1
|
Calderón Moreno JM, Chelu M, Popa M. Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics. Gels 2025; 11:220. [PMID: 40277656 PMCID: PMC12026593 DOI: 10.3390/gels11040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The rapid advancement of wearable electronics has catalyzed the development of flexible, lightweight, and highly conductive materials. Among these, conductive hydrogels have emerged as promising candidates due to their tissue-like properties, which can minimize the mechanical mismatch between flexible devices and biological tissues and excellent electrical conductivity, stretchability and biocompatibility. However, the environmental impact of synthetic components and production processes in conventional conductive hydrogels poses significant challenges to their sustainable application. This review explores recent advances in eco-friendly conductive hydrogels used in healthcare, focusing on their design, fabrication, and applications in green wearable electronics. Emphasis is placed on the use of natural polymers, bio-based crosslinkers, and green synthesis methods to improve sustainability while maintaining high performance. We discuss the incorporation of conductive polymers and carbon-based nanomaterials into environmentally benign matrices. Additionally, the article highlights strategies for improving the biodegradability, recyclability, and energy efficiency of these materials. By addressing current limitations and future opportunities, this review aims to provide a comprehensive understanding of environmentally friendly conductive hydrogels as a basis for the next generation of sustainable wearable technologies.
Collapse
Affiliation(s)
- José María Calderón Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | | |
Collapse
|
2
|
Srikrajang S, Kabir L, Sagadevan S, Wijaya K, Oh WC. Representative modeling of biocompatible MXene nanocomposites for next-generation biomedical technologies and healthcare. J Mater Chem B 2025; 13:2912-2951. [PMID: 39886804 DOI: 10.1039/d4tb02478h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
MXenes are a class of 2D transition metal carbides and nitrides (Mn+1XnT) that have attracted significant interest owing to their remarkable potential in various fields. The unique combination of their excellent electromagnetic, optical, mechanical, and physical properties have extended their applications to the biological realm as well. In particular, their ultra-thin layered structure holds specific promise for diverse biomedical applications. This comprehensive review explores the synthesis methods of MXene composites, alongside the biological and medical design strategies that have been employed for their surface engineering. This review delves into the interplay between these strategies and the resulting properties, biological activities, and unique effects at the nano-bio-interface. Furthermore, the latest advancements in MXene-based biomaterials and medicine are systematically summarized. Further discussion on MXene composites designed for various applications, including biosensors, antimicrobial agents, bioimaging, tissue engineering, and regenerative medicine, are also provided. Finally, with a focus on translating research results into real-world applications, this review addresses the current challenges and exciting future prospects of MXene composite-based biomaterials.
Collapse
Affiliation(s)
- Siwaluk Srikrajang
- Department of Physical Therapy, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Latiful Kabir
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Karna Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| |
Collapse
|
3
|
Xiao Y, Li H, Gu T, Jia X, Sun S, Liu Y, Wang B, Tian H, Sun P, Liu F, Lu G. Ti 3C 2T x Composite Aerogels Enable Pressure Sensors for Dialect Speech Recognition Assisted by Deep Learning. NANO-MICRO LETTERS 2024; 17:101. [PMID: 39738742 DOI: 10.1007/s40820-024-01605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025]
Abstract
Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection. However, current intelligent speech assistants based on pressure sensors can only recognize standard languages, which hampers effective communication for non-standard language people. Here, we prepare an ultralight Ti3C2Tx MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.25 Pa-1200 kPa, rapid response/recovery time, and low hysteresis (13.69%). The wearable aerogel pressure sensor can detect speech information through the throat muscle vibrations without any interference, allowing for accurate recognition of six dialects (96.2% accuracy) and seven different words (96.6% accuracy) with the assistance of convolutional neural networks. This work represents a significant step forward in silent speech recognition for human-machine interaction and physiological signal monitoring.
Collapse
Affiliation(s)
- Yanan Xiao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - He Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Tianyi Gu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
| | - Shixiang Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Bin Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - He Tian
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
- International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
- International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
- International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
4
|
Jiang W, Seidi F, Liu Y, Li C, Huang Y, Xiao H. Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites. Adv Colloid Interface Sci 2024; 335:103332. [PMID: 39536515 DOI: 10.1016/j.cis.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.
Collapse
Affiliation(s)
- Wensi Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
5
|
Lee S, Ho DH, Jekal J, Cho SY, Choi YJ, Oh S, Choi YY, Lee T, Jang KI, Cho JH. Fabric-based lamina emergent MXene-based electrode for electrophysiological monitoring. Nat Commun 2024; 15:5974. [PMID: 39358330 PMCID: PMC11446925 DOI: 10.1038/s41467-024-49939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/20/2024] [Indexed: 10/04/2024] Open
Abstract
Commercial wearable biosignal sensing technologies encounter challenges associated with irritation or discomfort caused by unwanted objects in direct contact with the skin, which can discourage the widespread adoption of wearable devices. To address this issue, we propose a fabric-based lamina emergent MXene-based electrode, a lightweight and flexible shape-morphing wearable bioelectrode. This work offers an innovative approach to biosignal sensing by harnessing the high electrical conductivity and low skin-to-electrode contact impedance of MXene-based dry electrodes. Its design, inspired by Nesler's pneumatic interference actuator, ensures stable skin-to-electrode contact, enabling robust biosignal detection in diverse situations. Extensive research is conducted on key design parameters, such as the width and number of multiple semicircular legs, the radius of the anchoring frame, and pneumatic pressure, to accommodate a wide range of applications. Furthermore, a real-time wireless electrophysiological monitoring system has been developed, with a signal-to-noise ratio and accuracy comparable to those of commercial bioelectrodes. This work excels in recognizing various hand gestures through a convolutional neural network, ultimately introducing a shape-morphing electrode that provides reliable, high-performance biosignal sensing for dynamic users.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong Hae Ho
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Soo Young Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Young Jin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yoon Young Choi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Bio and Brain Engineering, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Protyai MIH, Bin Rashid A. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects. Heliyon 2024; 10:e37030. [PMID: 39319124 PMCID: PMC11419932 DOI: 10.1016/j.heliyon.2024.e37030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
MXenes are a group of 2D transition metal carbonitrides, nitrides and carbides that have become widely recognized as useful materials since they were first discovered in 2011. MXenes, with their exceptional layered structures and splendid external chemistries, have excellent electrical, optical, and thermal properties, making them suitable for catalysis, biomedical uses, environmental remediation, energy storage, and EMI shielding. Over forty MXene compounds with surface terminations like hydroxyl, oxygen, or fluorine are hydrophilic and easily integrated into various applications. Advanced synthesis methods, including selective etching and etchant modifications, have broadened MXene surface chemistries for customized mechanical, thermal, and electrical applications. Integrating MXenes into polymer composites has demonstrated notable promise, enhancing the host polymers' electrical conductivity, thermal stability and mechanical strength. The MXene-polymer composites demonstrate remarkable prospective on behalf of advanced purposes, including flexible electronics, high-performance EMI shielding materials, and lightweight structural components. MXenes have the desirable characteristic of being able to create flexible and translucent films, as well as improve the properties of polymer matrices. This makes them very suitable for use in advanced technological applications. This review summarizes MXene research, methods, and insights, highlighting key discoveries and future directions. This also highlights the importance of ongoing research to fill in the gaps in current knowledge and improve the practical uses of MXenes.
