1
|
Zhang W, Fukazawa K, Mahara A, Le HT, Soni R, Yamaoka T. Reliable Surface Modification of ePTFE Using a Photoreactive Hemocompatible Peptide to Promote Endothelial Affinity and Antiplatelet Efficacy. ACS Biomater Sci Eng 2025. [PMID: 40325826 DOI: 10.1021/acsbiomaterials.5c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Expanded polytetrafluoroethylene (ePTFE) is a widely used material in diverse medical devices, particularly in the cardiovascular system, owing to its chemical stability and suitable mechanical properties. However, the chemical inertness makes surface modification difficult. In the present study, modification of ePTFE with a peptide was successfully achieved based on a unique photoreaction technique. We previously screened the hemocompatible peptide (HCP), histidine-glycine-glycine-valine-arginine-leucine-tyrosine (HGGVRLY), with high endothelial affinity and antiplatelet ability as modifying molecules. We synthesized a photoreactive peptide by combining a phenylazide group with the HCP, which was subsequently immobilized on the ePTFE surface through a short UV exposure time after argon plasma (Ar) treatment. Cross-sectional images of the surface modified with fluorescent-labeled photoreactive HCP showed efficient modification even within the pores of ePTFE. In vitro assessment revealed that modification improved the endothelial affinity of ePTFE approximately 5-fold while preventing platelet adhesion and aggregation. The ePTFE grafts were further implanted into an in situ porcine closed-circuit system for the blood contact assessment. Comparative investigations with untreated ePTFE grafts indicated that the modified ePTFE surface attracted more cells positive for CD14, CD16, CD34, and macrophage markers while concurrently exhibiting reduced platelet adhesion. In conclusion, photoreactive HCP proved to be a simple and effective strategy for modifying the ePTFE surface, resulting in enhanced hemocompatibility characterized by increased endothelial and monocyte recruitment as well as antiplatelet attachment on the modified ePTFE graft surface.
Collapse
Affiliation(s)
- Wei Zhang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100144, China
| | - Kyoko Fukazawa
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| | - Atsushi Mahara
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| | - Hue Thi Le
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| | - Raghav Soni
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| | - Tetsuji Yamaoka
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, He 14-1, Mukai-motoori-machi, Komatsu, Ishikawa 923-0961, Japan
| |
Collapse
|
2
|
Cao D, Xiang J, Chen X, Liu P, Zhao P, Wang J, Li R, Li K, Chen S, Liu G. Biodegradable Cellulose Acetate Nanofibrous Membranes with Self-Sustaining Electrostatic Effect for Efficient and Stable Air Purification. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22025-22034. [PMID: 40155205 DOI: 10.1021/acsami.5c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Amid the global pursuit of carbon neutrality and the pressing challenge of severe air pollution, degradable cellulose acetate (CA) materials hold great potential in the field of air filtration. However, their weak polarity and poor antibacterial properties limit their widespread application in this field. Herein, we developed CA-based nanofibrous membranes (CAPZ NFMs) with antimicrobial properties, which achieved efficient and stable filtration performance through a self-sustaining electrostatic effect driven by polarity. CAPZ NFMs were fabricated by electrospinning a solution that contained CA, highly polar zwitterionic copolymers (PSG), and biocompatible Zr4+. The zwitterionic groups of PSG increased the polarity of CAPZ NFMs to 19.62 mN·m-1, significantly surpassing that of pristine CA NFMs (2.94 mN·m-1). This enhancement granted CAPZ NFMs a surface potential of 2.07 kV, which enabled a PM0.3 filtration efficiency of 99.56% while maintaining a low pressure drop of 79 Pa. Notably, CAPZ NFMs maintained superior performance under high humidity conditions and 6 months of outdoor storage. Additionally, Zr4+ coordinated with the zwitterionic groups of PSG to form quaternary ammonium groups, endowing CAPZ NFMs with broad-spectrum antibacterial efficacy of over 99.99%. This work could provide new strategies for developing next-generation biodegradable, high-electrostatic filtration materials.
