1
|
Hassan H, Khan M, Shah LA, Yoo HM. CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring. J Mater Chem B 2025; 13:4796-4808. [PMID: 40146006 DOI: 10.1039/d4tb02709d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Soft, stretchable, and smart strain-sensing hydrogels have attracted significant attention due to their broad applicability in emerging fields. However, developing hydrogel-based strain-sensing materials with finely tuned mechanical and sensing properties remains challenging, primarily due to the inherent brittleness of traditionally fabricated hydrogels. In this study, a novel flexible strain- and epidermis-sensitive sensor was designed using a cellulose nanocrystal (CNC)-mediated acid functionalized multiwalled carbon nanotube (A-MWCNT)-reinforced double-network conductive hydrogel. This dual-network hydrogel system was fabricated by integrating a covalently crosslinked acrylamide (Amm) and [2-(acryloyloxy) ethyl] trimethyl-ammonium chloride (AETAC) with a physically crosslinked network of A-MWCNTs, which were uniformly dispersed via CNCs. Incorporating hydrogen bonding and strong electrostatic interactions within the physical network introduced reversible sacrificial bonds, significantly enhancing the hydrogel's mechanical strength. The hydrogel exhibited mechanical and sensing performance, including sufficient stretchability (431.6%), remarkable sensitivity, a gauge factor (GF) of 4.32 at 400% strain, toughness of 65.6 kJ m-3, Young's modulus of 1.5 kPa, and rapid response and recovery times of 100 msec. Furthermore, it demonstrated excellent cycling stability over 100 cycles and effective sensing capabilities across a broad strain range, from small deformations (5%) to large strains (400%). The conductivity of 0.09 S m-1, facilitated by the formation of conduction pathways through the AETAC and A-MWCNTs, further enhanced its performance. Moreover, the hydrogel exhibited practical applicability in detecting various large-scale and physiological human movements. Functioning as a wearable electronic skin, it represents a highly flexible and adaptable material suitable for applications in soft robotics, flexible sensors, and health monitoring devices.
Collapse
Affiliation(s)
- Hamna Hassan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Hyeong-Min Yoo
- School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, Republic of Korea
| |
Collapse
|
2
|
Zou X, Liu H, Hu Z, Zhang Y, Cheng J, Wang K, Feng Y, Wang J. Rational design of antifreeze and flexible chitosan-based hydrogels for integration device of supercapacitors electrodes and wearable strain sensors. Carbohydr Polym 2025; 354:123342. [PMID: 39978924 DOI: 10.1016/j.carbpol.2025.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Hydrogels with excellent flexibility are widely used in flexible sensors and supercapacitors, but their sensitivity and operating temperature range limit their application. In this study, chitosan (CS)/polyaniline (PANI) hydrogel with interpenetrating network structure is designed, in which phytic acid is used as crosslinking agent and antifreeze. The obtained CS/PANI hydrogel exhibits excellent mechanical properties, excellent sensing performance (Gauge Factor = 5.25), fast electrochemical response, high specific capacitance (383.7 F/g at 0.5 A/g) and good cycle stability, which may be due to the interpenetrating network structure formed between phytic acid cross-linked PANI and CS molecular chains. Due to these properties, CS/PANI hydrogels can be used as flexible sensors and supercapacitor electrodes materials. Because of the electrostatic interaction between the anionic and cationic groups in phytic acid, it also has certain frost resistance. The CS/PANI hydrogel can provide a high specific capacitance of 330 F/g at -40 °C. Compared with room temperature, the capacitance retention rate is as high as 87 %. It is believed that this CS/PANI hydrogel will be used as a new multifunctional material in many fields such as flexible electrodes, sensors and wearable devices in low temperature environments.
Collapse
Affiliation(s)
- Xinquan Zou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China
| | - Hongyuan Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China
| | - Zhenyan Hu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China
| | - Yi Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China
| | - Jinggang Cheng
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China
| | - Kun Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China
| | - Yuwei Feng
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China
| | - Jikui Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, the People's Republic of China.
