1
|
Fu R, Wang R, Wang C, Zhang S, Wang J, Peng R, Zhu X, Kang H, Mao Y. MOFs-based aerogels and their derivatives for water treatment: A review. ENVIRONMENTAL RESEARCH 2025; 279:121824. [PMID: 40373992 DOI: 10.1016/j.envres.2025.121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Metal-organic frameworks (MOFs) are a class of environmental nano-materials composed of metal ions and organic ligands with remarkable physical and chemical properties, such as huge specific surface area as well as abundant pore volume. Based on their unique structures and properties, MOFs have demonstrated potential applications in the fields of adsorption, gas storage, separation membranes, and catalysis, and have become popular candidates in water treatment technologies. However, MOFs particles in powder form are prone to agglomeration and adhesion effects in water, which leads to problems such as difficult separation and secondary pollution. As an ideal carrier for MOFs, aerogels exhibit a unique three-dimensional interconnected pore structure, which endows aerogels with high porosity properties and excellent adsorption capacity. Researchers have skillfully combined MOFs with aerogels to create a new type of MOF aerogel composites (MOFACs). These composites are converted into highly porous and high-strength carbon aerogels through a high-temperature pyrolysis process in an inert environment. These carbon aerogels not only retain the high catalytic efficiency of MOFs, but also inherit the advantages of aerogels in terms of light weight, low density and easy handling. This paper reviews various types of MOFACs, each of which possesses different chemical compositions and physical properties, thus adapting to different applications. The paper also discusses the applications of MOFACs and carbon aerogels in water treatment for catalysis, selective adsorption and solid phase microextraction.
Collapse
Affiliation(s)
- Ranran Fu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450000, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Ruixue Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450000, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Shiyu Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China; School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Junning Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Rongfu Peng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
2
|
Najafabadi SN, Huang C, Betlem K, van Voorthuizen TA, de Smet LCPM, Ghatkesar MK, van Dongen M, van der Veen MA. Advancements in Inkjet Printing of Metal- and Covalent-Organic Frameworks: Process Design and Ink Optimization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11469-11494. [PMID: 39950749 PMCID: PMC11873967 DOI: 10.1021/acsami.4c15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/28/2025]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) are highly versatile materials based on inorganic modes connected via organic linkers or purely via the connection of organic building blocks, respectively. This results in 3-D nanoporous frameworks, which, due to their combination of high porosity and variability of building blocks, can exhibit exceptional properties that make them attractive. Certain applications (e.g., in electronics and as membranes) require a thin film or even a patterned morphology on various substrates. Inkjet printing of MOFs has emerged as a simple and effective technique for the scalable production of a wide range of MOF (gradient) films and patterns on a wide range of substrates according to specific requirements. This review comprehensively reviews the achievements in inkjet printing of both MOFs and COFs. We discuss the different substrates, ink formulation, and hardware intertwined requirements needed to achieve high-resolution printing and obtain desired properties such as porosity, physical-mechanical characteristics, and uniform thickness. Crucial aspects related to ink formulation, such as colloidal stability and size control of MOFs and COFs, are discussed. Additionally, we highlight potential opportunities for furthering the development of inkjet printing of MOFs/COFs and critically assess the reporting of the printing procedures and characterization of the resultant materials. In this manner, this review aims to contribute to the advancements in understanding and optimization of inkjet printing of MOFs and COFs, as this technique holds great potential for diverse applications and functionalization of MOF/COF films and patterns.
Collapse
Affiliation(s)
- Seyyed
Abbas Noorian Najafabadi
- Chemical
Engineering Department, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Chunyu Huang
- Chemical
Engineering Department, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Kaï Betlem
- Department
of Microelectronics, Delft University of
Technology, 2628 CD Delft,The Netherlands
- Department
of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, The
Netherlands
| | - Thijmen A. van Voorthuizen
- Laboratory
of Organic Chemistry, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Murali Krishna Ghatkesar
- Department
of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, The
Netherlands
| | - Martijn van Dongen
- Research Group Applied Natural Sciences, Fontys University of Applied Sciences, 5600 AH Eindhoven, The Netherlands
| | | |
Collapse
|
3
|
Zhang Y, Yang L, Zhou M, Mou Y, Wang D, Zhang P. Insights into microscopic fabrication, macroscopic forms and biomedical applications of alginate composite gel containing metal-organic frameworks. Asian J Pharm Sci 2024; 19:100952. [PMID: 39640058 PMCID: PMC11617950 DOI: 10.1016/j.ajps.2024.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 08/18/2024] [Indexed: 12/07/2024] Open
Abstract
Overcoming the poor physicochemical properties of pure alginate gel and the inherent shortcomings of pure metal-organic framework (MOF), alginate/MOF composite gel has captured the interest of many researchers as a tunable platform with high stability, controllable pore structure, and enhanced biological activity. Interestingly, different from the traditional organic or inorganic nanofillers physically trapped or chemically linked within neTtworks, MOFs crystals can not only be dispersed by crosslinking polymerization, but also support self-assembly in-situ under the help of chelating cations with alginate. The latter is influenced by multiple factors and may involve some complex mechanisms of action, which is also a topic discussed deeply in this article while summarizing different preparation routes. Furthermore, various physical and chemical levels of improvement strategies and available macroforms are summarized oriented towards obtaining composite gel with ideal performance. Finally, the application status of this composite system in drug delivery, wound healing and other biomedical fields is further discussed. And the current limitations and future development directions are shed light simultaneously, which may provide guidance for the vigorous development of these composite systems.
Collapse
Affiliation(s)
- Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lvyao Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yanhua Mou
- College of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dongmei Wang
- College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
4
|
Pal S, Gavhane UA, S K A. Biocompatible PVAc- g-PLLA Acrylate Polymers for DLP 3D Printing with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62594-62605. [PMID: 39472155 DOI: 10.1021/acsami.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The technological advancement of Additive Manufacturing has enabled the fabrication of various customized artifacts and devices, which has prompted a huge demand for multimaterials that can cater to stringent mechanical, chemical, and other functional property requirements. Photocurable formulations that are widely used for Digital Light Processing (DLP)/Stereolithography (SLA) 3D printing applications are now expected to meet these new challenges of hard and soft or stretchable structural requirements in addition to good resolution in multiple scales. Here we present a biocompatible photocurable resin formulation with tunable mechanical properties that can produce hard or stretchable elastomeric 3D printed materials in a graded manner. Acrylate poly(lactic acid) (PLA) grafted polyvinyl acetate (PVAc) polymer was mixed with hydroxyl ethyl methacrylate (HEMA) and hydroxyl ethyl acrylate (HEA) as reactive diluents (50-70 wt %) in various compositions to form a series of photocurable resin formulations. Depending on the nature of the reactive diluent (HEMA or HEA) and their weight percentage, the mechanical properties of the 3D printed parts could be fine-tuned from hard (Tensile strength 20.6 ± 2 MPa, elongation 2 ± 1%) to soft (Tensile strength 1.1 ± 0.2 MPa, elongation 62 ± 8%) materials. The printed materials displayed remarkable dye absorption (95%), showing stimuli-responsive behavior for dye release (with respect to both pH and enzyme), while also demonstrating high cell viability (>90%) for mouse embryonic (WT-MEF) cells and degradability in PBS solution. These biobased 3D printing resins have the potential for a variety of applications, including tissue engineering, soft robotics, dye absorption, and elastomeric actuators.