Collapse
Affiliation(s)
- Dan Cao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Jun Xiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xi Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610065, PR China
| | - Ping Liu
- College of Graduate and Professional Studies, Trine University, Reston, Virginia 20191, United States
| | - Peng Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Junchao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Rui Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Sheng Chen
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
3
|
Yang IH, Wu XY, Chou YN. One-Step Zwitterionic Modification of Polyamide-Polyurethane Mixed Textile through Acidic Catalyzation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8106-8116. [PMID: 40103310 DOI: 10.1021/acs.langmuir.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In this study, a straightforward one-step zwitterionic surface modification technique was developed for polyamide materials and fiber products, providing excellent antibiofouling properties. The surface of polyamide (PA) and polyurethane (PU) was modified using an epoxy-type biomimetic zwitterionic copolymer, poly(glycidyl methacrylate-co-sulfobetaine acrylamide) (PGSA), composed of glycidyl methacrylate and sulfobetaine acrylamide through an acidic-catalyzed one-step dip-coating method. Under acidic conditions, the molecular chains of polyamide were activated, exposing terminal amine groups that facilitated reactivity, enabling the epoxy-type zwitterionic copolymer to undergo ring-opening addition reactions. The optimization of coating parameters, including reaction temperature, solid concentration, copolymer molar ratio, and pH conditions, was conducted to achieve optimal antibiofouling performance. The modified polyamide fabric demonstrated enhanced biocompatibility and antibiofouling capabilities, including a 70% reduction of fibrinogen adsorption, a 93% reduction of whole-blood cell attachment, a 95% reduction of red blood cell attachment, and a 98.2% reduction of bacterial attachment. This simple and cost-effective zwitterionic modification technology for polyamide and polyurethane surfaces holds significant potential for biomedical device modification and functional textile applications.
Collapse
Affiliation(s)
- I-Hsun Yang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Xing-Yu Wu
- Department of Chemical Engineering, National Chung Cheng University, Minhsiung, Chiayi 62102, Taiwan
| | - Ying-Nien Chou
- Department of Chemical Engineering, National Chung Cheng University, Minhsiung, Chiayi 62102, Taiwan
| |
Collapse
|
4
|
Wang X, Yan Z, Yao M, Li X, Zhao Z, Cao C, Zhao Z, Yao F, Wei Y, Zhang H, Li J. Enzyme-Mimetic Zwitterionic Microgel Coatings for Antifouling and Enhanced Antithrombosis. ACS APPLIED BIO MATERIALS 2025; 8:2580-2591. [PMID: 40048393 DOI: 10.1021/acsabm.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Blood-contacting devices serve as a mainstay in clinical treatment, yet thrombosis remains a major cause of device failure and poses risks to patient health. In this study, we developed a diselenide cross-linker, N,N'-bis(methacryloyl)selenocystamine (BMASC), incorporated into poly(sulfobetaine methacrylate) (PSBMA) microgels (defined as BSM) to create an enzyme-mimetic zwitterionic microgel coating (BSMC). The superhydrophilicity of PSBMA provides outstanding antifouling performance, while the diselenide bonds mimic the catalytic action of glutathione peroxidase (GPx) in generating nitric oxide (NO). The microgels are covalently anchored to substrates pretreated with polydopamine (PDA) and polyethylenimine (PEI) through an epoxy-amine ring-opening reaction. During the drying process, the interpenetrating PSBMA chains of the microgels diffuse, forming a dense and smooth hydrogel coating. The BSMC exhibits exceptional resistance to nonspecific adhesion of proteins, cells, and bacteria, with the synergistic effects of antifouling properties and NO effectively inhibiting platelet adhesion. Furthermore, rabbit blood circulation experiments demonstrate the superior antithrombotic efficacy of the BSMC. This coating holds promise as an effective solution to address the thrombus formation challenges of blood-contacting devices.