| |
Collapse
|
3
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
4
|
Chen J, Peng K, Yang Y, Dai Y, Huang B, Chen X. Hierarchical Iontronic Flexible Sensor with High Sensitivity over Ultrabroad Range Enabled by Equilibration of Microstructural Compressibility and Stability. ACS Sens 2025; 10:921-931. [PMID: 39843387 DOI: 10.1021/acssensors.4c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Despite improved sensitivity of iontronic pressure sensors with microstructures, structural compressibility and stability issues hinder achieving exceptional sensitivity across a wide pressure range. Herein, the interplay between ion concentration, mechanical properties, structural geometry, and aspect ratio (AR) on the sensitivity of lithium bis(trifluoromethanesulfonyl) imide/thermoplastic polyurethane (LiTFSI/TPU) ionogel is delved into. The results indicate that cones exhibit superior compressibility compared to pyramids and hemispheres, manifesting in an enhanced sensitivity toward the LiTFSI/TPU ionogel. Subsequently, by strategically combining cones with varying ARs, a harmonious balance between structural stability and compressibility is achieved, culminating in the fabrication of hierarchical iontronic flexible sensors (HIFS). Remarkably, HIFS-III with a three-level hierarchical conical microstructure demonstrates a preeminent sensitivity of 127.65 kPa-1 within ∼500 kPa. Even within the ultrabroad pressure range of 1500-3000 kPa, the sensitivity remains exceeding 10 kPa-1. Furthermore, HIFS-III boasts swift response and relaxation times (∼11 and 18 ms, respectively), a low detection limit (∼6.35 Pa), as well as remarkable durability (15,000 cycles). The exceptional sensing capabilities of HIFS-III underscore its emergence as a promising high-performance sensing and feedback solution tailored for applications in human-machine interaction and e-skin.
Collapse
Affiliation(s)
- Jianfeng Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kai Peng
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yinong Yang
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yichuan Dai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ben Huang
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaoxiao Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
5
|
Cai Z, Xiao X, Wei Y, Yin J. Stretchable Polymer Hydrogels Based Flexible Triboelectric Nanogenerators for Self-Powered Bioelectronics. Biomacromolecules 2025; 26:787-813. [PMID: 39777943 DOI: 10.1021/acs.biomac.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The rapid development of flexible electronics has led to unprecedented social and economic improvements. But conventional power devices cannot adapt to the advances of flexible electronics. Triboelectric nanogenerators (TENGs) have been used as robust power sources to transform ambient mechanical energy into electricity, thus meeting the power requirements of flexible electronics. Hydrogels are widely used for soft bioelectronics owing to the decent stretchability and biocompatibility. This Review presents the recent progress in the use of hydrogels for TENGs and self-powered hydrogel bioelectronics, including hydrogel synthesis, hydrogel TENGs fabrication, and their applications in wearable electricity generation, self-powered active sensing, and therapeutics. Hydrogel-enabled TENGs are emerging as a novel form of soft bioelectronics. We provided a critical analysis of hydrogel TENGs and insights into future opportunities and directions of this rapidly evolving field. These advancements will push the boundaries of hydrogel bioelectronics and contribute to the development of personalized healthcare solutions.
Collapse
Affiliation(s)
- Zhixiang Cai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yue Wei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyi Yin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Boateng D, Li X, Wu W, Yang A, Gul A, Kang Y, Yang L, Liu J, Zeng H, Zhang H, Han L. Air-Writing Recognition Enabled by a Flexible Dual-Network Hydrogel-Based Sensor and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54555-54565. [PMID: 39319516 DOI: 10.1021/acsami.4c10168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Accurate air-writing recognition is pivotal for advancing state-of-the-art text recognizers, encryption tools, and biometric technologies. However, most existing air-writing recognition systems rely on image-based sensors to track hand and finger motion trajectories. Additionally, users' writing is often guided by delimiters and imaginary axes which restrict natural writing movements. Consequently, recognition accuracy falls short of optimal levels, hindering performance and usability for practical applications. Herein, we have developed an approach utilizing a one-dimensional convolutional neural network (1D-CNN) algorithm coupled with an ionic conductive flexible strain sensor based on a sodium chloride/sodium alginate/polyacrylamide (NaCl/SA/PAM) dual-network hydrogel for intelligent and accurate air-writing recognition. Taking advantage of the excellent characteristics of the hydrogel sensor, such as high stretchability, good tensile strength, high conductivity, strong adhesion, and high strain sensitivity, alongside the enhanced analytical ability of the 1D-CNN machine learning (ML) algorithm, we achieved a recognition accuracy of ∼96.3% for in-air handwritten characters of the English alphabets. Furthermore, comparative analysis against state-of-the-art methods, such as the widely used residual neural network (ResNet) algorithm, demonstrates the competitive performance of our integrated air-writing recognition system. The developed air-writing recognition system shows significant potential in advancing innovative systems for air-writing recognition and paving the way for exciting developments in human-machine interface (HMI) applications.