Collapse
Affiliation(s)
- Shibam Pal
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Asha S K
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Singh H, Dan A, Prasanna Kumari B, Dave H, Parsaila N, Navale A, Darban Z, Yadav I, Goyal P, Misra SK, Shahabuddin S, Hassan S, Dhanka M. Copper-MOF and tannic acid-empowered composite cryogel as a skin substitute for accelerated deep wound healing. BIOMATERIALS ADVANCES 2024; 164:213983. [PMID: 39137704 DOI: 10.1016/j.bioadv.2024.213983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
The effective management of deep skin wounds remains a significant healthcare challenge that often deteriorates with bacterial infection, oxidative stress, tissue necrosis, and excessive production of wound exudate. Current medical approaches, including traditional wound dressing materials, cannot effectively address these issues. There is a great need to engineer advanced and multifunctional wound dressings to address this multifaceted problem effectively. Herein, a rationally designed composite cryogel composed of a Copper Metal-Organic Framework (Cu-MOF), tannic acid (TA), polyvinyl alcohol (PVA), and zein protein has been developed by freeze-thaw technique. Cryogels display a remarkable swelling capacity attributed to their interconnected microporous morphology. Moreover, dynamic mechanical behaviour with the characteristics of potent antimicrobial, antioxidant, and biodegradation makes it a desirable wound dressing material. It was further confirmed that the material is highly biocompatible and can release TA and copper ions in a controlled manner. In-vivo skin irritation in a rat model demonstrated that composite cryogel did not provoke any irritation/inflammation when applied to the skin of a healthy recipient. In a deep wound model, the composite cryogel significantly accelerates the wound healing rate. These findings highlight the multifunctional nature of composite cryogels and their promising potential for clinical applications as advanced wound dressings.
Collapse
Affiliation(s)
- Hemant Singh
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India; Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Aniruddha Dan
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - B Prasanna Kumari
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Harshil Dave
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Nitesh Parsaila
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India
| | - Archana Navale
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India
| | - Zenab Darban
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat 382426, India
| | - Indu Yadav
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Prateek Goyal
- Materials Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Superb K Misra
- Materials Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India
| | - Syed Shahabuddin
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat 382426, India
| | - Shabir Hassan
- Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar 382055, Gujarat, India.
| |
Collapse
|
6
|
Molavi H, Mirzaei K, Barjasteh M, Rahnamaee SY, Saeedi S, Hassanpouryouzband A, Rezakazemi M. 3D-Printed MOF Monoliths: Fabrication Strategies and Environmental Applications. NANO-MICRO LETTERS 2024; 16:272. [PMID: 39145820 PMCID: PMC11327240 DOI: 10.1007/s40820-024-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials, thanks to their large specific surface area, high porosity, tailorable structures and compositions, diverse functionalities, and well-controlled pore/size distribution. However, most developed MOFs are in powder forms, which still have some technical challenges, including abrasion, dustiness, low packing densities, clogging, mass/heat transfer limitation, environmental pollution, and mechanical instability during the packing process, that restrict their applicability in industrial applications. Therefore, in recent years, attention has focused on techniques to convert MOF powders into macroscopic materials like beads, membranes, monoliths, gel/sponges, and nanofibers to overcome these challenges.Three-dimensional (3D) printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models. Therefore, this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications, emphasizing water treatment and gas adsorption/separation applications. Herein, the various strategies for the fabrication of 3D-printed MOF monoliths, such as direct ink writing, seed-assisted in-situ growth, coordination replication from solid precursors, matrix incorporation, selective laser sintering, and digital light processing, are described with the relevant examples. Finally, future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure, composition, and textural properties of 3D-printed MOF monoliths.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mahdi Barjasteh
- Center for Nano-Science and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 15614, Iran
| | - Seyed Yahya Rahnamaee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O.Box 15875-4413, Tehran, Iran
| | - Somayeh Saeedi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, P.O. Box 3619995161, Iran.
| |
Collapse
|
7
|
Liu Q, Dong X, Qi H, Zhang H, Li T, Zhao Y, Li G, Zhai W. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat Commun 2024; 15:3237. [PMID: 38622154 PMCID: PMC11018840 DOI: 10.1038/s41467-024-47597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Fabrication of composite hydrogels can effectively enhance the mechanical and functional properties of conventional hydrogels. While ceramic reinforcement is common in many hard biological tissues, ceramic-reinforced hydrogels lack a similar natural prototype for bioinspiration. This raises a key question: How can we still attain bioinspired mechanical mechanisms in composite hydrogels without mimicking a specific composition and structure? Abstracting the hierarchical composite design principles of natural materials, this study proposes a hierarchical fabrication strategy for ceramic-reinforced organo-hydrogels, featuring (1) aligned ceramic platelets through direct-ink-write printing, (2) poly(vinyl alcohol) organo-hydrogel matrix reinforced by solution substitution, and (3) silane-treated platelet-matrix interfaces. Unit filaments are further printed into a selection of bioinspired macro-architectures, leading to high stiffness, strength, and toughness (fracture energy up to 31.1 kJ/m2), achieved through synergistic multi-scale energy dissipation. The materials also exhibit wide operation tolerance and electrical conductivity for flexible electronics in mechanically demanding conditions. Hence, this study demonstrates a model strategy that extends the fundamental design principles of natural materials to fabricate composite hydrogels with synergistic mechanical and functional enhancement.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haoqi Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Tian Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Guanjin Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore.