Collapse
Affiliation(s)
- Xueyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengmeng Yao
- Biomedical Engineering Cockrell School of Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Cheng Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhijie Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Nazari S, Abdelrasoul A. Simulation-based assessment of zwitterionic pendant group variations on the hemocompatibility of polyethersulfone membranes. FUNCTIONAL COMPOSITE MATERIALS 2024; 5:12. [PMID: 39399384 PMCID: PMC11412084 DOI: 10.1186/s42252-024-00062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
In the realm of hemodialysis, Polyethersulfone (PES) membranes dominate due to their exceptional stability and mechanical properties, capturing 93% of the market. Despite their widespread usage, the hydrophobic nature of PES introduces complications in hemodialysis, potentially leading to severe adverse reactions in patients with end-stage renal disease (ESRD) through protein fouling. Addressing this issue, our study focused on enhancing hemocompatibility by modifying PES surfaces with zwitterionic materials, known for their hydrophilicity and biological membrane compatibility. We investigated the functionalization of PES membranes utilizing various zwitterions in different ratios. Utilizing molecular docking, we examined the interactions of three zwitterionic ligands-carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl) phosphorylcholine (MPC)-with human serum proteins. Our analysis revealed that a 1:1 ratio of phosphobetaine and sulfobetaine exhibits the lowest affinity energy towards serum proteins, denoting an optimal hemocompatibility without the limitations associated with increased zwitterion ratios. This pivotal finding offers a new pathway for developing more efficient and safer hemodialysis membranes, promising improved care for ESRD patients. Supplementary information The online version contains supplementary material available at 10.1186/s42252-024-00062-6.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 Canada
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 Canada
| |
Collapse
|
6
|
Bi X, Li M, Zhang Y, Yin M, Che W, Bi Z, Yang Y, Ouyang J. Polyetheretherketone (PEEK) as a Potential Material for the Repair of Maxillofacial Defect Compared with E-poly(tetrafluoroethylene) (e-PTFE) and Silicone. ACS Biomater Sci Eng 2023; 9:4328-4340. [PMID: 37276458 DOI: 10.1021/acsbiomaterials.2c00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silicone and e-poly(tetrafluoroethylene) (e-PTFE) are the most commonly used artificial materials for repairing maxillofacial bone defects caused by facial trauma and tumors. However, their use is limited by poor histocompatibility, unsatisfactory support, and high infection rates. Polyetheretherketone (PEEK) has excellent mechanical strength and biocompatibility, but its application to the repair of maxillofacial bone defects lacks a theoretical basis. The microstructure and mechanical properties of e-PTFE, silicone, and PEEK were evaluated by electron microscopy, BOSE machine, and Fourier transformed infrared spectroscopy. Mouse fibroblast L929 cells were incubated on the surface of the three materials to assess cytotoxicity and adhesion. The three materials were implanted onto the left femoral surface of 90 male mice, and samples of the implants and surrounding soft tissues were evaluated histologically at 1, 2, 4, 8, and 12 weeks post-surgery. PEEK had a much higher Young's modulus than either e-PTFE or silicone (p < 0.05 each), and maintained high stiffness without degradation long after implantation. Both PEEK and e-PTFE facilitated L929 cell adhesion, with PEEK having lower cytotoxicity than e-PTFE and silicone (p < 0.05 each). All three materials similarly hindered the motor function of mice 12 weeks after implantation (p > 0.05 each). Connective tissue ingrowth was observed in PEEK and e-PTFE, whereas a fibrotic peri-prosthetic capsule was observed on the surface of silicone. The postoperative infection rate was significantly lower for both PEEK and silicone than for e-PTFE (p < 0.05 each). PEEK shows excellent biocompatibility and mechanical stability, suggesting that it can be effective as a novel implant to repair maxillofacial bone defects.