Collapse
Affiliation(s)
- Derrick Boateng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
- College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xukai Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Weiyao Wu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Anqi Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Anadil Gul
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Yan Kang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
- College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Lin Yang
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, People's Republic of China
| | - Hongbo Zeng
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Hao Zhang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| |
Collapse
|
7
|
Jia B, Dong Z, Ren X, Niu M, Kong S, Wan X, Huang H. Hydrogels composite optimized for low resistance and loading-unloading hysteresis for flexible biosensors. J Colloid Interface Sci 2024; 671:516-528. [PMID: 38815387 DOI: 10.1016/j.jcis.2024.05.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
With the advancement of wearable and implantable medical devices, hydrogel flexible bioelectronic devices have attracted significant interest due to exhibiting tissue-like mechanical compliance, biocompatibility, and low electrical resistance. In this study, the development and comprehensive performance evaluation of poly(acrylic acid)/ N,N'-bis(acryloyl) cystamine/ 1-butyl-3-ethenylimidazol-1-ium:bromide (PAA/NB/IL) hydrogels designed for flexible sensor applications are introduced. Engineered through a combination of physical and chemical cross-linking strategies, these hydrogels exhibit strong mechanical properties, high biocompatibility, and effective sensing capabilities. At 95 % strain, the compressive modulus of PAA/NB/IL 100 reach up to 3.66 MPa, with the loading-unloading process showing no significant hysteresis loop, indicating strong mechanical stability and elasticity. An increase in the IL content was observed to enlarge the porosity of the hydrogels, thereby influencing their swelling behavior and sensing functionality. Biocompatibility assessments revealed that the hemolysis rate was below 5 %, ensuring their suitability for biomedical applications. Upon implantation in rats, a minimal acute inflammatory response was observed, comparable to that of the biocompatibility control poly(ethylene glycol) diacrylate (PEGDA). These results suggest that PAA/NB/IL hydrogels hold promise as biomaterials for biosensors, offering a balance of mechanical integrity, physiological compatibility, and sensing sensitivity, thereby facilitating advanced healthcare monitoring solutions.
Collapse
Affiliation(s)
- Ben Jia
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muwen Niu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Wan
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China; School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Pu L, Yuan Z, Cai Y, Li X, Xue Z, Niu Y, Li Y, Ma S, Xu W. Multiperformance PAM/PVA/CaCO 3 Hydrogel for Flexible Sensing and Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32762-32772. [PMID: 38867400 DOI: 10.1021/acsami.4c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Currently, the development of hydrogels with excellent mechanical properties (elasticity, fatigue resistance, etc.) and conductive properties can better meet their needs in the field of flexible sensor device applications. Generally, hydrogels with a denser cross-linking density tend to have better mechanical properties, but the improvement in mechanical properties comes at the expense of reduced electrical conductivity. Directly generating CaCO3 in the hydrogel prepolymer can not only increase the cross-linking density of its network but also introduce additional ions to enhance its internal ionic strength, which is beneficial to improving the conductivity of the hydrogel. It is still a big challenge to directly generate CaCO3 in the static prepolymer solution and ensure its uniform dispersion in the hydrogel. Herein, we adopted an improved preparation method to ensure that the directly generated CaCO3 particles can be evenly dispersed in the static prepolymer solution until the polymerization is completed. Finally, a PAM/PVA/CaCO3 hydrogel with supertensile, compressive, toughness, and fatigue resistance properties was prepared. In addition, the presence of free Na+ and Cl- gives the hydrogel excellent conductivity and sensing performance to monitor daily human activities. On the basis of the application of hydrogels in information communication, we have further deepened this application by combining the characteristics of hydrogels themselves. Combined with ASCII code, the hydrogel can also be applied in information exchange and information encryption and decryption, achieving the antitheft function in smart locks. A variety of excellent performance integrated PAM/PVA/CaCO3 hydrogels have broad application prospects for flexible sensors, highlighting great potential in human-computer interaction and intelligent information protection.