Collapse
Affiliation(s)
- Md Injamamul Haque Protyai
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Adib Bin Rashid
- Department of Mechanical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
7
|
Yi L, Wang H, Ren X, Liu G, Nian H, Zheng Z, Wu F. Enhancing Cr(vi) removal performance of Ti 3C 2T x through structural modification by using a spray freezing method. RSC Adv 2024; 14:28320-28331. [PMID: 39239282 PMCID: PMC11375417 DOI: 10.1039/d4ra04640d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
Structural modification is expected to be a facile way to enhance the adsorption performance of MXene. In this work, the structural modification of Ti3C2T x was carried out by a spray freezing method, and two kinds of nano-structure (spherical and flaky) of Ti3C2T x were prepared by adjusting the solution concentration of Ti3C2T x . Then the Cr(vi) adsorption capacity and removal efficiency of the spherical and flaky Ti3C2T x was investigated, respectively. It is found that flaky Ti3C2T x was produced with a Ti3C2T x concentration of 3 mg mL-1, while spherical Ti3C2T x was obtained with a concentration of 6 mg mL-1. The long diameter of flaky Ti3C2T x is about 8-10 μm, and the specific surface area is 17.81 m2 g-1. While spherical Ti3C2T x had a diameter of about 1-4 μm and a specific surface area of 17.07 m2 g-1. The optimized structure of flaky and spherical Ti3C2T x improves the maximum adsorption capacity by 97% and 33%, respectively, compared with the few-layer Ti3C2T x . The maximum adsorption capacity of flaky Ti3C2T x was 928 mg g-1, while that of spherical Ti3C2T x was 626 mg g-1. The adsorption capacity of both Ti3C2T x structures decreased with the increase of pH, and reached the maximum value at pH = 2; meanwhile, the adsorption capacity of both Ti3C2T x structures increased with the increase of Cr(vi) concentration. The adsorption of Cr(vi) on flaky Ti3C2T x was very fast, reaching equilibrium in 3 min, while spherical Ti3C2T x took 5 min. The adsorption of Cr(vi) on both Ti3C2T x structures belonged to the monolayers, heat-absorbing chemical adsorption, and the diffusion process of Cr(vi) was regulated by the external diffusion and internal diffusion of particles. Its adsorption mechanism was the combination of reductive adsorption and electrostatic adsorption.
Collapse
Affiliation(s)
- Linjie Yi
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Hongwei Wang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Xianliang Ren
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - GaoBin Liu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Hongen Nian
- Qinghai Institute of Salt Lakes, Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences Xining Qinghai Province 810008 P. R. China
| | - Zhiqin Zheng
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Biological Engineering and Wuliangye Liquor, Sichuan University of Science and Engineering Yibin Sichuan Province 644000 China
- National Innovation Center for Nuclear Enviromental Safety, Southwest University of Science and Technology Mianyang Sichuan Province 621010 P. R. China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MianYang Central Hospital) Mianyang Sichuan Province 621010 P. R. China
| | - Fang Wu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
- Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang Liyang Jiangsu Province 213300 P. R. China
| |
Collapse
|
8
|
Zhao G, Sui C, Zhao C, Zhao Y, Cheng G, Li J, Wen L, Hao W, Sang Y, Zhou Y, He X, Wang C. Supertough MXene/Sodium Alginate Composite Fiber Felts Integrated with Outstanding Electromagnetic Interference Shielding and Heating Properties. NANO LETTERS 2024; 24:8098-8106. [PMID: 38913786 DOI: 10.1021/acs.nanolett.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The development of multifunctional MXene-based fabrics for smart textiles and portable devices has garnered significant attention. However, very limited studies have focused on their structure design and associated mechanical properties. Here, the supertough MXene fiber felts composed of MXene/sodium alginate (SA) fibers were fabricated. The fracture strength and bending stiffness of felts can be up to 97.8 MPa and 1.04 N mm2, respectively. Besides, the fracture toughness of felts was evaluated using the classic Griffith theory, yielding to a critical stress intensity factor of 1.79 M P a m . In addition, this kind of felt presents outstanding electrothermal conversion performance (up to 119 °C at a voltage of 2.5 V), high cryogenic and high-temperature tolerance of photothermal conversion performance (-196 to 160 °C), and excellent electromagnetic interference (EMI) shielding effectiveness (54.4 dB in the X-band). This work provides new structural design concepts for high-performance MXene-based textiles, broadening their future applications.
Collapse
Affiliation(s)
- Guoxin Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Chao Sui
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Chenxi Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Yushun Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Gong Cheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Junjiao Li
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Lei Wen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Weizhe Hao
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yuna Sang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yingchun Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Chao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
9
|
Zhou H, Zhao Y, Zha X, Zhang Z, Zhang L, Wu Y, Ren R, Zhao Z, Yang W, Zhao L. A Janus, robust, biodegradable bacterial cellulose/Ti 3C 2Tx MXene bilayer membranes for guided bone regeneration. BIOMATERIALS ADVANCES 2024; 161:213892. [PMID: 38795472 DOI: 10.1016/j.bioadv.2024.213892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Guided bone regeneration (GBR) stands as an essential modality for craniomaxillofacial bone defect repair, yet challenges like mechanical weakness, inappropriate degradability, limited bioactivity, and intricate manufacturing of GBR membranes hindered the clinical efficacy. Herein, we developed a Janus bacterial cellulose(BC)/MXene membrane through a facile vacuum filtration and etching strategy. This Janus membrane displayed an asymmetric bilayer structure with interfacial compatibility, where the dense layer impeded cell invasion and the porous layer maintained stable space for osteogenesis. Incorporating BC with Ti3C2Tx MXene significantly enhanced the mechanical robustness and flexibility of the material, enabling clinical operability and lasting GBR membrane supports. It also contributed to a suitable biodegradation rate, which aligned with the long-term bone repair period. After demonstrating the desirable biocompatibility, barrier role, and osteogenic capability in vitro, the membrane's regenerative potential was also confirmed in a rat cranial defect model. The excellent bone repair performance could be attributed to the osteogenic capability of MXene nanosheets, the morphological cues of the porous layer, as well as the long-lasting, stable regeneration space provided by the GBR membrane. Thus, our work presented a facile, robust, long-lasting, and biodegradable BC/MXene GBR membrane, offering a practical solution to craniomaxillofacial bone defect repair.
Collapse
Affiliation(s)
- Hongling Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Linli Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, China
| | - Ruiyang Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Papani R, Li Y, Wang S. Soft mechanical sensors for wearable and implantable applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1961. [PMID: 38723798 PMCID: PMC11108230 DOI: 10.1002/wnan.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/23/2024]
Abstract
Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Rithvik Papani
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois, United States
| |
Collapse
|
11
|
Hu Z, Xie F, Yan Y, Lu H, Cheng J, Liu X, Li J. Research progress of flexible pressure sensor based on MXene materials. RSC Adv 2024; 14:9547-9558. [PMID: 38516165 PMCID: PMC10955273 DOI: 10.1039/d3ra07772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Flexible pressure sensors overcome the limitations of traditional rigid sensors on the surface of the measured object, demonstrating broad application prospects in fields such as sports health and vital sign monitoring due to their excellent flexibility and comfort in contact with the body. MXene, as a two-dimensional material, possesses excellent conductivity and abundant surface functional groups. Simultaneously, MXene's unique layered structure and large specific surface area offer a wealth of possibilities for preparing sensing elements in combination with other materials. This article reviews the preparation methods of MXene materials and their performance indicators as sensing elements, discusses the controllable preparation methods of MXene materials and the impact of their physical and chemical properties on their functions, elaborates on the pressure sensing mechanism and evaluation mechanism of MXene materials. Starting from the four specific application directions: aerogel/hydrogel, ink printing, thin film/electronic skin, and fiber fabric, we introduce the research progress of MXene flexible pressure sensors from an overall perspective. Finally, a summary and outlook for developing MXene flexible pressure sensors are provided.