Collapse
Affiliation(s)
- Xin Bi
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, No. 1038, Guangzhou Road North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Mingdong Li
- Department of Orthopedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan 570300, China
| | - Yuchen Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, No. 1038, Guangzhou Road North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Ming Yin
- Department of Imaging, Nanfang Hospital, Southern Medical University, No. 1038, Guangzhou Road North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Wuqiang Che
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Zhenyu Bi
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| |
Collapse
|
7
|
Chou YN, Yang IH. Biomimic Zwitterionic Polyamide/Polyurethane Elastic Blending Fabrics. Biomimetics (Basel) 2023; 8:biomimetics8020198. [PMID: 37218784 DOI: 10.3390/biomimetics8020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
This study developed an epoxy-type biomimic zwitterionic copolymer, poly(glycidyl methacrylate) (PGMA)-poly(sulfobetaine acrylamide) (SBAA) (poly(GMA-co-SBAA)), to modify the surface of polyamide elastic fabric using a hydroxylated pretreatment zwitterionic copolymer and dip-coating method. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy confirmed successful grafting, while scanning electron microscopy revealed changes in the surface pattern. Optimization of coating conditions included controlling reaction temperature, solid concentration, molar ratio, and base catalysis. The modified fabric exhibited good biocompatibility and anti-biofouling performance, as evidenced by contact angle measurements and evaluation of protein adsorption, blood cell, and bacterial attachment. This simple, cost-effective zwitterionic modification technology has high commercial value and is a promising approach for surface modification of biomedical materials.
Collapse
Affiliation(s)
- Ying-Nien Chou
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - I-Hsun Yang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| |
Collapse
|
8
|
Tsai MY, Chang MC, Chien HW. Effect of Codeposition of Polydopamine with Polyethylenimine or Poly(ethylene glycol) Coatings on Silver Nanoparticle Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6895-6904. [PMID: 37140482 DOI: 10.1021/acs.langmuir.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study investigated the effects of polydopamine (PDA), PDA/polyethylenimine (PEI), and PDA/poly(ethylene glycol) (PEG) deposition on silver nanoparticle (AgNP) formation. PEI or PEG with different molecular weights was mixed with dopamine at different concentrations to obtain various PDA/PEI or PDA/PEG codepositions. These codepositions were soaked in silver nitrate solution to observe AgNPs generated on the surface and then to examine the catalytic activity of AgNPs for the reduction of 4-nitrophenol to 4-aminophenol. Results revealed that AgNPs on PDA/PEI or PDA/PEG codepositions were smaller and more dispersed than those on PDA coatings. Codeposition with 0.5 mg/mL polymer and 2 mg/mL dopamine generated the smallest AgNPs in each codeposition system. The content of AgNPs on PDA/PEI codeposition first increased and then decreased with an increase in the PEI concentration. PEI with a molecular weight of 600 (PEI600) generated a higher AgNP content than did PEI with a molecular weight of 10000. The AgNP content did not change with the concentration and molecular weight of PEG. Except for the codeposition with 0.5 mg/mL PEI600, codepositions produced less silver than did the PDA coating. The catalytic activity of AgNPs on all codepositions was better than that on PDA. The catalytic activity of AgNPs on all codepositions was related to the size of AgNPs. Smaller AgNPs exhibited more satisfactory catalytic activity. The codeposition with 0.5 mg/mL PEI600 had the highest rate constant (1.64 min-1). The systematic study provides insight into the relationship between various codepositions and AgNP generation and demonstrates that the composition of these codepositions can be tuned to increase their applicability.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Ming-Chen Chang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| |
Collapse
|
9
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Xiong F, Wei S, Sheng H, Wu S, Liu Z, Cui W, Sun Y, Wu Y, Li B, Xuan H, Xue Y, Yuan H. Three-layer core-shell structure of polypyrrole/polydopamine/poly(l-lactide) nanofibers for wound healing application. Int J Biol Macromol 2022; 222:1948-1962. [DOI: 10.1016/j.ijbiomac.2022.09.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