| |
Collapse
|
8
|
Jiang F, Liang Y, Liu L, Zhang Y, Deng Y, Wei F, Xu C, Fu L, Lin B. One-pot co-crystallized hexanal-loaded ZIF-8/quaternized chitosan film for temperature-responsive ethylene inhibition and climacteric fruit preservation. Int J Biol Macromol 2024; 265:130798. [PMID: 38479674 DOI: 10.1016/j.ijbiomac.2024.130798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Controlling ethylene production and microbial infection are key factors to prolong the shelf life of climacteric fruit. Herein, a nanocomposite film, hexanal-loaded ZIF-8/CS (HZCF) with "nano-barrier" structure, was developed by a one-pot co-crystallized of ZIF-8 in situ growth on quaternized chitosan (CS) and encapsulation of hexanal into ZIF-8 via microporous adsorption. The resultant film realized the temperature responsive release of hexanal via the steric hindrance and hierarchical pore structure as "nano-barrier", which can inhibit ethylene production in climacteric fruit on demand. Based on this, the maximum ethylene inhibition rate of HZCF was up to 52.6 %. Meanwhile, the film exhibits excellent antibacterial, mechanical, UV resistance and water retention properties, by virtue of the functional synergy between ZIF-8 and CS. Contributed to the multifunctional features, HZCF prolonged the shelf life of banana and mango for at least 16 days, which is 8 days longer than that of control fruit. More strikingly, HZCF is washable and biodegradable, which is expected to replace non-degradable plastic film. Thus, this study provides a convenient novel approach to simplify the encapsulation of active molecule on metal-organic frameworks (MOFs), develops a packaging material for high-efficient freshness preservation, and helps to alleviate the survival crisis caused by food waste.
Collapse
Affiliation(s)
- Fengqiong Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Li Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Fuxiang Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
9
|
Abdella S, Kim S, Afinjuomo F, Song Y, Upton R, Garg S. Combining the potential of 3D printed buccal films and nanostructured lipid carriers for personalised cannabidiol delivery. Drug Deliv Transl Res 2024; 14:984-1004. [PMID: 37903964 DOI: 10.1007/s13346-023-01446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Cannabidiol (CBD) has been recognized for its numerous therapeutic benefits, such as neuroprotection, anti-inflammatory effects, and cardioprotection. However, CBD has some limitations, including unpredictable pharmacokinetics and low oral bioavailability. To overcome the challenges associated with CBD delivery, we employed Design of Experiments (DoE), lipid carriers, and 3D printing techniques to optimize and develop buccal film loaded with CBD-NLCs. Three-factor Box-Behnken Design was carried out to optimise the NLCs and analyse the effect of independent factors on dependent factors. The emulsification-ultrasonication technique was used to prepare the NLCs. A pressure-assisted micro-syringe printing technique was used to produce the films. The produced films were studied for physicochemical, and mechanical properties, release profiles, and predicted in vivo performance. The observed particle size of the NLCs ranged from 12.17 to 84.91 nm whereas the PDI varied from 0.099 to 0.298. Lipid and sonication time positively affected the particle size whereas the surfactant concentration was inversely related. CBD was incorporated into the optimal formulation and the observed particle size, PDI, and zeta potential for the CBD-NLCs were 94.2 ± 0.47 nm, 0.11 ± 0.01 and - 11.8 ± 0.52 mV. Hydroxyethyl cellulose (HEC)-based gel containing the CBD-NLCs was prepared and used as a feed for 3D printing. The CBD-NLCs film demonstrated a slow and sustained in vitro release profile (84. 11 ± 7.02% in 6 h). The predicted AUC0-10 h, Cmax, and Tmax were 201.5 µg·h/L, 0.74 µg/L, and 1.28 h for a film with 0.4 mg of CBD, respectively. The finding demonstrates that a buccal film of CBD-NLCs can be fabricated using 3D printing.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Richard Upton
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
10
|
Omidian H, Mfoafo K. Three-Dimensional Printing Strategies for Enhanced Hydrogel Applications. Gels 2024; 10:220. [PMID: 38667639 PMCID: PMC11049339 DOI: 10.3390/gels10040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the dynamic field of 3D-printed hydrogels, emphasizing advancements and challenges in customization, fabrication, and functionalization for applications in biomedical engineering, soft robotics, and tissue engineering. It delves into the significance of tailored biomedical scaffolds for tissue regeneration, the enhancement in bioinks for realistic tissue replication, and the development of bioinspired actuators. Additionally, this paper addresses fabrication issues in soft robotics, aiming to mimic biological structures through high-resolution, multimaterial printing. In tissue engineering, it highlights efforts to create environments conducive to cell migration and functional tissue development. This research also extends to drug delivery systems, focusing on controlled release and biocompatibility, and examines the integration of hydrogels with electronic components for bioelectronic applications. The interdisciplinary nature of these efforts highlights a commitment to overcoming material limitations and optimizing fabrication techniques to realize the full potential of 3D-printed hydrogels in improving health and well-being.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | | |
Collapse
|
11
|
Liu X, Zhao D, Wang J. Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework. NANO-MICRO LETTERS 2024; 16:157. [PMID: 38512503 PMCID: PMC10957829 DOI: 10.1007/s40820-024-01373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Metal-organic framework (MOF) and covalent organic framework (COF) are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features, such as large surface area, tunable pore size, and functional surfaces, which have significant values in various application areas. The emerging 3D printing technology further provides MOF and COFs (M/COFs) with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths. However, the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs' microstructural features, both during and after 3D printing. It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications. In this overview, the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths. Their differences in the properties, applications, and current research states are discussed. The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF. Throughout the analysis of the current states of 3D-printed M/COFs, the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.
Collapse
Affiliation(s)
- Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, People's Republic of China.
| |
Collapse
|
12
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
13
|
Ding WQ, Xu L, Li XY, Fu ML, Yuan B. 3D-Printed MOFs/Polymer Composite as a Separatable Adsorbent for the Removal of Phenylarsenic Acid in the Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49181-49194. [PMID: 37816194 DOI: 10.1021/acsami.3c10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging as advanced nanoporous materials to remove phenylarsenic acid, p-arsanilic acid (p-ASA), and roxarsone (ROX) in the aqueous solution, while MOFs are often present as powder state and encounter difficulties in recovery after adsorption, which greatly limit their practical application in the aqueous environments. Herein, MIL-101 (Fe), a typical MOF, was mixed with sodium alginate and gelatin to prepare MIL-101@CAGE by three-dimensional (3D) printing technology, which was then used as a separatable adsorbent to remove phenylarsenic acid in the aqueous solution. The structure of 3D-printed MIL-101@CAGE was first characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetry and differential thermogravimetry (TG-DTG). The octahedral morphology of MIL-101 (Fe) was found unchanged during the 3D printing process. Then, the adsorption process of MIL-101@CAGE on phenylarsenic acids was systematically investigated by adsorption kinetics, adsorption isotherms, adsorption thermodynamics, condition experiments, and cyclic regeneration experiments. Finally, the adsorption mechanism between MIL-101@CAGE and phenylarsenic acid was further investigated. The results showed that the Langmuir, Freundlich, and Temkin isotherms were well fit, and according to the Langmuir fitting results, the maximum adsorption amounts of MIL-101@CAGE on p-ASA and ROX at 25 °C were 106.98 and 120.28 mg/g, respectively. The removal of p-ASA and ROX by MIL-101@CAGE remained stable over a wide pH range and in the presence of various coexisting ions. The regeneration experiments showed that the 3D-printed MIL-101@CAGE could still maintain a more than 90% removal rate after five cycles. The adsorption mechanism of this system might include π-π stacking interactions between the benzene ring on the phenylarsenic acids and the organic ligands in MIL-101@CAGE, hydrogen-bonding, and ligand-bonding interactions (Fe-O-As). This study provides a new idea for the scale preparation of a separatable and recyclable adsorbent based on MOF material for the efficient removal of phenylarsenic acid in the aqueous solution.