Collapse
Affiliation(s)
- Zhigang Hu
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
| | - Feihu Xie
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
| | - Yangyang Yan
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
- Luoyang Ship Material Research Institute, China Shipbuilding Industry 725 Research Institute Luoyang 471000 China
| | - Hanjing Lu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| | - Ji Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| | - Xiaoran Liu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| | - Jinghua Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| |
Collapse
|
12
|
Das P, Marvi PK, Ganguly S, Tang XS, Wang B, Srinivasan S, Rajabzadeh AR, Rosenkranz A. MXene-Based Elastomer Mimetic Stretchable Sensors: Design, Properties, and Applications. NANO-MICRO LETTERS 2024; 16:135. [PMID: 38411801 PMCID: PMC10899156 DOI: 10.1007/s40820-024-01349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces. One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials. MXenes, a new family of 2D nanomaterials, have been drawing attention since the last decade due to their high electronic conductivity, processability, mechanical robustness and chemical tunability. In this review, we encompass the fabrication of MXene-based polymeric nanocomposites, their structure-property relationship, and applications in the flexible sensor domain. Moreover, our discussion is not only limited to sensor design, their mechanism, and various modes of sensing platform, but also their future perspective and market throughout the world. With our article, we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Sayan Ganguly
- Department of Chemistry and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Xiaowu Shirley Tang
- Department of Chemistry and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Bo Wang
- Chair of Functional Materials, Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Andreas Rosenkranz
- Department for Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.
| |
Collapse
|
13
|
Yan K, Chen H, Li X, Xu F, Wang J, Xu Q, Zong Y, Zhang Y. Scalable and Multifunctional Polyurethane/MXene/Carbon Nanotube-Based Fabric Sensor toward Baby Healthcare. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5196-5207. [PMID: 38236662 DOI: 10.1021/acsami.3c18996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Continuous monitoring of physiological health status and effective protection against external hazards is an indispensable aspect of healthcare management for critically vulnerable populations, particularly for infants or babies. So, the exploration of all-in-one devices remains critical to avoiding their injury and illness. The integration of multiple properties such as sensing, electromagnetic protection, warming/cooling, and water/bacterial repellence into a common fabric is no doubt a promising solution to coping with diverse application scenarios. However, achieving simultaneous integration in an effective and durable fashion faces huge challenges. Herein, multifunctional fabric was achieved by sequentially coating MXene, carbon nanotubes (CNTs), and self-healing polyurethane (PU) onto cotton fabric. The outstanding conductivity of MXene and CNTs as well as the self-healing ability of PU synergistically enable a flexible, breathable, protective, and sensing fabric with a good durability. It could detect the body motions like bending of the finger, elbow, wrist, and knee, with a high gauge factor of 8.78 and fast response. Moreover, this sensing fabric could protect the wearers against electromagnetic waves and bacteria, delivering a minimum reflection loss of -57.6 dB at 7.6 GHz and high bacterial inhibition efficiency due to the incorporation of MXene and polyethylenimine. Besides, the electrothermal performance of carbonaceous materials enables them to act as a heater for body warmth. The synergistic design of this multifunctional textile offers a promising strategy for producing advanced smart textiles, holding great promise in infant or baby healthcare.
Collapse
Affiliation(s)
- Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Hua Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiao Li
- Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Xu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, P. R. China
| | - Jun Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yan Zong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
14
|
Moon S, Chae Y. Colorful graphene-based wearable e-textiles prepared by co-dyeing cotton fabrics with natural dyes and reduced graphene oxide. Sci Rep 2024; 14:2298. [PMID: 38280886 PMCID: PMC10821867 DOI: 10.1038/s41598-024-52850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
In addition to the functionality of electronic textiles (e-textiles), their aesthetic properties should be considered to expand their marketability. In this study, premordanted cotton fabrics were co-dyed with reduced graphene oxide (rGO) and natural dyes to develop ecofriendly and colorful graphene-based wearable e-textiles. The color attributes of the textiles were analyzed in terms of the dyeing conditions, namely, rGO loading, mordant type, and natural dye type. The lightness of the dyed samples increased in the order of cochineal < gardenia blue < rhubarb. Regardless of the natural dye and rGO loading, the lightness of the fabrics mordanted with Fe was lower than that with Al and Cu. Moreover, the rhubarb- and gardenia blue-dyed fabrics exhibited broad chroma and hue dispersions, indicating the strong impact of the dyeing conditions. With increasing rGO loading, the chroma of the rhubarb-dyed fabrics substantially decreased, resulting in decreased color saturation. The initial greenish-blue color of the gardenia blue-dyed fabrics gradually changed to yellowish-green and then yellow. Regardless of the natural dye, drastic overall color changes were observed, with average values of 7.60, 11.14, 12.68, and 13.56 ΔECMC(2:1) at increasing rGO loadings of 1, 3, 5, and 7% owb, respectively.
Collapse
Affiliation(s)
- Sungwoo Moon
- Department of Clothing and Textiles, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Youngjoo Chae
- Department of Clothing and Textiles, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
15
|
Hou Z, Gao T, Liu X, Guo W, Bai L, Wang W, Yang L, Yang H, Wei D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int J Biol Macromol 2023; 252:126473. [PMID: 37619684 DOI: 10.1016/j.ijbiomac.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 μmol/L-200.0 μmol/L), low detection limits (0.9 μmol/L) and high sensitivity (24.4 μA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.
Collapse
Affiliation(s)
- Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Teng Gao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Xinyue Liu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenzhe Guo
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
16
|
Huang X, Xue Y, Ren S, Wang F. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9047. [PMID: 38005436 PMCID: PMC10675437 DOI: 10.3390/s23229047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
In recent years, marked progress has been made in wearable technology for human motion and posture recognition in the areas of assisted training, medical health, VR/AR, etc. This paper systematically reviews the status quo of wearable sensing systems for human motion capture and posture recognition from three aspects, which are monitoring indicators, sensors, and system design. In particular, it summarizes the monitoring indicators closely related to human posture changes, such as trunk, joints, and limbs, and analyzes in detail the types, numbers, locations, installation methods, and advantages and disadvantages of sensors in different monitoring systems. Finally, it is concluded that future research in this area will emphasize monitoring accuracy, data security, wearing comfort, and durability. This review provides a reference for the future development of wearable sensing systems for human motion capture.
Collapse
Affiliation(s)
- Xinxin Huang
- Guangdong Modern Apparel Technology & Engineering Center, Guangdong University of Technology, Guangzhou 510075, China or (X.H.); (Y.X.); (S.R.)
- Xiayi Lixing Research Institute of Textiles and Apparel, Shangqiu 476499, China
| | - Yunan Xue
- Guangdong Modern Apparel Technology & Engineering Center, Guangdong University of Technology, Guangzhou 510075, China or (X.H.); (Y.X.); (S.R.)
| | - Shuyun Ren
- Guangdong Modern Apparel Technology & Engineering Center, Guangdong University of Technology, Guangzhou 510075, China or (X.H.); (Y.X.); (S.R.)
| | - Fei Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
17
|
Yang N, Yin X, Liu H, Yan X, Zhou X, Wang F, Zhang X, Zhao Y, Cheng T. Dual-Layer All-Textile Flexible Pressure Sensor Coupled by Silver Nanowires with Ti 3C 2-Mxene for Monitoring Athletic Motion during Sports and Transmitting Information. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42992-43002. [PMID: 37647575 DOI: 10.1021/acsami.3c08874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
At present, wearable flexible pressure sensors have broad application prospects in fields such as motion monitoring and information transmission. However, it is still a challenge to design flexible pressure sensors with high sensitivity over a large sensing range and simple fabrication. Here, we use a simple "dipping-drying" method to fabricate a fabric-based flexible pressure sensor by coupling silver nanowires (AgNWs) with Ti3C2-MXene. The interaction between MXene and AgNWs helps realize a dual-layer sensing network, achieving good synergistic effects between pressure sensitivity and sensing range. The effects of the material combination and dip-coating sequence on the sensor's performance are systematically studied. The results show that the sensor was impregnated sequentially with AgNWs solution, and the MXene solution has the highest sensitivity (0.168 kPa-1) over a wide range (190 kPa). Meanwhile, it has the advantages of low response hysteresis and detection limit, as well as good linearity and durability. We further demonstrate the application of this sensor in human physiological signal monitoring and motion pattern recognition. It can also encrypt and transmit information according to different pressing states. In addition, the proposed pressure sensor array exhibits spatial resolution detection capabilities, laying the foundation for applications in the fields of motion monitoring and human-computer interaction.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiangyu Yin
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Hailian Liu
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xin Yan
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xue Zhou
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fang Wang
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xuenan Zhang
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yong Zhao
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Tonglei Cheng
- State Key Laboratory of Synthetical Automation for Process Industries, the College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| |
Collapse
|
18
|
Wang J, Zhang D, Wang D, Xu Z, Zhang H, Chen X, Wang Z, Xia H, Cai H. Efficient Fabrication of TPU/MXene/Tungsten Disulfide Fibers with Ultra-Fast Response for Human Respiratory Pattern Recognition and Disease Diagnosis via Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37946-37956. [PMID: 37523446 DOI: 10.1021/acsami.3c07589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Flexible wearable pressure sensors have received increasing attention as the potential application of flexible wearable devices in human health monitoring and artificial intelligence. However, the complex and expensive process of the conductive filler has limited its practical production and application on a large scale to a certain extent. This study presents a kind of piezoresistive sensor by sinking nonwoven fabrics (NWFs) into tungsten disulfide (WS2) and Ti3C2Tx MXene solutions. With the advantages of a simple production process and practicality, it is conducive to the realization of large-scale production. The assembled flexible pressure sensor exhibits high sensitivity (45.81 kPa-1), wide detection range (0-410 kPa), fast response/recovery time (18/36 ms), and excellent stability and long-term durability (up to 5000 test cycles). Because of the high elastic modulus of MXene and the synergistic effect between WS2 and MXene, the detection range and sensitivity of the piezoresistive pressure sensor are greatly improved, realizing the stable detection of human motion status in all directions. Meanwhile, its high sensitivity at low pressure allows the sensor to accurately detect weak signals such as weak airflow and wrist pulses. In addition, combining the sensor with deep-learning makes it easy to recognize human respiratory patterns with high accuracy, demonstrating its potential impact in the fields of ergonomics and low-cost flexible electronics.