Collapse
Affiliation(s)
- Lisha Pu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Zhiang Yuan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuting Cai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Xusheng Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Zhongxin Xue
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yan Li
- Center of Advanced Carbon Materials, School of Chemical Engineering, University of New South Wales, Sydney NSW2052, Australia
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| |
Collapse
|
10
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
11
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
12
|
Peng Z, Zhou Y, Shu H, Yu C, Zhong W. Ultrahigh-Ionic-Conductivity, Antifreezing Poly(amidoxime)-Grafted Polyzwitterion Hydrogel for Facile Integrated into High-Performance Stretchable Flexible Supercapacitor. ACS OMEGA 2024; 9:2234-2249. [PMID: 38250425 PMCID: PMC10795038 DOI: 10.1021/acsomega.3c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Developing wearable supercapacitors (SCs) with high stretchability, arbitrary deformability, and antifreezing ability is still a challenge. In the present work, an ultrahigh-ionic-conductivity, antifreezing poly(amidoxime)-graft-polyzwitterion (PAO-g-PSBMA) hydrogel electrolyte is fabricated by grafting PSBMA in PAO. Owing to the abundant hydrophilic and high ionic adsorption capacity of amidoxime groups in PAO and zwitterion groups in PSBMA, the as-prepared PAO-g-PSBMA hydrogel can facilitate the dissociation of lithium salt and exhibit an ultrahigh ionic conductivity of 29.8 S m-1 at 25 °C and 3.4 S m-1 even at -30 °C. Employing mATi3C2Tx and mSTi3C2Tx, which contain small amounts of PAO-AGE and PAO-g-PSBMA dispersions, respectively, coated onto both sides of the PAO-g-PSBMA hydrogel, we followed a thermal treatment to facilely form integrated stretchable flexible SCs. The as-prepared SCs show an outstanding recoverable tensile stain of 80% and an excellent electrochemical stability under many types and times of arbitrary deformation. More importantly, as-prepared mATi3C2Tx- and mSTi3C2Tx-based SCs present fantastic antifreezing ability and excellent stability with 74.6 and 78.3% retention of the initial capacitance, respectively, even after 1000 times of stretching to 60% at -30 °C. This work offers a new strategy of using PAO-grafted polyzwitterion for obtaining an antifreezing stretchable SC, which shows a high potential for application in next-generation integrated stretchable devices in various fields.
Collapse
Affiliation(s)
- Zhiyuan Peng
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yutang Zhou
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Honghao Shu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chuying Yu
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenbin Zhong
- College of Materials Science
and Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
13
|
Li W, Wu S, Li S, Zhong X, Zhang X, Qiao H, Kang M, Chen J, Wang P, Tao LQ. Gesture Recognition System Using Reduced Graphene Oxide-Enhanced Hydrogel Strain Sensors for Rehabilitation Training. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45106-45115. [PMID: 37699573 DOI: 10.1021/acsami.3c08709] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Gesture recognition systems epitomize a modern and intelligent approach to rehabilitative training, finding utility in assisted driving, sign language comprehension, and machine control. However, wearable devices that can monitor and motivate physically rehabilitated people in real time remain little studied. Here, we present an innovative gesture recognition system that integrates hydrogel strain sensors with machine learning to facilitate finger rehabilitation training. PSTG (PAM/SA/TG) hydrogels are constructed by thermal polymerization of acrylamide (AM), sodium alginate (SA), and tannic acid-reduced graphene oxide (TA-rGO, TG), with AM polymerizing into polyacrylamide (PAM). The surface of TG has abundant functional groups that can establish multiple hydrogen bonds with PAM and SA chains to endow the hydrogel with high stretchability and mechanical stability. Our strain sensor boasts impressive sensitivity (Gauge factor = 6.13), a fast response time (40.5 ms), and high linearity (R2 = 0.999), making it an effective tool for monitoring human joint movements and pronunciation. Leveraging machine learning techniques, our gesture recognition system accurately discerns nine distinct types of gestures with a recognition accuracy of 100%. Our research drives wearable advancements, elevating the landscape of patient rehabilitation and augmenting gesture recognition systems' healthcare applications.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Shunxin Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Simou Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiyang Zhong
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaobo Zhang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Hao Qiao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Meicun Kang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Jinghan Chen
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Ping Wang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Lu-Qi Tao
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Ullah R, Shah LA, Khan M, Ara L. Guar gum reinforced conductive hydrogel for strain sensing and electronic devices. Int J Biol Macromol 2023; 246:125666. [PMID: 37406904 DOI: 10.1016/j.ijbiomac.2023.125666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Hydrophobically associated conductive hydrogels got great attention due to their excellent properties like stretchability, energy dissipation mechanism, and strain sensor. But hydrophobically associated hydrogels have poor mechanical properties and time response to external stimuli. To enhance the mechanical properties and response to stimuli, Acrylamide- co-Butyl acrylate/Gum based conductive hydrogels were prepared. SDS works as a cross-linker and micelle-forming agent while NaCl makes hydrogel as conductive. The results show that our % strain sensing reached up to 400 %, and fracture stress and fracture strain reached to 0.5 MPa and 401 % respectively. Besides this, it's having an excellent response to continuous stretching and unstretching multiple cycles without any fracture up to 180 s and an excellent time response of 190 s. The conductivity of the hydrogel was 0.20 Sm-1. The hydrophobic hydrogels showed a clear and quick response to human motions like finger, wresting, writing, speaking, etc. Interestingly, our prepared hydrogels can detect the mood of the human face. Similarly, the hydrogels were found efficient in bridging the surface of electronic devices with human skin. This indicates that our prepared hydrogels can monitor human body motion and will replace the existing materials used in strain sensors in the near future.
