1
|
Ling H, Yuan Q, Sheng T, Wang X. Dual active site and metal-substrate interface effect endow platinum-ruthenium/molybdenum carbide efficient pH-universal hydrogen evolution reaction. J Colloid Interface Sci 2025; 685:371-381. [PMID: 39855084 DOI: 10.1016/j.jcis.2025.01.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exploring suitable dual active site and metal-substrate interface effect is essential for designing efficient and robust electrocatalysts across a wide pH range for the hydrogen evolution reaction (HER). Herein, alloyed platinum-ruthenium clusters supported on nanosheet-assembled molybdenum carbide microflowers (PtRu/Mo2C) are reported as efficient pH-universal electrocatalysts for HER. Due to dual active site and metal-substrate interface effect, the optimized Pt0.83Ru0.17/Mo2C electrocatalyst exhibits extremely low overpotentials (η10) of 9, 19, and 33 mV to deliver 10 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M phosphate buffered electrolytes (PBS), outperforming the benchmark Pt electrocatalyst. In addition, Pt0.83Ru0.17/Mo2C achieves excellent stability of 200 h at a big current density of 500 mA cm-2 in the anionic exchange membrane water electrolyzer. Density functional theory (DFT) calculations and in situ Raman spectra reveal that the interaction of PtRu clusters with Mo2C substrate, while Ru modulates the electron cloud density of Pt, thus accelerating H2O dissociation and H* desorption on the surface of Pt0.83Ru0.17/Mo2C and thus synergistically enhancing the HER kinetics. The research opens up an efficient strategy to exploit cost-effective, high-performance, and pH-universal HER electrocatalyst while facilitating green hydrogen energy development.
Collapse
Affiliation(s)
- Hujing Ling
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Ren MM, Chen XH, Li T, Zhang Q, Jia JH, Li NB, Luo HQ. Charge-redistributed RuNi/MoN heterojunction enables efficient hydrogen evolution in a wide pH range. J Colloid Interface Sci 2025; 683:46-54. [PMID: 39671899 DOI: 10.1016/j.jcis.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Electrocatalytic hydrogen production offers a promising solution to address current energy depletion. Herein, a RuNi/MoN heterostructure on carbon cloth (CC), RuNi/MoN@CC, was successfully constructed using a simple method, allowing for dual regulation of morphology and electronic structure. Under the influence of Ni, the in-situ generated MoN inherits the morphology of the NiMoO4 precursor, presenting a nanowire morphology, which is favorable for increasing electrochemical active area. Otherwise, the introduction of Ni acts as a sacrificial reducing agent and ensures that Ru remains in zero oxidation state as an electron donor to optimize the internal electronic distribution. Under the influence of dual regulation, the RuNi/MoN@CC requires only 66, 92, and 149 mV to achieve a current density of -10 mA cm-2 in alkaline, neutral, and acidic electrolytes, with the Tafel slopes of 50.4, 56.2, and 71.8 mV dec-1. This work will provide effective guidance for future exploration of transition metal-based catalysts suitable for a wide pH range.
Collapse
Affiliation(s)
- Miao Miao Ren
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jia Huan Jia
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Romero N, Gomaa MM, Esvan J, Rodrigo MA, Philippot K, Lobato J. A Bifunctional Nanostructured RuPt/C Electrocatalyst for Energy Storage Based on the Chlor-Alkali Process. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:506. [PMID: 40214551 PMCID: PMC11990831 DOI: 10.3390/nano15070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
This study focuses on the design of a novel electrode for an energy storage system utilizing EDEN (electrochemical-based decarbonizing energy) technology. This technology implies a chlor-alkali electrochemical cell with dual functionality: first, the electrolysis of water and NaCl to produce hydrogen (H2) and chlorine (Cl2), and subsequently, the utilization of these products in an H2/Cl2 fuel cell to generate electricity. Bimetallic RuPt nanoparticles have been synthesized on Vulcan carbon (C-V) from organometallic precursors to be used as electrocatalysts. Characterization includes transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). The RuPt/C-V-based electrode demonstrated notable performance in the target reversible electrochemical cell, acting as the anode for electrolysis and as the cathode in fuel-cell mode. Testing in a 3D-printed electrochemical cell revealed high efficiency, with a coulombic efficiency exceeding 96% for hydrogen production, yielding 11.75 mg·Wh-1 and achieving a power output of approximately 4.5 mW·cm-2 in H2/Cl2 fuel-cell operation.