Collapse
Affiliation(s)
- Jun Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyue Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenyuan Xu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zihu Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hui Xia
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Haolin Cai
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
19
|
Wu Z, Liu S, Hao Z, Liu X. MXene Contact Engineering for Printed Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207174. [PMID: 37096843 PMCID: PMC10323642 DOI: 10.1002/advs.202207174] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Indexed: 05/03/2023]
Abstract
MXenes emerging as an amazing class of 2D layered materials, have drawn great attention in the past decade. Recent progress suggest that MXene-based materials have been widely explored as conductive electrodes for printed electronics, including electronic and optoelectronic devices, sensors, and energy storage systems. Here, the critical factors impacting device performance are comprehensively interpreted from the viewpoint of contact engineering, thereby giving a deep understanding of surface microstructures, contact defects, and energy level matching as well as their interaction principles. This review also summarizes the existing challenges of MXene inks and the related printing techniques, aiming at inspiring researchers to develop novel large-area and high-resolution printing integration methods. Moreover, to effectually tune the states of contact interface and meet the urgent demands of printed electronics, the significance of MXene contact engineering in reducing defects, matching energy levels, and regulating performance is highlighted. Finally, the printed electronics constructed by the collaborative combination of the printing process and contact engineering are discussed.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuiren Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zijuan Hao
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
- Henan Innovation Center for Functional Polymer Membrane MaterialsXinxiang453000P. R. China
| | - Xuying Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
20
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
21
|
Xie Y, Wu X, Huang X, Liang Q, Deng S, Wu Z, Yao Y, Lu L. A Deep Learning-Enabled Skin-Inspired Pressure Sensor for Complicated Recognition Tasks with Ultralong Life. RESEARCH (WASHINGTON, D.C.) 2023; 6:0157. [PMID: 37292515 PMCID: PMC10246885 DOI: 10.34133/research.0157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Flexible full-textile pressure sensor is able to integrate with clothing directly, which has drawn extensive attention from scholars recently. But the realization of flexible full-textile pressure sensor with high sensitivity, wide detection range, and long working life remains challenge. Complex recognition tasks necessitate intricate sensor arrays that require extensive data processing and are susceptible to damage. The human skin is capable of interpreting tactile signals, such as sliding, by encoding pressure changes and performing complex perceptual tasks. Inspired by the skin, we have developed a simple dip-and-dry approach to fabricate a full-textile pressure sensor with signal transmission layers, protective layers, and sensing layers. The sensor achieves high sensitivity (2.16 kPa-1), ultrawide detection range (0 to 155.485 kPa), impressive mechanical stability of 1 million loading/unloading cycles without fatigue, and low material cost. The signal transmission layers that collect local signals enable real-world complicated task recognition through one single sensor. We developed an artificial Internet of Things system utilizing a single sensor, which successfully achieved high accuracy in 4 tasks, including handwriting digit recognition and human activity recognition. The results demonstrate that skin-inspired full-textile sensor paves a promising route toward the development of electronic textiles with important potential in real-world applications, including human-machine interaction and human activity detection.
Collapse
|
22
|
Li S, Hu X, Zuo S, You T, Du Y, Bu Z, Mao G, Wang J, Song S, Zhang Y. Facile Approach to Fabricate Oriented Porous PDMS Composites for Movements Monitoring and Identifying Motion Patterns. Macromol Rapid Commun 2023; 44:e2200755. [PMID: 36433758 DOI: 10.1002/marc.202200755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Indexed: 11/27/2022]
Abstract
The facile and rapid fabrication of oriented porous polymers is crucial for flexible pressure sensors. Herein, a pressure sensor is developed based on oriented porous polydimethylsiloxane (PDMS) composites for detecting human motion and identifying joint motion patterns. The oriented porous PDMS composite is first constructed through thiol-ene click chemistry and directional freezing within only 30 min, then fabricated by interfacial in situ polymerization of dopamine and pyrrole to generate robust interfaces. As a result, the as-prepared oriented porous PDMS composite is assembled into a pressure sensor that shows potential applications in pressure and human motion detection. Interestingly, a sensor assembled by orthogonally stacking the PDMS composites can be used for joint motion pattern recognition with potential monitoring of football motion due to their directional structures. This facile strategy coupled with the oriented porous structure is expected to help design advanced wearable electronic devices.
Collapse
Affiliation(s)
- Shenglin Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xintong Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Shuangshuang Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Tianquan You
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yangyang Du
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Ze Bu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Guoliang Mao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163000, P. R. China
| | - Jianhua Wang
- Suzhou Institute of Green Fiber Technology, Jiangsu Guowang High-tech Fiber Co., Ltd., Suzhou, Jiangsu, 215221, P. R. China
| | - Shiqiang Song
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China.,College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163000, P. R. China.,Suzhou Institute of Green Fiber Technology, Jiangsu Guowang High-tech Fiber Co., Ltd., Suzhou, Jiangsu, 215221, P. R. China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
23
|
Lai H, Chen Z, Zhuo H, Hu Y, Zhao X, Yi J, Zheng H, Shi G, Tong Y, Meng L, Peng X, Zhong L. Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
24
|
Xu Y, Qiang Q, Zhao Y, Li H, Xu L, Liu C, Wang Y, Xu Y, Tao C, Lang T, Zhao L, Liu B. A super water-resistant MXene sponge flexible sensor for bifunctional sensing of physical and chemical stimuli. LAB ON A CHIP 2023; 23:485-494. [PMID: 36594695 DOI: 10.1039/d2lc01008a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible wearable sensors with multifunctional features have attracted great interest in various applications such as disease diagnosis, environmental detection and healthcare monitoring. However, it is still a challenge to achieve a multifunctional sensor with super water resistance without compromising the overall performance of the sensing material. Here, we developed a 3D bifunctional flexible sensor based on an MXene melamine sponge (MS) through a simple and effective ultrasonic mixing process and a further vacuum annealing process. The sensor is able to show excellent response to different stimuli, including pressure and humidity. The thermal annealing treatment allows MXene to adhere more firmly to the internal skeleton of the sponge, which does not easily fall off and improves the water resistance, thus achieving wearability and high sensitivity over a wide area. The T-MXene@MS sensor has a sensitivity of 9.97 kPa-1 in the 5-15 kPa range, a fast response time (180 ms), and good stability at 4000 cycles, enabling accurate monitoring of human movement. The sensor has a rich porous structure while maintaining its inherent flexibility, which allows for long term testing of human respiration as well as the ability to respond quickly to dynamic changes in humidity, demonstrating excellent long-term stability for 40 days of humidity detection.