11
|
Huang S, Chen Y, Wang X, Guo J, Li Y, Dai L, Li S, Zhang S. Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids Surf B Biointerfaces 2022; 220:112879. [DOI: 10.1016/j.colsurfb.2022.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
13
|
Yao M, Sun X, Guo Z, Zhao Z, Yan Z, Yao F, Zhang H, Li J. Bioinspired zwitterionic microgel-based coating: Controllable microstructure, high stability, and anticoagulant properties. Acta Biomater 2022; 151:290-303. [PMID: 35995406 DOI: 10.1016/j.actbio.2022.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Zwitterionic polymers have shown promising results in non-fouling and preventing thrombosis. However, the lack of controlled surface coverage hinders their application for biomedical devices. Inspired by the natural biological surfaces, a facile zwitterionic microgel-based coating strategy is developed by the co-deposition of poly (sulfobetaine methacrylate-co-2-aminoethyl methacrylate) microgel (SAM), polydopamine (PDA), and sulfobetaine-modified polyethyleneimine (PES). The SAMs were used to construct controllable morphology by using the PDA combined with PES (PDAS) as the intermediate layer, which can be easily modulated via adjusting the crosslinking degree and contents of SAMs. The obtained SAM/PDAS coatings exhibit high anti-protein adhesive properties and can effectively inhibit the adhesion of cells, bacteria, and platelet through the synergy of high deposition density and controllable morphology. In addition, the stability of SAM/PDAS coating is improved owing to the anchoring effects of PDAS to substrate and SAMs. Importantly, the ex vivo blood circulation test in rabbits suggests that the SAM/PDAS coating can effectively decrease thrombosis without anticoagulants. This study provides a versatile coating method to address the integration of zwitterionic microgel-based coatings with high deposition density and controllable morphology onto various substrates for wide biomedical device applications. STATEMENT OF SIGNIFICANCE: Thrombosis is a major cause of medical device implantation failure, which results in significant morbidity and mortality. In this study, inspired by natural biological surfaces (fish skin and vascular endothelial layer) and the anchoring ability of mussels, we report a convenient and efficient method to firmly anchor zwitterionic microgels using an oxidative co-deposition strategy. The prepared coating has excellent antifouling and antithrombotic properties through the synergistic effect of physical morphology and chemical composition. This biomimetic surface engineering strategy is expected to provide new insights into the clinical problems of blood-contacting devices related to thrombosis.
Collapse
Affiliation(s)
- Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia
| | - Zhicheng Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China; School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China.
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
14
|
|
15
|
Huang HJ, Chang HW, Lee CY, Shiao MH, Chiu YL, Lee PY, Lin YS. Effect of synthesis time on plasmonic properties of Ag dendritic nanoforests. IUCRJ 2022; 9:355-363. [PMID: 35546804 PMCID: PMC9067114 DOI: 10.1107/s2052252522002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The effects of synthesis time on the plasmonic properties of Ag dendritic nanoforests on Si substrate (Ag-DNF/Si) samples synthesized through the fluoride-assisted galvanic replacement reaction were investigated. The Ag-DNF/Si samples were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, reflection spectroscopy, X-ray diffraction and surface-enhanced Raman spectroscopy (SERS). The prolonged reaction time led to the growth of an Ag-DNF layer and etched Si hole array. SEM images and variations in the fractal dimension index indicated that complex-structure, feather-like leaves became coral-like branches between 30 and 60 min of synthesis. The morphological variation during the growth of the Ag DNFs resulted in different optical responses to light illumination, especially those of light harvest and energy transformation. The sample achieved the most desirable light-to-heat conversion efficiency and SERS response with a 30 min growth time. A longer synthesis time or thicker Ag-DNF layer on the Si substrate did not have superior plasmonic properties.