Collapse
Affiliation(s)
- Rafi Ullah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Latafat Ara
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
15
|
Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2023; 9:2048-2069. [PMID: 34784170 PMCID: PMC10823919 DOI: 10.1021/acsbiomaterials.1c00741] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems. We will provide an overview of different types of bioinspired hydrogels tailored for wearable devices. Next, we will discuss the recent progress of bioinspired hydrogel wearable devices such as electronic skin and smart contact lenses. Also, we will comprehensively summarize biosignal readout methods for hydrogel wearable devices as well as advances in powering and wireless data transmission technologies. Finally, current challenges facing these wearable devices are discussed, and future directions are proposed.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Xinyu Tian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pamela Rosario Garrido
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Electric and Electronic Engineering, Technological Institute of Merida, Merida, Yucatan 97118, Mexico
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Taige Hao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
16
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
17
|
Kang B, Gao M, Zhao R, Zhao Z, Song S. Multi-environmentally stable and underwater adhesive DNA ionogels enabling flexible strain sensor. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
18
|
Liu Y, Zhuo F, Zhou J, Kuang L, Tan K, Lu H, Cai J, Guo Y, Cao R, Fu Y, Duan H. Machine-Learning Assisted Handwriting Recognition Using Graphene Oxide-Based Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54276-54286. [PMID: 36417548 DOI: 10.1021/acsami.2c17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Machine-learning assisted handwriting recognition is crucial for development of next-generation biometric technologies. However, most of the currently reported handwriting recognition systems are lacking in flexible sensing and machine learning capabilities, both of which are essential for implementation of intelligent systems. Herein, assisted by machine learning, we develop a new handwriting recognition system, which can be applied as both a recognizer for written texts and an encryptor for confidential information. This flexible and intelligent handwriting recognition system combines a printed circuit board with graphene oxide-based hydrogel sensors. It offers fast response and good sensitivity and allows high-precision recognition of handwritten content from a single letter to words and signatures. By analyzing 690 acquired handwritten signatures obtained from seven participants, we successfully demonstrate a fast recognition time (less than 1 s) and a high recognition rate (∼91.30%). Our developed handwriting recognition system has great potential in advanced human-machine interactions, wearable communication devices, soft robotics manipulators, and augmented virtual reality.
Collapse
Affiliation(s)
- Ying Liu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Fengling Zhuo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Linjuan Kuang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Kaitao Tan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Haibao Lu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin150080, China
| | - Jianbing Cai
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Yihao Guo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - Rongtao Cao
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| | - YongQing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon TyneNE1 8ST, United Kingdom
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha410082, China
| |
Collapse
|
19
|
Liu D, Zhou H, Zhao Y, Huyan C, Wang Z, Torun H, Guo Z, Dai S, Xu BB, Chen F. A Strand Entangled Supramolecular PANI/PAA Hydrogel Enabled Ultra-Stretchable Strain Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203258. [PMID: 36216591 DOI: 10.1002/smll.202203258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Hydrogel electronics have attracted growing interest for emerging applications in personal healthcare management, human-machine interaction, etc. Herein, a "doping then gelling" strategy to synthesize supramolecular PANI/PAA hydrogel with a specific strand entangled network is proposed, by doping the PANI with acrylic acid (AA) monomers to avoid PANI aggregation. The high-density electrostatic interaction between PAA and PANI chains serves as a dynamic bond to initiate the strand entanglement, enabling PAA/PANI hydrogel with ultra-stretchability (2830%), high breaking strength (120 kPa), and rapid self-healing properties. Moreover, the PAA/PANI hydrogel-based sensor with a high strain sensitivity (gauge factor = 12.63), a rapid responding time (222 ms), and a robust conductivity-based sensing behavior under cyclic stretching is developed. A set of strain sensing applications to precisely monitor human movements is also demonstrated, indicating a promising application prospect as wearable devices.