Collapse
Affiliation(s)
- Yuqing Xu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
| | - Qinping Qiang
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
| | - Yaru Zhao
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
| | - Hongxing Li
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
| | - Li Xu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Chong Liu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Yiya Wang
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Yangkun Xu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Chengcheng Tao
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Tianchun Lang
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Lei Zhao
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
| | - Bitao Liu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China.
| |
Collapse
|
25
|
Yan B, Huang S, Ren Y, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. HRP-catalyzed grafting of MXene@PGA to silk fibers for visualization of dual-driven heating smart textile. Int J Biol Macromol 2023; 226:1141-1153. [PMID: 36427616 DOI: 10.1016/j.ijbiomac.2022.11.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
MXene-based functional textiles have been widely studied and applied in many fields. However, the service stability of MXene combined with textile substrates in the environment is far from ideal, which makes its practical application a great challenge. Here we introduced gallic acid (GA), as natural reactive polyphenol compound to silk fibers through enzymatic polymerization, which significantly improved the durability of its conductivity. The small molecules of GA can covalently bind to the titanium atoms on the MXene nanosheets, and the tyrosine residues from silk fibroins can be enzymatically oxidized by horseradish peroxidase (HRP) and further coupled with GA simultaneously, thus forming a covalent cross-linked network on the fiber surfaces. Furthermore, the durable MXene-based textile was used to manufacture smart dual-driven thermal devices with temperature monitoring, which can judge the real-time temperature during heating by changes in its apparent color. More importantly, the textile with smart temperature visualization also offers good EMI shielding and superior UV resistance, while retaining its inherent moisture-wicking, breathable and softness. The present work provides a new insight for the preparation of MXene-based multifunctional textile, and the smart visualization of dual-driven heating shows promising applications in practical personal thermal management.
Collapse
Affiliation(s)
- Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shuaibing Huang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yiwen Ren
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
26
|
Rafique A, Ferreira I, Abbas G, Baptista AC. Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices. NANO-MICRO LETTERS 2023; 15:40. [PMID: 36662335 PMCID: PMC9860006 DOI: 10.1007/s40820-022-01008-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/16/2022] [Indexed: 05/09/2023]
Abstract
Flexible microelectronic devices have seen an increasing trend toward development of miniaturized, portable, and integrated devices as wearable electronics which have the requirement for being light weight, small in dimension, and suppleness. Traditional three-dimensional (3D) and two-dimensional (2D) electronics gadgets fail to effectively comply with these necessities owing to their stiffness and large weights. Investigations have come up with a new family of one-dimensional (1D) flexible and fiber-based electronic devices (FBEDs) comprising power storage, energy-scavenging, implantable sensing, and flexible displays gadgets. However, development and manufacturing are still a challenge owing to their small radius, flexibility, low weight, weave ability and integration in textile electronics. This paper will provide a detailed review on the importance of substrates in electronic devices, intrinsic property requirements, fabrication classification and applications in energy harvesting, energy storage and other flexible electronic devices. Fiber- and textile-based electronic devices for bulk/scalable fabrications, encapsulation, and testing are reviewed and presented future research ideas to enhance the commercialization of these fiber-based electronics devices.
Collapse
Affiliation(s)
- Amjid Rafique
- CENIMAT|I3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Isabel Ferreira
- CENIMAT|I3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Ghulam Abbas
- CENIMAT|I3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Ana Catarina Baptista
- CENIMAT|I3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
27
|
Wang H, Wu F, Wang Z, Wang Y, Zhang S, Luo H, Zheng Z, Fang L. Ultra-fast and ultra-efficient removal of Cr (VI) by the aqueous solutions of monolayer MXene (Ti 3C 2T x). CHEMOSPHERE 2022; 308:136573. [PMID: 36155015 DOI: 10.1016/j.chemosphere.2022.136573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Chromium (VI) removal is crucial to the safety of water resources, but there is still a lack of effective and fast dislodge methods, especially the on-site rapid remediation and emergency removal technology. Herein, the monolayer (ML) Ti3C2Tx nanosheets (NSs) were prepared to remove Cr (VI) from water. The solution sample of the two-dimensional (2D) Ti3C2Tx NSs demonstrate ultrafast adsorption kinetics (the concentration decreasing from 300 to 3 mg L-1 in 10 min) and impressively high capacity (1483 mg g-1), which is several times higher than that of the most reported Cr (VI) adsorption by Ti3C2Tx. The analysis of the adsorption kinetics and isotherm models indicates that the adsorption reaction is endothermic, with physical and chemical adsorption coexisting (mainly monolayer chemical adsorption). The joint study of the experimental analysis and theoretical calculation based on the density functional theory (DFT) demonstrates that the extraordinary removal performance of Cr (VI) is due to the synergetic effect of reduction reaction removal and electrostatic adsorption. It is found that the Cr (VI) is mainly reduced by the OH- terminals on Ti3C2, and the detoxified Cr (III) is anchored on the surface of Ti3C2Tx through complexation reaction with O terminal. The advantages of ultrafast adsorption kinetics and extra-high adsorption capacity of the single-layered Ti3C2Tx for Cr (VI) removal make it a remarkable candidate for rapid and urgent removal of Cr (VI) wastewater.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory of Power Transmission Equipment & System Safety and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, P.R. China
| | - Fang Wu
- State Key Laboratory of Power Transmission Equipment & System Safety and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, P.R. China.
| | - Zhiheng Wang
- State Key Laboratory of Power Transmission Equipment & System Safety and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, P.R. China
| | - Yang Wang
- State Key Laboratory of Power Transmission Equipment & System Safety and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, P.R. China
| | - Shufang Zhang
- College of Software, Chongqing College of Electronic Engineering, Chongqing, 401331, PR China
| | - Haijun Luo
- Key Laboratory on Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Zhiqin Zheng
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, Sichuan Province, 621010, P.R. China; NHC Key Laboratory of Nuclear Technology Medical Transformation (MianYang Central Hospital), China.
| | - Liang Fang
- State Key Laboratory of Power Transmission Equipment & System Safety and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, P.R. China; Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang, Jiangsu Province, 213300, China.
| |
Collapse
|
28
|
Ojstršek A, Jug L, Plohl O. A Review of Electro Conductive Textiles Utilizing the Dip-Coating Technique: Their Functionality, Durability and Sustainability. Polymers (Basel) 2022; 14:4713. [PMID: 36365707 PMCID: PMC9654088 DOI: 10.3390/polym14214713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
The presented review summarizes recent studies in the field of electro conductive textiles as an essential part of lightweight and flexible textile-based electronics (so called e-textiles), with the main focus on a relatively simple and low-cost dip-coating technique that can easily be integrated into an existing textile finishing plant. Herein, numerous electro conductive compounds are discussed, including intrinsically conductive polymers, carbon-based materials, metal, and metal-based nanomaterials, as well as their combinations, with their advantages and drawbacks in contributing to the sectors of healthcare, military, security, fitness, entertainment, environmental, and fashion, for applications such as energy harvesting, energy storage, real-time health and human motion monitoring, personal thermal management, Electromagnetic Interference (EMI) shielding, wireless communication, light emitting, tracking, etc. The greatest challenge is related to the wash and wear durability of the conductive compounds and their unreduced performance during the textiles' lifetimes, which includes the action of water, high temperature, detergents, mechanical forces, repeated bending, rubbing, sweat, etc. Besides electrical conductivity, the applied compounds also influence the physical-mechanical, optical, morphological, and comfort properties of textiles, depending on the type and concentration of the compound, the number of applied layers, the process parameters, as well as additional protective coatings. Finally, the sustainability and end-of-life of e-textiles are critically discussed in terms of the circular economy and eco-design, since these aspects are mainly neglected, although e-textile' waste could become a huge problem in the future when their mass production starts.
Collapse
|
29
|
Li J, Miao C, Bian J, Seyedin S, Li K. MXene fibers for electronic textiles: Progress and perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Sfameni S, Lawnick T, Rando G, Visco A, Textor T, Plutino MR. Functional Silane-Based Nanohybrid Materials for the Development of Hydrophobic and Water-Based Stain Resistant Cotton Fabrics Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193404. [PMID: 36234532 PMCID: PMC9565586 DOI: 10.3390/nano12193404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
The textile-finishing industry, is one of the main sources of persistent organic pollutants in water; in this regard, it is necessary to develop and employ new sustainable approaches for fabric finishing and treatment. This research study shows the development of an efficient and eco-friendly procedure to form highly hydrophobic surfaces on cotton fabrics using different modified silica sols. In particular, the formation of highly hydrophobic surfaces on cotton fabrics was studied by using a two-step treatment procedure, i.e., first applying a hybrid silica sol obtained by hydrolysis and subsequent condensation of (3-Glycidyloxypropyl)trimethoxy silane with different alkyl(trialkoxy)silane under acid conditions, and then applying hydrolyzed hexadecyltrimethoxysilane on the treated fabrics to further improve the fabrics' hydrophobicity. The treated cotton fabrics showed excellent water repellency with a water contact angle above 150° under optimum treatment conditions. The cooperative action of rough surface structure due to the silica sol nanoparticles and the low surface energy caused by long-chain alkyl(trialkoxy)silane in the nanocomposite coating, combined with the expected roughness on microscale due to the fabrics and fiber structure, provided the treated cotton fabrics with excellent, almost super, hydrophobicity and water-based stain resistance in an eco-sustainable way.