Collapse
Affiliation(s)
- Wen-Qing Ding
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Lei Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Xiao-Ying Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Baoling Yuan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, P. R. China
| |
Collapse
|
14
|
Zhang T, Wang S, Lu X, Guo Y, Liang X. A composite hydrogel modified silica stationary phase for mixed‑mode liquid chromatography. J Chromatogr A 2023; 1707:464300. [PMID: 37597479 DOI: 10.1016/j.chroma.2023.464300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
A novel composite hydrogel functionalized silica core-shell stationary phase was prepared by the surface modification of silica sphere. The successful synthesis of the new stationary phase (T-Sil@PAM/SA/UiO-66-NH2) was proven by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), etc. Due to the coexistence of amide, hydroxyl, long carbon chain and UiO-66-NH2 in composite hydrogel shell, the obtained stationary phase can be used in hydrophilic/reversed-phase liquid chromatography with multiple retention mechanisms, such as hydrophilic, hydrophobic and π - π interactions. The chromatographic retention behavior of T-Sil@PAM/SA/UiO-66-NH2 demonstrated that the new stationary phase showed excellent separation performance for both polar analytes (such as alkaloids, saccharides, etc.) and nonpolar analytes (such as substituted benzene and polycyclic aromatic hydrocarbon (PAHs), etc.). Furthermore, compared with NH2 column and commercial C18 column, the T-Sil@PAM/SA/UiO-66-NH2 exhibited a certain superiority. Moreover, the relative standard deviation (RSD) of PAHs' retention time with eight replicates consecutive elution was found to range from 0.03% to 0.17%. Therefore, the successful use of T-Sil@PAM/SA/UiO-66-NH2 in mixed‑mode liquid chromatography expanded the potential applications of hydrogels in the field of separation.
Collapse
Affiliation(s)
- Tong Zhang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaofeng Lu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Guo
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiaojing Liang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
15
|
Leonel G, Lennox CB, Scharrer M, Jayanthi K, Friščic T, Navrotsky A. Experimental Investigation of Thermodynamic Stabilization in Boron Imidazolate Frameworks (BIFs) Synthesized by Mechanochemistry. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17754-17760. [PMID: 37736295 PMCID: PMC10510708 DOI: 10.1021/acs.jpcc.3c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/23/2023]
Abstract
This study experimentally explores the energetics for the formation of boron-imidazolate frameworks (BIFs), which are synthesized by mechanochemistry. The topologically similar frameworks employ the same tetratopic linker based on tetrakis(imidazolyl)boric acid but differ in the monovalent cation metal nodes. This permits assessment of the stabilizing effect of metal nodes in frameworks with sodalite (SOD) and diamondoid (dia) topologies. The enthalpy of formation from endmembers (metal oxide and linker), which define thermodynamic stability of the structures, has been determined by use of acid solution calorimetry. The results show that heavier metal atoms in the node promote greater energetic stabilization of denser structures. Overall, in BIFs the relation between cation descriptors (ionic radius and electronegativity) and thermodynamic stability depends on framework topology. Thermodynamic stability increases with the metallic character of the cation employed as the metal node, independent of the framework topology. The results suggest unifying aspects for thermodynamic stabilization across MOF systems.
Collapse
Affiliation(s)
- Gerson
J. Leonel
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Cameron B. Lennox
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Manuel Scharrer
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - K Jayanthi
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tomislav Friščic
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Alexandra Navrotsky
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Chen Q, Tian E, Wang Y, Mo J, Xu G, Zhu M. Recent Progress and Perspectives of Direct Ink Writing Applications for Mass Transfer Enhancement in Gas-Phase Adsorption and Catalysis. SMALL METHODS 2023; 7:e2201302. [PMID: 36871146 DOI: 10.1002/smtd.202201302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/11/2023] [Indexed: 06/09/2023]
Abstract
Conventional adsorbents and catalysts shaped by granulation or extrusion have high pressure drop and poor flexibility for chemical, energy, and environmental processes. Direct ink writing (DIW), a kind of 3D printing, has evolved into a crucial technique for manufacturing scalable configurations of adsorbents and catalysts with satisfactory programmable automation, highly optional materials, and reliable construction. Particularly, DIW can generate specific morphologies required for excellent mass transfer kinetics, which is essential in gas-phase adsorption and catalysis. Here, DIW methodologies for mass transfer enhancement in gas-phase adsorption and catalysis, covering the raw materials, fabrication process, auxiliary optimization methods, and practical applications are comprehensively summarized. The prospects and challenges of DIW methodology in realizing good mass transfer kinetics are discussed. Ideal components with a gradient porosity, multi-material structure, and hierarchical morphology are proposed for future investigations.
Collapse
Affiliation(s)
- Qiwei Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Wang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Jinhan Mo
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
- Key Laboratory of Eco Planning & Green Building, Ministry of Education (Tsinghua University), Beijing, 100084, China
| | - Guiyin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
17
|
Zhang R, Guo J, Yang X, Jiang X, Zhang L, Zhou J, Cao X, Duan B. Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15917-15927. [PMID: 36921089 DOI: 10.1021/acsami.2c18569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of the effective 3D printing strategy for diverse functional monomers is still challenging. Moreover, the conventional 3D printing hydrogels are usually soft and fragile due to the lack of an energy dissipation mechanism. Herein, a microsphere mediating ink preparation strategy is developed to provide tailored rheological behavior for various monomer direct ink writings. The chitosan microspheres are used as an exemplary material due to their tunable swelling ratio under the acid-drived electrostatic repulsion of the protonated amino groups. The rheological behaviors of the swollen chitosan microsphere (SCM) are independent on the monomer types, and various functional secondary polymers could be carried at a wide loading ratio by the acid driving. The SCM reinforces the hydrogel as the sacrificial bonds. With the adjustable composition, the 3D printing hydrogel mechanical properties are tunable in wide windows: strength (0.4-1.01 MPa), dissipated energy (0.11-3.25 MJ m-3), and elongation at break (47-626%). With the excellent printing and mechanical properties, the SCM inks enable multi-functional integration for soft device production, such as 4D printing robots and wearable strain sensors. We anticipate that this microsphere mediating 3D printing strategy can inspire new possibilities for the design of the robust hydrogels with a broad range of functionalities and mechanical performances.