Collapse
Affiliation(s)
- Dong Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Honghao Zhou
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yuanyuan Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- The 41 st Institute of the Forth Academy, China Aerospace Science and Technology Corporation, Xi'an, 710025, P. R. China
| | - Chenxi Huyan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zibi Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hamdi Torun
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Sheng Dai
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Fei Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022; 219:312-332. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.
Collapse
|
21
|
Kim HS, Kang JH, Hwang JY, Shin US. Wearable CNTs-based humidity sensors with high sensitivity and flexibility for real-time multiple respiratory monitoring. NANO CONVERGENCE 2022; 9:35. [PMID: 35913549 PMCID: PMC9343523 DOI: 10.1186/s40580-022-00326-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
Sensors, such as optical, chemical, and electrical sensors, play an important role in our lives. While these sensors already have widespread applications, such as humidity sensors, most are generally incompatible with flexible/inactive substrates and rely on conventional hard materials and complex manufacturing processes. To overcome this, we develop a CNT-based, low-resistance, and flexible humidity sensor. The core-shell structured CNT@CPM is prepared with Chit and PAMAM to achieve reliability, accuracy, consistency, and durability, resulting in a highly sensitive humidity sensor. The average response/recovery time of optimized sensor is only less than 20 s, with high sensitivity, consistent responsiveness, good linearity according to humidity rates, and low hysteresis (- 0.29 to 0.30 %RH). Moreover, it is highly reliable for long-term (at least 1 month), repeated bending (over 15,000 times), and provides accurate humidity measurement results. We apply the sensor to smart-wear, such as masks, that could conduct multi-respiratory monitoring in real-time through automatic ventilation systems. Several multi-respiratory monitoring results demonstrate its high responsiveness (less than 1.2 s) and consistent performance, indicating highly desirable for healthcare monitoring. Finally, these automatic ventilation systems paired with flexible sensors and applied to smart-wear can not only provide comfort but also enable stable and accurate healthcare in all environments.
Collapse
Affiliation(s)
- Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.
| | - Ji-Hye Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Ji-Young Hwang
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), Jeonju, 54853, South Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
22
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F. Recent Progress on Self-Healable Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108932. [PMID: 35043469 DOI: 10.1002/adma.202108932] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Materials able to regenerate after damage have been the object of investigation since the ancient times. For instance, self-healing concretes, able to resist earthquakes, aging, weather, and seawater have been known since the times of ancient Rome and are still the object of research. During the last decade, there has been an increasing interest in self-healing electronic materials, for applications in electronic skin (E-skin) for health monitoring, wearable and stretchable sensors, actuators, transistors, energy harvesting, and storage devices. Self-healing materials based on conducting polymers are particularly attractive due to their tunable high conductivity, good stability, intrinsic flexibility, excellent processability and biocompatibility. Here recent developments are reviewed in the field of self-healing electronic materials based on conducting polymers, such as poly 3,4-ethylenedioxythiophene (PEDOT), polypyrrole (PPy), and polyaniline (PANI). The different types of healing, the strategies adopted to optimize electrical and mechanical properties, and the various possible healing mechanisms are introduced. Finally, the main challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Biporjoy Sarkar
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Noémy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
24
|
Liu X, Liu S, Fan Y, Qi J, Wang X, Bai W, Chen D, Xiong C, Zhang L. Biodegradable cross-linked poly(L-lactide-co-ε-caprolactone) networks for ureteral stent formed by gamma irradiation under vacuum. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Wang G, Zhang Q, Wang Q, Zhou L, Gao G. Bio-Based Hydrogel Transducer for Measuring Human Motion with Stable Adhesion and Ultrahigh Toughness. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24173-24182. [PMID: 33988972 DOI: 10.1021/acsami.1c05098] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adaptability could meet basic technological application requirements. Therefore, a hydrogel-based transducer with durable adhesion, ultrahigh toughness, and super resilience was highly demanded. Here, a skin-like hydrogel transducer was successfully prepared through introducing carboxymethyl chitosan and sodium caseinate into a polyacrylamide hydrogel system. In addition, the polyacrylamide-sodium casein-carboxymethyl chitosan (PAAM-SC-CC) hydrogel has strong mechanical properties and excellent mechanical flexibility, largely due to the adequate energy dissipation mechanism. Surprisingly, the PAAM-SC-CC hydrogel exhibited stable and reproducible adhesion to various solid substrates and the human skin. Due to abundant free ions driven from sodium caseinate, the PAAM-SC-CC hydrogel could maintain stable and sensitive ionic conductivity without adding additional fillers. Experiments have proved that it can be applied to the field of human motion monitoring with complex signals. Therefore, the PAAM-SC-CC hydrogel sensor could monitor human movement in different strain ranges, including throat movement and joint extension. Such a flexible hydrogel-based transducer with various properties is conceivable to broaden the application field of bioelectrodes, human machines, personalized medical health fields, etc.