Collapse
Affiliation(s)
- Nuria Romero
- LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France;
- Université de Toulouse, UPS, INPT, 118 Route de Narbonne, 31400 Toulouse, France
| | - Mahmoud M. Gomaa
- Physics Department, Faculty of Science, Minia University, Minia P.O. Box 61519, Egypt;
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, Universidad Castilla-La Mancha, 13004 Ciudad Real, Spain;
| | - Jérôme Esvan
- CIRIMAT, Université de Toulouse, CNRS-INPT-UPS, 4 Allée Emile Monso, BP 44362, 31030 Toulouse, France;
| | - Manuel A. Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, Universidad Castilla-La Mancha, 13004 Ciudad Real, Spain;
| | - Karine Philippot
- LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France;
- Université de Toulouse, UPS, INPT, 118 Route de Narbonne, 31400 Toulouse, France
| | - Justo Lobato
- Physics Department, Faculty of Science, Minia University, Minia P.O. Box 61519, Egypt;
| |
Collapse
|
4
|
Weng Y, Li Q, Li K. Cost-Effective RuNi Solid Solutions Prepared by Electrodeposition for Efficient Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410778. [PMID: 39780616 DOI: 10.1002/smll.202410778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Indexed: 01/11/2025]
Abstract
The development of efficient hydrogen evolution reaction (HER) catalysts is crucial for water electrolysis. Currently, Ru-based catalysts are considered top contenders, but issues with stability, activity, and cost remain. In this work, RuNi alloys possessing a solid solution structure within the Ru lattice are prepared via straightforward electrodeposition on various substrates and assessed as HER catalysts in alkaline media. A RuNi solid solution containing 9.8 at. % Ni deposited on Ti substrate, wherein the Ni content greatly surpasses the solubility limit of Ni in Ru at room temperature, exhibits a considerably low overpotential of 28 mV at a current density of 10 mA cm- 2, along with good long-term stability (less than 100 mV increase in overpotential after 600 h). The enhancement in HER performance results from the increased electron density around Ru atoms due to Ni coordination, which facilitates the desorption of H* from the catalyst surface to produce H2. Concurrently, incorporating Ni reduces the Ru usage, rendering the RuNi alloy a viable cost-effective HER catalyst for practical applications.
Collapse
Affiliation(s)
- Yibo Weng
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Qingqing Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kaikai Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Yang Z, Zhang X, Yang F, Waqas M, Peng Y, Wang L, Huang Q, Huang D, Deng D, Chen DH, Fan Y, Chen W. Accelerated galvanic interaction for the fabrication of core-shell nanowires to boost the hydrogen evolution reaction. NANOSCALE 2025; 17:1568-1573. [PMID: 39628326 DOI: 10.1039/d4nr03876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
As an essential reaction of water splitting in alkaline solution, the hydrogen evolution reaction (HER) is seriously limited by its ponderous dynamics and the dissolution of Ru. Herein, we propose a strategy for the electrochemical deposition of Ru nanoparticles on the surface of Ag nanowires (Ag NWs) to generate a core-shell Ru@Ag/AgCl catalyst through an accelerated galvanostatic interaction conducted in RuCl3 solution. The active sites of Ru were precisely controlled by tailoring the number of cycles in cyclic voltammetry (CV). Interestingly, the as-designed Ru@Ag/AgCl-200 electrode maintained its original morphology after 200 CV cycles, demonstrating the high stability of the designed electrocatalyst. The electrochemical performance of the Ru@Ag/AgCl-200 catalyst justifies its excellent HER performance, including a low overpotential of 40.2 mV at a current density of 10 mA cm-2, small Tafel slope of 53.24 mV dec-1, and great stability, compared to other control catalysts. Furthermore, the Ru@Ag/AgCl-200 catalyst delivered a low output potential of 1.53 V and sustained long-term stability of 50 h at a current density of 10 mA cm-2 for water splitting. This work provides a framework for accelerated galvanostatic interaction for the controlled synthesis of Ru-based catalysts, which can be used for boosting the HER in alkaline solutions.