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Tim Lawnick
- TEXOVERSUM School of Textiles, Reutlingen University, 72762 Reutlingen, Germany
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Torsten Textor
- TEXOVERSUM School of Textiles, Reutlingen University, 72762 Reutlingen, Germany
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
31
|
Yao D, Tang Z, Liang Z, Zhang L, Sun QJ, Fan J, Zhong G, Liu QX, Jiang YP, Tang XG, A. L. Roy V, Ouyang J. Adhesive, multifunctional, and wearable electronics based on MXene-coated textile for personal heating systems, electromagnetic interference shielding, and pressure sensing. J Colloid Interface Sci 2022; 630:23-33. [DOI: 10.1016/j.jcis.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
|
32
|
Zhang X, Lu L, Wang W, Zhao N, He P, Liu J, Yang B. Flexible Pressure Sensors with Combined Spraying and Self-Diffusion of Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38409-38420. [PMID: 35950563 DOI: 10.1021/acsami.2c12240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-performance wearable sensors are required for applications in medical health and human-machine interaction, but their application has limited owing to the trade-off between sensitivity, pressure range, and durability. Herein, we propose the combined spraying and self-diffusion process of carbon nanotubes (CNTs) to balance and improve these parameters with the CNTs spontaneously diffusing into the film surface before the film curing. The obtained sensor not only achieves high sensitivity (155.54 kPa-1) and ultrawide pressure detection range (0.1-500 kPa) but also exhibits exceptional durability (over 12,000 pressure cycles at a high pressure of 300 kPa). In addition, the sensor exhibits a fast response (25 ms), good stability, and full flexibility. This process is a general approach that may improve the performance of various types of thin film piezoresistive sensors. Besides, the fabricated sensors can be flexibly scaled into sensor arrays and communicate with smart devices to achieve wireless smart monitoring. At present, the sensor shows broad application prospects in the fields of intelligent medical health and motion sensing.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Lu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenduo Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Peng He
- Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Facile Fabrication of a Highly Sensitive and Robust Flexible Pressure Sensor with Batten Microstructures. MICROMACHINES 2022; 13:mi13081164. [PMID: 35893162 PMCID: PMC9329788 DOI: 10.3390/mi13081164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/22/2022]
Abstract
As the foremost component of wearable devices, flexible pressure sensors require high sensitivity, wide operating ranges, and great stability. In this paper, a pressure sensor comprising a regular batten microstructure active layer is presented. First, the influences of the dimensional parameters of the microstructures on the performances of the sensors were investigated by the mechanical finite element method (FEM). Then, parameters were optimized and determined based on the results of this investigation. Next, active layers were prepared by molding multiwalled carbon nanotube/polyurethane (MWCNT/PU) conductive composite using a printed circuit board template. Finally, a resistive flexible pressure sensor was fabricated by combining an active layer and an interdigital electrode. With advantages in terms of the structure and materials, the sensor exhibited a sensitivity of up to 46.66 kPa−1 in the range of 0–1.5 kPa and up to 6.67 kPa−1 in the range of 1.5–7.5 kPa. The results of the experiments show that the designed flexible pressure sensor can accurately measure small pressures and realize real-time human physiological monitoring. Furthermore, the preparation method has the advantages of a low cost, simple design, and high consistency. Thus, it has potential to promote the development of flexible sensors, wearable devices, and other related devices.
Collapse
|
34
|
Mahapatra PL, Singh AK, Lahiri B, Kundu TK, Roy AK, Kumbhakar P, Tiwary CS. Energy Harvesting Using Cotton Fabric Embedded with 2D Hexagonal Boron Nitride. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30343-30351. [PMID: 35727691 DOI: 10.1021/acsami.2c04941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Continuous health monitoring through sensitive physiological signals (using a wearable device) is crucial for the early detection of heart diseases and breathing problems. Here, we have developed a flexible hBN/cotton hybrid device that can detect minor signals such as heartbeat and breathed-out air pressure. Systematic observation of the real-time motion sensing showed a peak-to-peak voltage output of ∼1.5 V for each heart rate pulse. The as-fabricated device showed a high voltage output of up to ∼10 V upon applying a pressure of ∼3 MPa. The FTIR results and DFT calculation suggested a chemical interaction between hBN and cellulose, giving rise to flat band characteristics and partially filled σ-bonding (sp2) hybridization. The atomic-scale chemical interface between atomically thin hBN and surface functional groups present on cotton resulted in charge localization and enhanced output voltage. An hBN/cotton hybrid device can bring new insights and opportunities to develop a self-charging and health-monitoring energy-harvesting cloth.
Collapse
Affiliation(s)
- Preeti L Mahapatra
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Appu K Singh
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Basudev Lahiri
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tarun K Kundu
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ajit K Roy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433-7718, United States
| | - Partha Kumbhakar
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Chandra S Tiwary
- Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
35
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|
36
|
Abstract
Textile-based sensors in the form of a wearable computing device that can be attached to or worn on the human body not only can transmit information but also can be used as a smart sensing device to access the mobile internet. These sensors represent a potential platform for the next generation of human-computer interfaces. The continuous emergence of new conductive materials is one of the driving forces for the development of textile sensors. Recently, a two-dimensional (2D) MXene material with excellent performance has received extensive attention due to its high conductivity, processability, and mechanical stability. In this paper, the synthesis of MXene materials, the fabrication of conductive textiles, the structural design of textile sensors, and the application of MXene-based textile sensors in the wearable field are reviewed. Furthermore, from the perspective of MXene preparation, wearability, stability, and evaluation standards, the difficulties and challenges of MXene-based textile sensors in the field of wearable applications are summarized and prospected. This review attempts to strengthen the connection between wearable smart textiles and MXene materials and promote the rapid development of wearable MXene-based textile sensors.
Collapse
Affiliation(s)
- Chun Jin
- Human-Computer Interaction Design Lab, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
- Harbin Institute of Technology, Harbin, 150080, People’s Republic of China
| | - Ziqian Bai
- Human-Computer Interaction Design Lab, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| |
Collapse
|
37
|
Cui X, Huang F, Zhang X, Song P, Zheng H, Chevali V, Wang H, Xu Z. Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications. iScience 2022; 25:104148. [PMID: 35402860 PMCID: PMC8991382 DOI: 10.1016/j.isci.2022.104148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Flexible pressure sensors capable of transducing pressure stimuli into electrical signals have drawn extensive attention owing to their potential applications for human-machine interaction and healthcare monitoring. To meet these application demands, engineering microstructures in the pressure sensors are an efficient way to improve key sensing performances, such as sensitivity, linear sensing range, response time, hysteresis, and durability. In this review, we provide an overview of the recent advances in the fabrication and application of high-performance flexible pressure sensors via engineering microstructures. The implementation mechanisms and fabrication strategies of microstructures including micropatterned, porous, fiber-network, and multiple microstructures are systematically summarized. The applications of flexible pressure sensors with microstructures in the fields of wearable human-machine interaction, and ex vivo and in vivo healthcare monitoring are comprehensively discussed. Finally, the outlook and challenges in the future improvement of flexible pressure sensors toward practical applications are presented.