Collapse
Affiliation(s)
- Guangyu Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qian Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qian Wang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Lubin Zhou
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
26
|
Pakhira M, Chatterjee DP, Mallick D, Ghosh R, Nandi AK. Reversible Stimuli-Dependent Aggregation-Induced Emission from a "Nonfluorescent" Amphiphilic PVDF Graft Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4953-4963. [PMID: 33843235 DOI: 10.1021/acs.langmuir.1c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A poly(vinylidine fluoride) graft random copolymer of t-butyl aminoethyl methacrylate (tBAEMA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA, Mn = 300) [PVDF-g-P(tBAEMA-ran-OEGMA), PVBO] is synthesized by atom transfer radical polymerization (ATRP), and PVBO is fractionated to get a highly water-soluble fraction (PVBO-1) showing a reversible on/off fluorescence behavior with gradual increase and decrease in pH, respectively, achieving a maximum quantum yield of 0.18 at pH = 12. PVBO-1 dissolved in water shows large multimicellar aggregates (MMcA), but at pH 12, crumbling of larger aggregates to much smaller micelles occurs, forming nonconjugated polymer dots (NCPDs), as supported by transmission electron microscopy and dynamic light scattering study. The reversible fluorescence on/off behavior also occurs with the decrease and increase of temperature. Theoretical study indicates that, at high pH, most of the amino groups become neutral and exhibit a strong tendency to form aggregates from crowding of a large number of carbonyl and amine groups, minimizing the HOMO-LUMO gap, showing an absorption peak at the visible region, and generating aggregation-induced emission.
Collapse
Affiliation(s)
- Mahuya Pakhira
- Polymer Science Unit, School of Materials Science, Indian Association for the cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Dibyendu Mallick
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Radhakanta Ghosh
- Polymer Science Unit, School of Materials Science, Indian Association for the cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Materials Science, Indian Association for the cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
27
|
Hong X, Ding H, Li J, Xue Y, Sun L, Ding F. Poly(acrylamide‐co‐acrylic acid)/chitosan semi‐interpenetrating hydrogel for pressure sensor and controlled drug release. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoyan Hong
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science Fujian Normal University Fuzhou China
| | - Hao Ding
- Polymer Program, Institute of Materials Science University of Connecticut Storrs Connecticut USA
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs Connecticut USA
| | - Jiao Li
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science Fujian Normal University Fuzhou China
| | - Yuanyuan Xue
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science Fujian Normal University Fuzhou China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science University of Connecticut Storrs Connecticut USA
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs Connecticut USA
| | - Fuchuan Ding
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science Fujian Normal University Fuzhou China
| |
Collapse
|
28
|
Chen J, Qiu T, Guo L, He L, Li X. Topology Reliable LCST-Type Behavior of ABA Triblock Polymer and Influence on Water Condensation and Crystallization. Macromol Rapid Commun 2021; 42:e2100024. [PMID: 33768621 DOI: 10.1002/marc.202100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/15/2021] [Indexed: 01/26/2023]
Abstract
As a kind of smart material, thermoresponsive hydrogels are widely investigated and applied in many fields. Due to the limitation of the freezing temperature of the water, it is a challenge to further broaden their sol-gel transition temperature (Tgel ) range, especially below 0 °C. Herein, the lower critical solution temperature type of amphiphilic ABA triblock copolymers, synthesized via two-step reversible addition-fragmentation chain transfer (RAFT) polymerization is demonstrated. The hydrophilic A-block and the hydrophobic B-block are composed of poly(N,N-dimethylacrylamide) (PDMAA) and poly(diacetone acrylamide) (PDAAM), respectively. The degree of polymerization (DP) of both A-block and B-block shows a significant influence on the Tgel of triblock copolymer dispersion. By changing the length of these two blocks or physically blending these copolymers dispersions, the Tgel can be well adjusted in a temperature range from 45 to -10 °C. Moreover, When the Tgel is higher than 4 °C, the triblock copolymer coatings show a good anti-fogging property. And when the Tgel is around or lower than the freezing temperature of the water, aqueous dispersions of the triblock copolymer have an ice recrystallization inhibition activity, resulting in the decrease of average maximum grain size (MLGS) of ice crystal.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Teng Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Longhai Guo