Collapse
Affiliation(s)
- Rongrong Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Jinhua Guo
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xuefeng Yang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xueyu Jiang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Reddy YN, De A, Paul S, Pujari AK, Bhaumik J. In Situ Nanoarchitectonics of a MOF Hydrogel: A Self-Adhesive and pH-Responsive Smart Platform for Phototherapeutic Delivery. Biomacromolecules 2023; 24:1717-1730. [PMID: 36897993 DOI: 10.1021/acs.biomac.2c01489] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) have dramatically changed the fundamentals of drug delivery, catalysis, and gas storage as a result of their porous geometry, controlled architecture, and ease of postsynthetic modification. However, the biomedical applications of MOFs still remain a less explored area due to the constraints associated with handling, utilizing, and site-specific delivery. The major drawbacks associated with the synthesis of nano-MOFs are related to the lack of control over particle size and inhomogeneous dispersion during doping. Therefore, a smart strategy for the in situ growth of a nano-metal-organic framework (nMOF) has been devised to incorporate it into a biocompatible polyacrylamide/starch hydrogel (PSH) composite for therapeutic applications. In this study, the post-treatment of zinc metal ion cross-linked PSH with the ligand solution generated the nZIF-8@PAM/starch composites (nZIF-8, nano-zeolitic imidazolate framework-8). The ZIF-8 nanocrystals thus formed have been found to be evenly dispersed throughout the composites. This newly designed nanoarchitectonics of an MOF hydrogel was found to be self-adhesive, which also exhibited improved mechanical strength, a viscoelastic nature, and a pH-responsive behavior. Taking advantage of these properties, it has been utilized as a sustained-release drug delivery platform for a potential photosensitizer drug (Rose Bengal). The drug was initially diffused into the in situ hydrogel, and then the entire scaffold was analyzed for its potential in photodynamic therapy against bacterial strains such as E. coli and B. megaterium. The Rose Bengal loaded nano-MOF hydrogel composite exhibited remarkable IC50 values within the range of 7.37 ± 0.04 and 0.51 ± 0.05 μg/mL for E. coli and B. megaterium. Further, reactive oxygen species (ROS) directed antimicrobial potential was validated using a fluorescence-based assay. This smart in situ nanoarchitectonics hydrogel platform can also serve as a potential biomaterial for topical treatment including wound healing, lesions, and melanoma.
Collapse
Affiliation(s)
- Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
19
|
Lim JYC, Goh L, Otake KI, Goh SS, Loh XJ, Kitagawa S. Biomedically-relevant metal organic framework-hydrogel composites. Biomater Sci 2023; 11:2661-2677. [PMID: 36810436 DOI: 10.1039/d2bm01906j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal organic frameworks (MOFs) are incredibly versatile three-dimensional porous materials with a wide range of applications that arise from their well-defined coordination structures, high surface areas and porosities, as well as ease of structural tunability due to diverse compositions achievable. In recent years, following advances in synthetic strategies, development of water-stable MOFs and surface functionalisation techniques, these porous materials have found increasing biomedical applications. In particular, the combination of MOFs with polymeric hydrogels creates a class of new composite materials that marries the high water content, tissue mimicry and biocompatibility of hydrogels with the inherent structural tunability of MOFs in various biomedical contexts. Additionally, the MOF-hydrogel composites can transcend each individual component such as by providing added stimuli-responsiveness, enhancing mechanical properties and improving the release profile of loaded drugs. In this review, we discuss the recent key advances in the design and applications of MOF-hydrogel composite materials. Following a summary of their synthetic methodologies and characterisation, we discuss the state-of-the-art in MOF-hydrogels for biomedical use - cases including drug delivery, sensing, wound treatment and biocatalysis. Through these examples, we aim to demonstrate the immense potential of MOF-hydrogel composites for biomedical applications, whilst inspiring further innovations in this exciting field.
Collapse
Affiliation(s)
- Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Leonard Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shermin S Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
LIU N, LI P, SUN M, QIN H, LI Y, LI J, LIU H, WU L. One-step rapid enrichment and detection of malachite green in aquaculture water based on metal-organic framework hydrogel. Se Pu 2022; 40:721-729. [PMID: 35903839 PMCID: PMC9404025 DOI: 10.3724/sp.j.1123.2022.04019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Pal S, Su YZ, Chen YW, Yu CH, Kung CW, Yu SS. 3D Printing of Metal-Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28247-28257. [PMID: 35604841 DOI: 10.1021/acsami.2c02690] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft ionotronics are emerging materials as wearable sensors for monitoring physiological signals, sensing environmental hazards, and bridging the human-machine interface. However, the next generation of wearable sensors requires multiple sensing capabilities, mechanical toughness, and 3D printability. In this study, a metal-organic framework (MOF) and three-dimensional (3D) printing were integrated for the synthesis of a tough MOF-based ionogel (MIG) for colorimetric and mechanical sensing. The ink for 3D printing contained deep eutectic solvents (DESs), cellulose nanocrystals (CNCs), MOF crystals, and acrylamide. After printing, further photopolymerization resulted in a second covalently cross-linked poly(acrylamide) network and solidification of MIG. As a porphyrinic Zr-based MOF, MOF-525 served as a functional filler to provide sharp color changes when exposed to acidic compounds. Notably, MOF-525 crystals also provided another design space to tune the printability and mechanical strength of MIG. In addition, the printed MIG exhibited high stability in the air because of the low volatility of DESs. Thereafter, wearable auxetic materials comprising MIG with negative Poisson's ratios were prepared by 3D printing for the detection of mechanical deformation. The resulting auxetic sensor exhibited high sensitivity via the change in resistance upon mechanical deformation and a conformal contact with skins to monitor various human body movements. These results demonstrate a facile strategy for the construction of multifunctional sensors and the shaping of MOF-based composite materials.