Collapse
Affiliation(s)
- Xihua Cui
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Fengli Huang
- College of Information Science and Engineering, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xianchao Zhang
- College of Information Science and Engineering, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield Central 4300, Australia
| | - Hua Zheng
- School of Architecture and Energy Engineering, Wenzhou University of Technology, 1 Jingguan Road, Wenzhou University Town, Wenzhou 325035, China
| | - Venkata Chevali
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
38
|
Wang Y, Yue Y, Cheng F, Cheng Y, Ge B, Liu N, Gao Y. Ti 3C 2T x MXene-Based Flexible Piezoresistive Physical Sensors. ACS NANO 2022; 16:1734-1758. [PMID: 35148056 DOI: 10.1021/acsnano.1c09925] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXenes have received increasing attention due to their two-dimensional layered structure, high conductivity, hydrophilicity, and large specific surface area. Because of these distinctive advantages, MXenes are considered as very competitive pressure-sensitive materials in applications of flexible piezoresistive sensors. This work reviews the preparation methods, basic properties, and assembly methods of MXenes and their recent developments in piezoresistive sensor applications. The recent developments of MXene-based flexible piezoresistive sensors can be categorized into one-dimensional fibrous, two-dimensional planar, and three-dimensional sensors according to their various structures. The trends of multifunctional integration of MXene-based pressure sensors are also summarized. Finally, we end this review by describing the opportunities and challenges for MXene-based pressure sensors and the great prospects of MXenes in the field of pressure sensor applications.
Collapse
Affiliation(s)
- Yongxin Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Yang Yue
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Feng Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Yongfa Cheng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, P.R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Nishuang Liu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, P.R. China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, P.R. China
| |
Collapse
|
39
|
Liu J, Du Z, Wang Q, Su B, Xia Z. Particle Flow Spinning Mass-Manufactured Stretchable Magnetic Yarn for Self-Powered Mechanical Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2113-2121. [PMID: 34968028 DOI: 10.1021/acsami.1c22267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-powered fabric electronic devices are critical for next-generation wearable technologies, biomedical applications, and human-machine interfaces. The flexible magnetoelectric strategy is an emerging self-powered approach that can adapt to diverse environments and yield efficient electric outputs. However, there is an urgent need to develop a continuous manufacturing method for fabricating self-powered sensing magnetoelectric yarns with a high magnetic powder ratio and resistance to severe surroundings. In this study, we report particle flow spinning mass-manufactured magnetoelectric yarns for self-powered mechanical sensing. It has been shown that mechanical stretching/bending forces can be sensed and recognized by magnetoelectric yarns without an additional power supply. Through a combination of parameter optimization experiments and Maxwell modeling, we reveal the mechanism behind this mechanical-to-electric conversion capability. We further show that these self-powered sensing magnetoelectric yarns can monitor human motions after being attached to texture clothing. We expect that our results will stimulate further research on fabric electronics in a self-powered manner and will substantially advance the field.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies & School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, Hubei, P. R. China
| | - Zhuolin Du
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Zhigang Xia
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies & School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, Hubei, P. R. China
- State Key Laboratory of Bio-Fibers and Eco-Textile, Qingdao University, Qingdao 266000, Shandong, P. R. China
| |
Collapse
|
40
|
Yan B, Bao X, Liao X, Wang P, Zhou M, Yu Y, Yuan J, Cui L, Wang Q. Sensitive Micro-Breathing Sensing and Highly-Effective Photothermal Antibacterial Cinnamomum camphora Bark Micro-Structural Cotton Fabric via Electrostatic Self-Assembly of MXene/HACC. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2132-2145. [PMID: 34939796 DOI: 10.1021/acsami.1c22740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Natural fabrics are gradually becoming the ideal substrate for flexible smart wearable devices due to their excellent moisture absorption, softness, and skin-friendliness. However, the bonding fastness of the conductive layer and the corresponding durability during service have not yet been well satisfied. In this report, we successfully prepared a smart wearable multifunctional protective cotton fabric with microbreathing monitoring and rapid-photothermal antibacterial abilities of Cinnamomum camphora bark microstructure, by combining chitosan quaternary ammonium salt (HACC) with MXene nanosheets through electrostatic self-assembly. Impressively, MXene nanosheets and HACC established a strong interaction using the electrostatic attraction, endowing the fiber surface with ordered nanosheets. Meanwhile, the fabric decorated with MXene/HACC retains its original characteristics of outstanding breathability and softness, and its conductivity exhibits noticeable stability in terms of resistances to oxidation, washing, various solvents, and long-term bending cycles. On the basis of the principle of adsorption and release of water molecules in the MXene multilayer structures, the MXene/HACC fabric could accurately monitor the physiological health activities of users according to their breathing frequency and depth. Benefiting from the local surface plasmon resonance (LSPR) effect, the MXene/HACC shows encouraging photothermal conversion ability, photothermal stability under long time irradiation, washing resistance, and cycle stability. In addition, the fabric achieved an antibacterial efficiency of nearly 100% against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus within 5 min under an irradiation intensity of 400 mW/cm2. More importantly, after 10 washes, the antibacterial efficiency against the two bacteria could still reach 99.975% and 99.98%, respectively. This multifunctional protective MXene/HACC cotton fabric is expected to play a unique role in the new generation of smart wearable microbreathing sensing and against to bacterial attack, and shows a broad application prospect.
Collapse
Affiliation(s)
- Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xueming Bao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoting Liao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
41
|
Xia Q, Qin Y, Qiu P, Zheng A, Zhang X. Bio‑inspired Tactile Nociceptor Constructed by Integrating Wearable Sensing Paper and VO2 Threshold Switching Memristor. J Mater Chem B 2022; 10:1991-2000. [DOI: 10.1039/d1tb02578c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensations of touch and pain are fundamental components of our daily life, which can transport vital information about the surroundings and provide protection to our bodies. In this study,...
Collapse
|
42
|
Wu Z, Wei L, Tang S, Xiong Y, Qin X, Luo J, Fang J, Wang X. Recent Progress in Ti 3C 2T x MXene-Based Flexible Pressure Sensors. ACS NANO 2021; 15:18880-18894. [PMID: 34870416 DOI: 10.1021/acsnano.1c08239] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The rapid development of consumer electronics, artificial intelligence, and clinical medicine generates an increasing demand for flexible pressure sensors, whose performance depends significantly on sensitive materials with high flexibility and proper conductivity. MXene, a type of 2D nanomaterial, has attracted extensive attention due to its good electrical conductivity, hydrophilicity, and flexibility. The synthesis methods for MXenes make it relatively easy to control their microstructure and surface termination groups. Hence, MXenes can obtain peculiar microstructures and facilely combine with other functional materials, making them promising prospects for use in flexible pressure sensors. In this Review, recent advances in MXenes are summarized, mainly focusing on the synthesis methods and their application in flexible pressure sensors. Finally, the challenges and potential solutions for future development are also discussed.
Collapse
Affiliation(s)
- Zhengguo Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lansheng Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuwei Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yutong Xiong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqian Qin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiwen Luo
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
43
|
Zeng Y, Wu W. Synthesis of 2D Ti 3C 2T x MXene and MXene-based composites for flexible strain and pressure sensors. NANOSCALE HORIZONS 2021; 6:893-906. [PMID: 34611677 DOI: 10.1039/d1nh00317h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As an important device in flexible and wearable microelectronics, flexible sensors have gained a lot of attention due to their wide application in human motion monitoring, human-computer interactions and healthcare fields. The preparation of flexible sensors with superior sensing performance and a simple process is still a challenging goal pursued by scientific researchers all over the world. The emerging two-dimensional (2D) Ti3C2Tx MXene material, having the characteristics of high metallic conductivity, good flexibility, excellent dispersibility and hydrophilicity, is suitable for flexible sensors as a conductive sensing material. In this review, the preparation strategies of Ti3C2Tx are summarized. Combined with its research progress in flexible sensors, the preparation methods, sensing performance, working mechanism and applications of Ti3C2Tx flexible sensors with different device architectures are reviewed.