Collapse
Affiliation(s)
- Zhongyun Yang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xiaojia Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Fan Yang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Muhammad Waqas
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yufeng Peng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Limin Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Qiulan Huang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Dujuan Huang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Dingrong Deng
- School of Marin Equipment and Mechanical Engineering, Jimei University, Xiamen 361000, China
| | - Du-Hong Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Youjun Fan
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
6
|
Yang W, Huang Q, Yan Y, Li Y, Xu T, Yu A, Zhao Y, Peng P, Wang Y, Echegoyen L, Li FF. C 60 Fullerene-Induced Reduction of Metal Ions: Synthesis of C 60-Metal Cluster Heterostructures with High Electrocatalytic Hydrogen-Evolution Performance. Angew Chem Int Ed Engl 2025; 64:e202414149. [PMID: 39237460 DOI: 10.1002/anie.202414149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Metal clusters, due to their small dimensions, contain a high proportion of surface atoms, thus possessing a significantly improved catalytic activity compared with their bulk counterparts and nanoparticles. Defective and modified carbon supports are effective in stabilizing metal clusters, however, the synthesis of isolated metal clusters still requires multiple steps and harsh conditions. Herein, we develop a C60 fullerene-driven spontaneous metal deposition process, where C60 serves as both a reductant and an anchor, to achieve uniform metal (Rh, Ir, Pt, Pd, Au and Ru) clusters without the need for any defects or functional groups on C60. Density functional theory calculations reveal that C60 possesses multiple strong metal adsorption sites, which favors stable and uniform deposition of metal atoms. In addition, owing to the electron-withdrawing properties of C60, the electronic structures of metal clusters are effectively regulated, not only optimizing the adsorption behavior of reaction intermediates but also accelerating the kinetics of hydrogen evolution reaction. The synthesized Ru/C60-300 exhibits remarkable performance for hydrogen evolution in an alkaline condition. This study demonstrates a facile and efficient method for synthesizing effective fullerene-supported metal cluster catalysts without any pretreatment and additional reducing agent.
Collapse
Affiliation(s)
- Wenhao Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Qi Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yingying Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yaozhou Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Tingting Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ao Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yihang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ping Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Luis Echegoyen
- Institut Catalá d'Investigació Química, Ave. Països, Catalans 16, 43007, Tarragona, Spain
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States
| | - Fang-Fang Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
7
|
Guo J, Ding R, Li Y, Xie J, Fang Q, Yan M, Zhang Y, Yan Z, Chen Z, He Y, Sun X, Liu E. Semi-Ionic F Modified N-Doped Porous Carbon Implanted with Ruthenium Nanoclusters toward Highly Efficient pH-Universal Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403151. [PMID: 38934338 DOI: 10.1002/smll.202403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm-2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Ziyang Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiqiang Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuming He
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
8
|
Zhang M, Su M, Zhang C, Gao F, Lu Q. Platinum/Platinum Sulfide on Sulfur-Doped Carbon Nanosheets with Multiple Interfaces toward High Hydrogen Evolution Activity. Molecules 2024; 29:4570. [PMID: 39407500 PMCID: PMC11477529 DOI: 10.3390/molecules29194570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Platinum (Pt)-based materials are among the most competitive electrocatalysts for the hydrogen evolution reaction (HER) due to suitable hydrogen adsorption energy. Due to the rarity of Pt, it is desirable to develop cost-effective Pt-based electrocatalysts with low Pt loading. Herein, Pt/PtS electrocatalysts on S-doped carbon nanofilms (PPS/C) have been successfully fabricated through a precursor reduction route with a complex of Pt and 1-dodecanethiol (1-DDT) as the precursor. The PPS/C achieved at 400 °C (PPS/C-400) exhibits excellent HER performances with an ultralow overpotential of 41.3 mV, a low Tafel slope of 43.1 mV dec-1 at a current density of 10 mA cm-2, and a long-term stability of 10 h, superior to many recently reported Pt-based HER electrocatalysts. More importantly, PPS/C-400 shows a high mass-specific activity of 0.362 A mgPt-1 at 30 mV, which is 1.88 times of that of commercial 20% Pt/C (0.193 A mgPt-1). The introduction of sulfur leads to the formation of PtS, which not only reduces the content of Pt but also realizes the interface regulation of Pt/PtS, as well as the doping of carbon. Both regulations make the resulting catalyst have abundant active centers and rapid electron transfer/transport, which is conducive to balancing the adsorption and resolution of intermediate products, and finally achieving great mass-specific activity and stability. The research work may provide ideas for designing effective Pt-based multi-interface electrocatalysts.