Collapse
Affiliation(s)
- Hung Ji Huang
- Department of Electra-Optical Engineering, National Formosa University, Yunlin 632301, Taiwan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
| | - Chia-Yen Lee
- Department of Electrical Engineering, National United University, Miaoli 360302, Taiwan
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan
| | - Yen-Ling Chiu
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
| | - Pee-Yew Lee
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- PhD Program in Materials and Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
16
|
Lei J, Liu X, Chen X, Luo H, Feng W, Zhang J, Liu F, Pei S, Zhang Y. Ultra-bubble-repellent sodium perfluorosulfonic acid membrane with a mussel-inspired intermediate layer for high-efficiency chlor-alkali electrolysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Yu C, Yang H, Wang L, Thomson JA, Turng LS, Guan G. Surface modification of polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM) coating for small-diameter vascular grafts applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112301. [PMID: 34474852 PMCID: PMC8417426 DOI: 10.1016/j.msec.2021.112301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Intimal hyperplasia, thrombosis formation, and delayed endothelium regeneration are the main causes that restrict the clinical applications of PTFE small-diameter vascular grafts (inner diameter < 6 mm). An ideal strategy to solve such problems is to facilitate in situ endothelialization. Since the natural vascular endothelium adheres onto the basement membrane, which is a specialized form of extracellular matrix (ECM) secreted by endothelial cells (ECs) and smooth muscle cells (SMCs), functionalizing PTFE with an ECM coating was proposed. However, besides ECs, the ECM-modified PTFE improved SMC growth as well, thereby increasing the risk of intimal hyperplasia. In the present study, heparin was immobilized on the ECM coating at different densities (4.89 ± 1.02 μg/cm2, 7.24 ± 1.56 μg/cm2, 15.63 ± 2.45 μg/cm2, and 26.59 ± 3.48 μg/cm2), aiming to develop a bio-favorable environment that possessed excellent hemocompatibility and selectively inhibited SMC growth while promoting endothelialization. The results indicated that a low heparin density (4.89 ± 1.02 μg/cm2) was not enough to restrict platelet adhesion, whereas a high heparin density (26.59 ± 3.48 μg/cm2) resulted in decreased EC growth and enhanced SMC proliferation. Therefore, a heparin density at 7.24 ± 1.56 μg/cm2 was the optimal level in terms of antithrombogenicity, endothelialization, and SMC inhibition. Collectively, this study proposed a heparin-immobilized ECM coating to modify PTFE, offering a promising means to functionalize biomaterials for developing small-diameter vascular grafts.
Collapse
Affiliation(s)
- Chenglong Yu
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Huaguang Yang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Lu Wang
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - James A Thomson
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, United States
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Guoping Guan
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
18
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
19
|
Xing J, Zhang G, Jia X, Liu D, Wyman I. Preparation of Multipurpose Polyvinylidene Fluoride Membranes via a Spray-Coating Strategy Using Waterborne Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4485-4498. [PMID: 33443998 DOI: 10.1021/acsami.0c18788] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As reported herein, the waterborne polymers poly(glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) P(GMA-co-mPEGMA) and polyethyleneimine (PEI) were used to prepare multipurpose polyvinylidene fluoride (PVDF) membranes via a direct spray-coating method. P(GMA-co-mPEGMA) and PEI were alternately sprayed onto the PVDF membrane to yield stable cross-linked copolymer coatings. The successful coating of polymers onto the membrane surface was verified by scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy characterization. The coated membrane exhibited oil rejection rates that exceeded 99.0% for oil water mixture separation and 98.0% for oil/water emulsion separation. The flux recovery ratio reached 96.7% after bovine serum albumin filtration and washing with water. The removal efficiencies of the coated membrane M3 for Congo red, methyl orange, methylene blue, and crystal violet, Pb(II), Cu(II), and Cd(II) were 82.4, 83.9, 6.3, 26.8, 90.6, 91.3, and 86.2%, respectively. Thus, it can be used for the removal of dyes and heavy metal ions from wastewater. The antibacterial activities of the coated membranes were also confirmed by the inhibition zone tests and confocal laser scanning microscopy analysis. In addition, the cross-linking strategy provides the coated membranes with excellent durability and repeatability. More importantly, the use of water as the solvent can ensure that the application of these membrane coatings proceeds via a very safe and environmentally friendly coating process.
Collapse
Affiliation(s)
- Jiale Xing
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Xinying Jia
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Dapeng Liu
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|