Collapse
Affiliation(s)
- Souvik Pal
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - You-Ze Su
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Yu-Wen Chen
- Department of Engineering Science, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Chi-Hua Yu
- Department of Engineering Science, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
- Core Facility Center, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| |
Collapse
|
22
|
Curcumin-loaded HKUST-1@ carboxymethyl starch-based composites with moisture-responsive release properties and synergistic antibacterial effect for perishable fruits. Int J Biol Macromol 2022; 214:181-191. [PMID: 35700848 DOI: 10.1016/j.ijbiomac.2022.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
The spoilage of fruit is one of the most important causes of fruit waste. High humidity by fresh fruit respiration leads to bacterial reproduction, which is the key factor of products corruption. Herein, a biological multifunctional film (Cur-HKUST-1@CMS/PVA) for fruits preservation with a high moisture environment was developed by cross-linking carboxymethyl starch (CMS)/polyvinyl alcohol (PVA) with MOF-199 (HKUST-1), and loaded with curcumin. The hydrophilic CMS facilitates water adsorption and moisture can stimulate curcumin release from HKUST-1. HKUST-1 not only acts as curcumin carriers but also forms synergistic antibacterial with curcumin to improve the antibacterial activity of the composites. XRD and SEM demonstrated that moisture disrupts the structure of HKUST-1 and releases curcumin and the results showed that the release of curcumin increased from 25.11 % to 58.32 % after moisture stimulation. In addition, Cur-HKUST-1@CMS/PVA had excellent antibacterial activity and antioxidant ability. As validation, the film can keep pitaya and avocado freshness at least 4 days longer than the control, confirming the effectiveness of Cur-HKUST-1@CMS/PVA in preventing fruit decay. Consequently, Cur-HKUST-1@CMS/PVA is a promising active packaging material for improve the shelf life of perishable fruits.
Collapse
|
23
|
Metal-organic framework-based hydrogel with structurally dynamic properties as a stimuli-responsive localized drug delivery system for cancer therapy. Acta Biomater 2022; 145:43-51. [PMID: 35398545 DOI: 10.1016/j.actbio.2022.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Metal-organic framework (MOF) is an exciting class of porous biomaterials that have been considered as a carrier to store and deliver therapeutic drugs. However, similar to other nanomaterials, the application of MOF in clinical settings is still limited because of premature diffusion of their payloads and tissue off-targeting behavior. To overcome these challenges, we designed an MOF-based hydrogel with structurally dynamic properties, i.e., self-healing and shear-thinning, as an injectable localized drug delivery platform. The drug-encapsulating MOF hydrogel is formed through a dynamic coordination bond cross-linkage between a doxorubicin-loaded MOF (MOF@DOX) particle and a homemade bisphosphonate-modified hyaluronic acid (HA-BP) polymeric binder. The HA-BP·MOF@DOX hydrogel demonstrates pH- and ATP-responsive drug release characteristic and efficiently kills cancer cells in vitro. The animal experiments reveal that the HA-BP·MOF@DOX hydrogel has enhanced capability in terms of tumor growth suppression as compared to the MOF@DOX group, which can be attributed to drug localization in hydrogel superstructure and sustained release at the tumor site. The presented injectable dynamic MOF-based hydrogel is a promising in vivo localized drug delivery system for cancer treatment. Herein, we report the self-healing and shear-thinning of MOF-based drug carrier cross-linked by coordinate bonds for the first time and provide new insights and a facile chemical strategy for designing and fabricating MOF-based biomaterials by using bisphosphonate-zinc interaction. STATEMENT OF SIGNIFICANCE: Bisphosphonate-zinc interaction is a facile chemical strategy to cross-link metal-organic framework (MOF)-based hydrogel. The presented MOF-based hydrogel demonstrates structurally dynamic properties, including smooth injectability, self-healing, and shear-thinning. The developed MOF-based hydrogel possesses pH- and ATP-responsive drug release characteristic and kills cancer cells in vitro efficiently. The dynamic MOF-based hydrogel shows enhanced in vivo anticancer activity as compared to pure MOF particles. Self-healing and shear-thinning of metal-ligand cross-linked MOF-based drug delivery system are reported for the first time, thus providing new insights for the design and fabrication of MOF-based biomaterials.
Collapse
|
24
|
Reticular framework materials in miniaturized and emerging formats in analytical chemistry. J Chromatogr A 2022; 1673:463092. [DOI: 10.1016/j.chroma.2022.463092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
|
25
|
Ong JL, Loy ACM, Teng SY, How BS. Future Paradigm of 3D Printed Ni-Based Metal Organic Framework Catalysts for Dry Methane Reforming: Techno-economic and Environmental Analyses. ACS OMEGA 2022; 7:15369-15384. [PMID: 35571820 PMCID: PMC9096962 DOI: 10.1021/acsomega.1c06873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Dry reforming of biogas is referred as an attractive path for sustainable H2 production over decades. Meanwhile, in the Malaysian context, the abundance of palm oil mill effluent (POME) produced annually is deemed as a potential renewable source for renewable energy generation. Conventionally, nickel (Ni) is the most common catalyst used in the industrial-scale dry reforming of methane (DRM) to yield H2, but it is subject to the drawbacks of sintering and deactivation after a long reaction time at high temperatures (>500 °C). Therefore, this work aims to provide an insight on the feasibility of the application of modified Ni-based catalysts in DRM, specifically in the economic and environmental aspects. From the benchmarking study of various Ni-based catalysts (e.g., bimetallic (Ni-Ce/Al2O3), alumina support (Ni/Al2O3), protonated titanate nanotube (Ni-HTNT), and unsupported), the Ni-MOF catalyst, notably, had proven its prominence in both economic and environmental aspects on the same basis of 10 tonnes of H2 production. The MOF-based catalyst not only possessed a better economic performance (net present value 61.86%, 140%, and 563.08% higher than that of Ni-Ce/Al2O3, Ni/Al2O3, and Ni-HTNT) but also had relatively lower carbon emissions (13.18%, 20.09%, and 75.72% lower than that of Ni/Al2O3, Ni-HTNT, and unsupported Ni). This work also accounted for 3D printing technology for the mass production of Ni-MOF catalysts, where the net present value was 2 to 3% higher than that of the conventional production method. Additionally, sensitivity analysis showed that the H2 price has the greatest impact on the feasibility of DRM as compared to other cost factors.