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lifan He
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyu Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
29
|
Wu L, Fan M, Qu M, Yang S, Nie J, Tang P, Pan L, Wang H, Bin Y. Self-healing and anti-freezing graphene-hydrogel-graphene sandwich strain sensor with ultrahigh sensitivity. J Mater Chem B 2021; 9:3088-3096. [PMID: 33885670 DOI: 10.1039/d1tb00082a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogels with specially designed structures and adjustable properties have been considered as smart materials with multi-purpose application prospects, especially in the field of flexible sensors. However, most hydrogel-based sensors have low sensitivity, which inevitably affects their promotion in the market. Herein, a strain sensor comprising a poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) hybrid hydrogel sandwiched between two graphene layers was successfully constructed in a facile way, and it exhibited many excellent properties including extremely high sensitivity. The incorporation of glycerol ensured the good flexibility and anti-freezing performance of the hydrogel-based sensor even at -15 °C. The dynamic coordination bonds in the hydrogel-based sensor endowed it with excellent self-healing properties. In particular, the sandwich-structured hydrogel sensor showed a very high gauge factor (GF) value of 39 at the strain of 50%, which is much higher than those of most ordinary hydrogel-based strain sensors. A super stable signal value after 5000 strain cycles and a very short response time of 274 ms guaranteed the long-term usability and sensitivity of the hydrogel-based sandwich sensor. More importantly, the hydrogel-based sandwich sensor could detect both large and tiny human motions accurately and instantly in a series of real-time monitoring experiments, showing great potential for intelligent wearable electronic devices.
Collapse
Affiliation(s)
- Lu Wu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ryplida B, In I, Park SY. Tunable Pressure Sensor of f-Carbon Dot-Based Conductive Hydrogel with Electrical, Mechanical, and Shape Recovery for Monitoring Human Motion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51766-51775. [PMID: 33146512 DOI: 10.1021/acsami.0c16745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reversible volume memories of the inner structures of soft materials with controllable hydrophilic-hydrophobic balance have been widely recognized, for example, hydrogels used in pressure sensors. Mechanical stimuli, such as pressure, vibration, and tensile, may influence the deformation of the hydrogel while simultaneously changing the electronic signal. Here, we designed a hydrophobic carbon dot nanoparticle (f-CD) mixed with polyvinyl alcohol and catechol-conjugated chitosan to obtain a hydrogel suitable for pressure and vibration sensor applications. The hydrophobicity of loaded f-CD plays an important role in mechanical performance and electronic signal acquisition. It also affects the different rheological reversibility and shape recovery as an impact on the volume transition. These characteristics are influenced by the compactness, dimensional structure, and density of the fabricated hydrogel. As a result, hydrogels with high hydrophobicity have a stiff structure (shear modulus 8123.1 N·m-2) compared to that of the hydrophilic hydrogel (ranging between 6065.7 and 7739.2 N·m-2). Moreover, the mechanically dependent volume transition hydrogel affects the electronic resistivity (up to 17.3 ± 1.3%) and capacitance change (up to 145%) when compressed with different forces. The hydrogel with a controlled hydrophobic-hydrophilic inner structure shows a unique sensitivity and great potential for various applications in wearable electronic skins, real-time clinical health-care monitoring, and human-computer interactions.
Collapse
Affiliation(s)
- Benny Ryplida
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|