Collapse
Affiliation(s)
- Yuping Zeng
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
44
|
Zhou Z, Chen N, Zhong H, Zhang W, Zhang Y, Yin X, He B. Textile-Based Mechanical Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6073. [PMID: 34683661 PMCID: PMC8538676 DOI: 10.3390/ma14206073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Innovations related to textiles-based sensors have drawn great interest due to their outstanding merits of flexibility, comfort, low cost, and wearability. Textile-based sensors are often tied to certain parts of the human body to collect mechanical, physical, and chemical stimuli to identify and record human health and exercise. Until now, much research and review work has been carried out to summarize and promote the development of textile-based sensors. As a feature, we focus on textile-based mechanical sensors (TMSs), especially on their advantages and the way they achieve performance optimizations in this review. We first adopt a novel approach to introduce different kinds of TMSs by combining sensing mechanisms, textile structure, and novel fabricating strategies for implementing TMSs and focusing on critical performance criteria such as sensitivity, response range, response time, and stability. Next, we summarize their great advantages over other flexible sensors, and their potential applications in health monitoring, motion recognition, and human-machine interaction. Finally, we present the challenges and prospects to provide meaningful guidelines and directions for future research. The TMSs play an important role in promoting the development of the emerging Internet of Things, which can make health monitoring and everyday objects connect more smartly, conveniently, and comfortably efficiently in a wearable way in the coming years.
Collapse
Affiliation(s)
- Zaiwei Zhou
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
| | - Nuo Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Hongchuan Zhong
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
| | - Wanli Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
| | - Yue Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
| | - Xiangyu Yin
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Bingwei He
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
| |
Collapse
|
45
|
Li X, Li X, Lu Y, Shang C, Ding X, Zhang J, Feng Y, Xu FJ. Wearable, Washable, and Highly Sensitive Piezoresistive Pressure Sensor Based on a 3D Sponge Network for Real-Time Monitoring Human Body Activities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46848-46857. [PMID: 34553599 DOI: 10.1021/acsami.1c09975] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable pressure sensors are highly desirable for monitoring human health and realizing a nice human-machine interaction. Herein, a chitosan/MXene/polyurethane-sponge/polyvinyl alcohol (CS/MXene/PU sponge/PVA)-based 3D pressure sensor is developed to simultaneously achieve wearability, washability, and high sensitivity in a wide region. In the force-sensitive layer of the sensor, MXene and CS are fully attached to the PU sponge to ensure that the composite sponge has remarkable conductivity and washability. Benefiting from the highly resistive PVA-nanowire spacer, the initial current of the sensor is reduced significantly so that the sensor exhibits extremely high sensitivity (84.9 kPa-1 for the less than 5 kPa region and 140.6 kPa-1 for the 5-22 kPa region). Moreover, the sensor has an excellent fast response time of 200 ms and a short recovery time of 30 ms, as well as non-attenuating durability over 5000 cycles. With the high sensitivity in a wide range, the sensor is capable of detecting multiple human and animal activities in real time, ranging from the large pressure of joint activities to a subtle pressure of pulse. Furthermore, the sensor also demonstrates the potential application in measuring pressure distribution. Overall, such a multifunctional pressure sensor can supply a new platform for the design and development of wearable health-monitoring equipment and an efficient human-machine interface.
Collapse
Affiliation(s)
- Xiaodi Li
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Li
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Lu
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengshuo Shang
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Jicai Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
46
|
Yan B, Zhou M, Liao X, Wang P, Yu Y, Yuan J, Wang Q. Developing a Multifunctional Silk Fabric with Dual-Driven Heating and Rapid Photothermal Antibacterial Abilities Using High-Yield MXene Dispersions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43414-43425. [PMID: 34472827 DOI: 10.1021/acsami.1c12915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two-dimensional material titanium carbide (Ti3C2Tx MXene) has been widely used for building diverse functional materials; however, the disadvantages of unsatisfactory yield and low concentration during the preparation process generally limit its large-scale promotion. In the present work, an MXene dispersion with enhanced yield (90%), high concentration (45 mg/mL), and excellent dispersibility was successfully prepared. Subsequently, the active MXene nanosheets were effectively in situ deposition onto the silk fiber by means of dip-coating, relying on van der Waals forces and hydrogen bonds. The obtained MXene-decorated silk fabric (MXene@silk) exhibits satisfactory electrical conductivity (170 mS/cm), excellent photothermal and electrothermal conversion properties, especially dual-drive energy conversion, rapid thermal responses, and long-term functional stability. Furthermore, UV protection factor of the fabric, and its antibacterial efficiency against Gram-negative Escherichia coli (E. coli) within 20 min of contact reach over 110 and 99%, respectively, demonstrating remarkable UV resistance and rapid photothermal antibacterial ability. Meanwhile, the fabric of MXene@silk still retains the original characteristics of breathability, softness, and skin-friendly properties compared to the untreated. The multifunctional fabric constructed through a facile and high-yield strategy shows a noticeable potential applying to smart textiles to meet people's multipurpose needs in the future.
Collapse
Affiliation(s)
- Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoting Liao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
47
|
Qin S, Usman KAS, Hegh D, Seyedin S, Gogotsi Y, Zhang J, Razal JM. Development and Applications of MXene-Based Functional Fibers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36655-36669. [PMID: 34320810 DOI: 10.1021/acsami.1c08985] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The increasing interest toward wearable and portable electronic devices calls for multifunctional materials and fibers/yarns capable of seamless integration with everyday textiles. To date, one particular gap inhibiting the development of such devices is the production of robust functional fibers with improved electronic conductivity and electrochemical energy storage capability. Recent efforts have been made to produce functional fibers with 2D carbides known as MXenes to address these demands. Ti3C2Tx MXene, in particular, is known for its metallic conductivity and high volumetric capacitance, and has shown promise for fibers and textile-based devices when used either as an additive, coating or the main fiber component. In this spotlight article, we highlight the recent exciting developments in our diverse efforts to fabricate MXene functionalized fibers, along with a critical evaluation of the challenges in processing, which directly affect macroscale material properties and the performance of the subsequent prototype devices. We also provide our assessment of observed and foreseen challenges of the current manufacturing methods and the opportunities arising from recent advances in the development of MXene fibers and paving future avenues for textile design and practical use in advanced applications.
Collapse
Affiliation(s)
- Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Shayan Seyedin
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19143, United States
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Zhanjiang, Guangdong 524002, China
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
48
|
Wang L, Zhang M, Yang B, Tan J, Ding X, Li W. Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. SMALL METHODS 2021; 5:e2100409. [PMID: 34927986 DOI: 10.1002/smtd.202100409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Indexed: 05/27/2023]
Abstract
With the advent of the era of intelligent manufacturing, sensors, with various detection objects, have set off a wave of enthusiasm and reached new heights in medical treatment, intelligent industry, daily life, and so on. MXene, as an emerging family of 2D transition metal carbides/nitrides, possesses impressive electrical conductivity, outstanding structural controllability, and satisfying universality with other substrates. Consequently, MXene-based sensors with various functions show a booming growth based on great research potential of MXene. To promote the orderly and efficient development of MXene application in sensors, and further accelerate market-scale application of ideal sensors, in this review, a full range research effort on current MXene-based sensors is summarized. Starting with various synthesis methods of the raw material MXene, a comprehensive summary work along with 1D, 2D, or 3D MXene-based sensors on most recent works is put forward, including the preparation method, characteristic structure, and potential sensing application of each type of MXene-based composite sensors. Ultimately, insights of the opportunities and challenges on the strength of the current reported MXene-based sensor are given.
Collapse
Affiliation(s)
- Lin Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Xueyao Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Weiwei Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| |
Collapse
|
49
|
High-Performance Wearable Strain Sensor Based on MXene@Cotton Fabric with Network Structure. NANOMATERIALS 2021; 11:nano11040889. [PMID: 33807249 PMCID: PMC8065457 DOI: 10.3390/nano11040889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Flexible and comfortable wearable electronics are as a second skin for humans as they can collect the physiology of humans and show great application in health and fitness monitoring. MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, but less research has focused on MXene-based cotton fabric strain sensors. In this work, a high-performance wearable strain sensor composed of two-dimensional (2D) MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. Cotton fabrics were selected as substrate as they are comfortable textiles. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15%. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.
Collapse
|
50
|
Xu MK, Liu J, Zhang HB, Zhang Y, Wu X, Deng Z, Yu ZZ. Electrically Conductive Ti3C2Tx MXene/Polypropylene Nanocomposites with an Ultralow Percolation Threshold for Efficient Electromagnetic Interference Shielding. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming-Ke Xu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ji Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemistry, CRANN, AMBER & I-Form, Trinity College DublinRINGGOLD, D2 Dublin, Ireland
| | - Hao-Bin Zhang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Zhang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiming Deng
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|