Collapse
Affiliation(s)
- Jia Ling Ong
- Biomass
Waste-to-Wealth Special Interest Group, Research Centre for Sustainable
Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| | - Adrian Chun Minh Loy
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Sin Yong Teng
- Institute
for Molecules and Materials, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Bing Shen How
- Biomass
Waste-to-Wealth Special Interest Group, Research Centre for Sustainable
Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| |
Collapse
|
26
|
Yu H, Xiao Q, Qi G, Chen F, Tu B, Zhang S, Li Y, Chen Y, Yu H, Duan P. A Hydrogen Bonds-Crosslinked Hydrogels With Self-Healing and Adhesive Properties for Hemostatic. Front Bioeng Biotechnol 2022; 10:855013. [PMID: 35497342 PMCID: PMC9046721 DOI: 10.3389/fbioe.2022.855013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogels with adhesive properties have the potential for rapid haemostasis and wound healing in uncontrolled non-pressurized surface bleeding. Herein, a typical hydrogen bond-crosslinked hydrogel with the above functions was constructed by directly mixing solutions of humic acid (HA) and polyvinylpyrrolidone (PVP), in which the HA worked as a crosslinking agent to form hydrogen bonds with the PVP. By altering the concentration of HA, a cluster of stable and uniform hydrogels were prepared within 10 s. The dynamic and reversible nature of the hydrogen bonds gave the HA/PVP complex (HPC) hydrogels injectability and good flexibility, as well as a self-healing ability. Moreover, the numerous functional groups in the hydrogels enhanced the cohesion strength and interaction on the interface between the hydrogel and the substrate, endowing them with good adhesion properties. The unique chemical composition and cross-linking mechanism gave the HPC hydrogel good biocompatibility. Taking advantage of all these features, the HPC hydrogels obtained in this work were broadly applied as haemostatic agents and showed a good therapeutic effect. This work might lead to an improvement in the development of multifunctional non-covalent hydrogels for application to biomaterials.
Collapse
Affiliation(s)
- Han Yu
- Department of Pathology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pathophysiology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| | - Qiaohong Xiao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Guilin Qi
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biyue Tu
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Suo Zhang
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Yinping Li
- Department of Pathophysiology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| |
Collapse
|
27
|
Al‐Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization-Deposition of Metal-Organic Framework Films. Angew Chem Int Ed Engl 2022; 61:e202117240. [PMID: 35146859 PMCID: PMC9303373 DOI: 10.1002/anie.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/06/2022]
Abstract
Reactive extrusion printing (REP) is demonstrated as an approach to simultaneously crystallize and deposit films of the metal-organic framework (MOF) Cu3 btc2 (btc=1,3,5-benzenetricarboxylate), also known as HKUST-1. The technique co-delivers inks of the copper(II) acetate and H3 btc starting materials directly on-surface and on-location for rapid nucleation into films at room temperature. The films were analyzed using PXRD, profilometry, SEM and thermal analysis techniques and confirmed high-quality Cu3 btc2 films are produced in low-dispersity interconnected nanoparticulate form. The porosity was examined using gas adsorption which showed REP gives Cu3 btc2 films with open interconnected pore structures, demonstrating the method bestows features that traditional synthesis does not. REP is a technique that opens the field to time-efficient large-scale fabrication of MOF interfaces and should find use in a wide variety of coating application settings.
Collapse
Affiliation(s)
- Fatimah Al‐Ghazzawi
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
- Al-Nasiriyah Technical InstituteSouthern Technical UniversityThi-QarIraq
| | - Luke Conte
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Christopher Richardson
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
| |
Collapse
|
28
|
Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J Funct Biomater 2022; 13:27. [PMID: 35323227 PMCID: PMC8953174 DOI: 10.3390/jfb13010027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional (2D) nanomaterials (e.g., graphene) have shown to have a high potential in future biomedical applications due to their unique physicochemical properties such as unusual electrical conductivity, high biocompatibility, large surface area, and extraordinary thermal and mechanical properties. Although the potential of graphene as the most common 2D nanomaterials in biomedical applications has been extensively investigated, the practical use of other nanoengineered 2D materials beyond graphene such as transition metal dichalcogenides (TMDs), topological insulators (TIs), phosphorene, antimonene, bismuthene, metal-organic frameworks (MOFs) and MXenes for biomedical applications have not been appreciated so far. This review highlights not only the unique opportunities of 2D nanomaterials beyond graphene in various biomedical research areas such as bioelectronics, imaging, drug delivery, tissue engineering, and regenerative medicine but also addresses the risk factors and challenges ahead from the medical perspective and clinical translation of nanoengineered 2D materials. In conclusion, the perspectives and future roadmap of nanoengineered 2D materials beyond graphene are outlined for biomedical applications.
Collapse
Affiliation(s)
- Maryam Derakhshi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Sahar Daemi
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Pegah Shahini
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Afagh Habibzadeh
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| |
Collapse
|
29
|
Al-Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization‐Deposition of Metal‐Organic Frameworks Films. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatimah Al-Ghazzawi
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| | - Luke Conte
- University of Wollongong School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Christopher Richardson
- University of Wollongong Faculty of Science Medicine and Health School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Pawel Wagner
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| |
Collapse
|
30
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
31
|
Green synthesis of polyacrylamide/polyanionic cellulose hydrogels composited with Zr-based coordination polymer and their enhanced mechanical and adsorptive properties. Polym J 2021. [DOI: 10.1038/s41428-021-00590-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Fe 3+-citric acid/sodium alginate hydrogel: A photo-responsive platform for rapid water purification. Carbohydr Polym 2021; 269:118269. [PMID: 34294301 DOI: 10.1016/j.carbpol.2021.118269] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
As water pollution in human society becomes more and more serious, the demand for materials that can be used for wastewater treatment is increasing. Here, we reported a sodium alginate-based hydrogel (Fe3+-CA/SA hydrogel) that can efficiently photocatalyze the degradation of malachite green. The Fe3+-CA/SA hydrogel is composed of sodium alginate, citric acid, and Fe3+. The hydrogel has multi-leveled pore structure and photochromic ability. Benefiting from the unique microstructure and positive feedback chemical reaction process, the hydrogel has high photocatalytic efficiency. Under 365 nm UV light irradiation, the hydrogel can degrade around 95% of malachite green (20 mg/L) in about 4 min, and there is no need to add H2O2 in the degradation process. The work helps to expand the application of sodium alginate-based hydrogels in the field of water treatment. It also has exploratory significance for the principle of photocatalytic degradation of malachite green.
