leaching, and achieved high pseudo-first-order rate constant of 0.0251 min-1 for bisphenol S (BPS) removal, which is much higher than those in MIL-53(Fe), and nano-Fe3O4 catalyzed Fenton-like systems. The superiority of the new catalyst for Fenton-like catalysis was attributed to high specific surface area, as well as formed Fe(II), coordinatively unsaturated iron center and the Fe-O/Fe-C compounds based on the analyses of characterizations. Furthermore, main active species for BPS degradation was identified as hydroxyl radicals, and total hydroxyl radical generation was determined by trapping experiments. The degradation pathways of BPS were also proposed by intermediates monitoring. Moreover, this catalyst showed good potential for practical application, according to the evaluation of reuse, different pollutants degradation, and BPS removal in real wastewater. We believe this study developed a new catalyst with high catalytic activity, high stability and wide application scope, and also sheds light on further development of metal-organic frameworks for Fenton-like catalysis.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenghan Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
48
|
Lidi G, Xingfang H, Shili Q, Hongtao C, Xuan Z, Bingbing W. l-Cysteine modified metal-organic framework as a chiral stationary phase for enantioseparation by capillary electrochromatography. RSC Adv 2022; 12:6063-6075. [PMID: 35424547 PMCID: PMC8981955 DOI: 10.1039/d1ra07909c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
A new kind of chiral zirconium based metal-organic framework, l-Cys-PCN-222, was synthesized using l-cysteine (l-Cys) as a chiral modifier by a solvent-assisted ligand incorporation approach and utilized as the chiral stationary phase in the capillary electrochromatography system. l-Cys-PCN-222 was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential and so on. The results revealed that l-Cys-PCN-222 had the advantages of good crystallinity, high specific surface area (1818 m2 g-1), thermal stability and chiral recognition performance. Meanwhile, the l-Cys-PCN-222-bonded open-tubular column was prepared using l-Cys-PCN-222 particles as the solid phase by 'thiol-ene' click chemistry reaction and characterized by scanning electron microscopy, which proved the successful bonding of l-Cys-PCN-222 to the column inner wall. Finally, the stability, reproducibility and chiral separation performance of the l-Cys-PCN-222-bonded OT column were measured. Relative standard deviations (RSD) of the column efficiencies for run-to-run, day-to-day, column-to-column and runs were 1.39-6.62%, and did not obviously change after 200 runs. The enantiomeric separation of 17 kinds of chiral compounds including acidic, neutral and basic amino acids, imidazolinone and aryloxyphenoxypropionic pesticides, and fluoroquinolones were achieved in the l-Cys-PCN-222-bonded OT column. These results demonstrated that the chiral separation system of the chiral metal-organic frameworks (CMOFs) coupled with capillary electrochromatography has good application prospects.
Collapse
Affiliation(s)
- Gao Lidi
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Hu Xingfang
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Qin Shili
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Chu Hongtao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Zhao Xuan
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 China +86 0452 2738214
| | - Wang Bingbing
- College of Food and Bioengineering, Qiqihar University Qiqihar 161006 China
| |
Collapse
|
49
|
Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction. Int J Biol Macromol 2022; 206:232-241. [PMID: 35157903 DOI: 10.1016/j.ijbiomac.2022.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/05/2023]
Abstract
In this study, the metal-organic framework ZIF-8 has been successfully planted on the surface of chitosan microspheres (CS/PDA@ZIF-8) using polydopamine as connecting material for the first time, which avoids the use of expensive, non-renewable, and non-biodegradable polystyrene microspheres commonly used as templates to prepare core-shell structures. Moreover, the metal-organic framework ZIF-8 was prepared specially by three different methods and all characterized by SEM, TEM, and BET, and the ZIF-8 shell prepared at room temperature presents a regular morphology, uniform size, large specific surface area (353.1 m2/g) than the shells prepared by the other methods including. The CS/PDA@ZIF-825@Pd with high catalytic activity and high stability was especially prepared by encapsulating Pd nanoparticles into the pores of CS/PDA@ZIF-825. Notably, the fabricated catalyst performed well in an array of reactions, for example the Kapp value of the p-nitrophenol reduction reaction reached 0.0426 s-1, and the TOF of the Suzuki coupling reaction reached 128 h-1. In addition, the ZIF-67, UiO-66, UiO-66-NH2, HKUST-1, and NH2-MIL-53(Al) were also grown on chitosan microcapsules successively to prepare the core-shell microspheres, which prove the universal applicability of this strategy. And beyond that, the introduction of chitosan microspheres endows the material with biodegradable properties and excellent recycling properties.
Collapse
|
50
|
Hu SZ, Huang T, Zhang N, Lei YZ, Wang Y. Chitosan-assisted MOFs dispersion via covalent bonding interaction toward highly efficient removal of heavy metal ions from wastewater. Carbohydr Polym 2022; 277:118809. [PMID: 34893228 DOI: 10.1016/j.carbpol.2021.118809] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Metal organic frameworks (MOFs) have been considered to be robust adsorbent for the removing heavy metal ions from wastewater due to their unique properties such as large active sites, high specific surface area and high porosity, etc., however, their practical engineering application faces the problem of serious agglomeration. In this work, a new strategy of chitosan (CS) assisting MOF dispersion was proposed to develop the new generation of MOF-based adsorbents, namely, CS grafted UiO-66-NH2 composite materials (CGUNCM). The UiO-66-NH2 was selected and it was grafted onto the main chains of CS through covalent bonding interaction with the aid of glutaraldehyde, which was totally different from the common method that grafting molecular chains on the surface of MOFs resulting in the dramatic reduction of active adsorption sites. The results show that grafting MOFs onto CS main chains not only greatly improves the dispersion of MOFs but also reserves the morphology of MOFs as much as possible. The adsorption performances toward Cu(II) and Pb(II) were intensively studied by varying adsorbate concentration, ionic strength, the contact time, adsorption temperature and pH value of solution. The results show that the composite adsorbent exhibits high adsorption efficiency and the adsorption equilibrium can be reached within 45 min, and the maximum adsorption capacity toward Cu(II) and Pb(II) achieve 364.96 mg/g and 555.56 mg/g, respectively. Furthermore, the composite adsorbent shows good reusability. This work provides a new method of fabricating the MOF-based adsorbent and paves the way for the practical application of such adsorbents in wastewater treatment.
Collapse
Affiliation(s)
- Shao-Zhong Hu
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|