Collapse
|
33
|
Yin B, Liang R, Liang X, Fu D, Wang L, Sun G. Construction of Stable Wide-Temperature-Range Proton Exchange Membranes by Incorporating a Carbonized Metal-Organic Frame into Polybenzimidazoles and Polyacrylamide Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103214. [PMID: 34590404 DOI: 10.1002/smll.202103214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in fuel cell electric vehicles applications. The further request of high-efficiency and cost competitive technology make high-temperature proton exchange membranes utilizing phosphoric acid-doped polybenzimidazole be favored because they can work well up to 180 °C without extra humidifier. However, they face quick loss of phosphoric acid below 120 °C and resulting in the limits of commercialization. Herein UiO-66 derived carbon (porous carbon-ZrO2 ), comprising branched poly(4,4'-diphenylether-5,5'-bibenzimidazole) and polyacrylamide hydrogels self-assembly (BHC1-4) membranes for wide-temperature-range operation (80-160 °C) is presented. These two-phase membranes contained the hygroscopicity of polyacrylamide hydrogels improve the low-temperature proton conductivity, relatively enable the membrane to function at 80 °C. An excellent cell performance of BHC2 membrane with high peak power density of 265 and 656 mW cm-2 at both 80 and 160 °C can be achieved. Furthermore, this membrane exhibits high stability of frequency cold start-ups (from room temperature to 80 °C) and long-term cell test at 160 °C. The improvement of cell performance and stability of BHC2 membrane indicate a progress of breaking operated temperature limit in existing PEMFCs systems.
Collapse
Affiliation(s)
- Bibo Yin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Xiaoxu Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Duo Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
34
|
Wang Y, Shaghaleh H, Hamoud YA, Zhang S, Li P, Xu X, Liu H. Synthesis of a pH-responsive nano-cellulose/sodium alginate/MOFs hydrogel and its application in the regulation of water and N-fertilizer. Int J Biol Macromol 2021; 187:262-271. [PMID: 34314793 DOI: 10.1016/j.ijbiomac.2021.07.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022]
Abstract
In order to circumvent the water eutrophication caused by nitrogen loss in agriculture, slow-release and high-water containing fertilizers have captured much attention. Considering the unstable release of traditional slow-released fertilizers, novel strategies need to be designed to meet the steady release of fertilizers. Herein, by integrating cellulose-based hydrogel with MIL-100(Fe), a pH-sensitive Cellulose/MOFs hydrogel (CAM) with a high surface area (45.25 m2/g) was devised. The volume changes and the water adsorption of the hydrogels were uncovered from pH 3 to pH 11, where the highest water adsorption (100 g/g) was achieved at pH 11. Besides, a pH-sensitive urea slow release fertilizer (U-CAM) was also designed. The urea release of the U-CAM at pH 11 was much slower than that of the U-CAM at pH 3, which indicated its potential application in arid regions. In parallel with a favorable water-holding capacity, the totally loss of the soil moisture loaded with U-CAM was slowed down by 18 days as compared with the pure soil. The positive effect of the U-CAM on the growth of wheat was indexed with the germination rate, number of tillers, photosynthetic rate and chlorophyll content of the crop, which verified their further application in irrigating farming.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Hiba Shaghaleh
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Youself Alhaj Hamoud
- College of Agricultural Science and engineering, Hohai University, Nanjing 210098, China
| | - Shuangsheng Zhang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
35
|
State-of-the-art of 3D printing technology of alginate-based hydrogels-An emerging technique for industrial applications. Adv Colloid Interface Sci 2021; 293:102436. [PMID: 34023568 DOI: 10.1016/j.cis.2021.102436] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Recently, three-dimensional (3D) printing (also known as additive manufacturing) has received unprecedented consideration in various fields owing to many advantages compared to conventional manufacturing equipment such as reduced fabrication time, one-step production, and the ability for rapid prototyping. This promising technology, as the next manufacturing revolution and universal industrial method, allows the user to fabricate desired 3D objects using a layer-by-layer deposition of material and a 3D printer. Alginate, a versatile polysaccharide derived from seaweed, is popularly used for this advanced bio-fabrication technique due to its printability, biodegradability, biocompatibility, excellent availability, low degree of toxicity, being a relatively inexpensive, rapid gelation in the presence of Ca2+ divalent, and having fascinating chemical structure. In recent years, 3D printed alginate-based hydrogels have been prepared and used in various fields including tissue engineering, water treatment, food, electronics, and so forth. Due to the prominent role of 3D printed alginate-based materials in diverse fields. So, this review will focus and highlight the latest and most up-to-date achievements in the field of 3D printed alginate-based materials in biomedical, food, water treatment, and electronics.
Collapse
|
36
|
Baniasadi H, Ajdary R, Trifol J, Rojas OJ, Seppälä J. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydr Polym 2021; 266:118114. [PMID: 34044931 DOI: 10.1016/j.carbpol.2021.118114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Direct-ink-writing (DIW) of hydrogels has become an attractive research area due to its capability to fabricate intricate, complex, and highly customizable structures at ambient conditions for various applications, including biomedical purposes. In the current study, cellulose nanofibrils reinforced aloe vera bio-hydrogels were utilized to develop 3D geometries through the DIW technique. The hydrogels revealed excellent viscoelastic properties enabled extruding thin filaments through a nozzle with a diameter of 630 μm. Accordingly, the lattice structures were printed precisely with a suitable resolution. The 3D-printed structures demonstrated significant wet stability due to the high aspect ratio of the nano- and microfibrils cellulose, reinforced the hydrogels, and protected the shape from extensive shrinkage upon drying. Furthermore, all printed samples had a porosity higher than 80% and a high-water uptake capacity of up to 46 g/g. Altogether, these fully bio-based, porous, and wet stable 3D structures might have an opportunity in biomedical fields.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Jon Trifol
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland; Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC Canada V6T 1Z3
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
37
|
Structural insights on the metal cross-linking of polymers from the first principles: Calcium – Polymethacrylic acid case study. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Arun Kumar S, Balasubramaniam B, Bhunia S, Jaiswal MK, Verma K, Prateek, Khademhosseini A, Gupta RK, Gaharwar AK. Two-dimensional metal organic frameworks for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1674. [PMID: 33137846 DOI: 10.1002/wnan.1674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Two-dimensional (2D) metal organic frameworks (MOFs), are an emerging class of layered nanomaterials with well-defined structure and modular composition. The unique pore structure, high flexibility, tunability, and ability to introduce desired functionality within the structural framework, have led to potential use of MOFs in biomedical applications. This article critically reviews the application of 2D MOFs for therapeutic delivery, tissue engineering, bioimaging, and biosensing. Further, discussion on the challenges and strategies in next generation of 2D MOFs are also included. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shreedevi Arun Kumar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | | | - Sukanya Bhunia
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kartikey Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Prateek
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA.,Material Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| |
Collapse
|