Collapse
Affiliation(s)
- Mou Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chunyan Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Gao
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Ma Y, Ha Y, Chen L, An Z, Xing L, Wang Z, Li Z. Electrochemically Induced Ru/CoOOH Synergistic Catalyst as Bifunctional Electrode Materials for Alkaline Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311884. [PMID: 38412403 DOI: 10.1002/smll.202311884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Efficient and affordable price bifunctional electrocatalysts based on transition metal oxides for oxygen and hydrogen evolution reactions have a balanced efficiency, but it remains a significant challenge to control their activity and durability. Herein, a trace Ru (0.74 wt.%) decorated ultrathin CoOOH nanosheets (≈4 nm) supported on the surface of nickel foam (Ru/CoOOH@NF) is rationally designed via an electrochemically induced strategy to effectively drive the electrolysis of alkaline overall water splitting. The as-synthesized Ru/CoOOH@NF electrocatalysts integrate the advantages of a large number of different HER (Ru nanoclusters) and OER (CoOOH nanosheets) active sites as well as strong in-suit structure stability, thereby exhibiting exceptional catalytic activity. In particular, the ultra-low overpotential of the HER (36 mV) and the OER (264 mV) are implemented to achieve 10 mA cm-2. Experimental and theoretical calculations also reveal that Ru/CoOOH@NF possesses high intrinsic conductivity, which facilitates electron release from H2O and H-OH bond breakage and accelerates electron/mass transfer by regulating the charge distribution. This work provides a new avenue for the rational design of low-cost and high-activity bifunctional electrocatalysts for large-scale water-splitting technology and expects to help contribute to the creation of various hybrid electrocatalysts.
Collapse
Affiliation(s)
- Yingyan Ma
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Yuan Ha
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Liangqiang Chen
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Ziqi An
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Linzhuang Xing
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Zhenni Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| | - Zhimin Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, Xi'an, 710071, China
| |
Collapse
|
10
|
Xu N, Lv JY, Sun HY, Tian XJ, Yu WL, Li X, Liu CY, Chai YM, Dong B. Ultrasmall Ru nanoparticles-decorated nickel/nickel oxide three phase heterojunctions to boost alkaline hydrogen evolution. J Colloid Interface Sci 2024; 664:704-715. [PMID: 38492371 DOI: 10.1016/j.jcis.2024.02.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
The rational design and optimization of heterogeneous interface for low loading noble metal HER eletrocatalysts to facilitate the upscaling of alkaline water/seawater electrolysis is highly challenging. Herein, we present a facile deep corrosion strategy induced by NaBH4 to precisely construct an ultrasmall Ru nanoparticle-decorated Ni/NiO hybrid (r-Ru-Ni/NiO) with highly dispersed triple-phase heterostructures. Remarkably, it exhibits superior activity with only 53 mV and 70 mV at 100 mA cm-2 for hydrogen evolution reaction (HER) in alkaline water and seawater, respectively, surpassing the performance of Pt/C (109.7 mV, 100 mA cm-2, 1 M KOH). It is attributed to collaborative optimization of electroactive interfaces between well-distributed ultrasmall Ru nanoparticles and Ni/NiO hybrid. Moreover, the assembled r-Ru-Ni/NiO system just require 2.03 V at 1000 mA cm-2 in anion exchange membrane (AEM) electrolyzer, outperforming a RuO2/NF || Pt/C system, while exhibiting outstanding stability at high current densities. This study offers a logical design for accurate construction of interfacial engineering, showing promise for large-scale hydrogen production via electrochemical water splitting.
Collapse
Affiliation(s)
- Na Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jing-Yi Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hai-Yi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin-Jie Tian
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wen-Li Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chun-Ying Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
11
|
Zhao H, Wang J. Supported nano-sized precious metal catalysts for oxidation of catalytic volatile organic compounds. Phys Chem Chem Phys 2024; 26:15804-15817. [PMID: 38775810 DOI: 10.1039/d3cp05812c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants, which can induce acute or chronic health hazards to the human physiological system. The catalytic oxidation method is widely considered as one of the effective methods for removing VOCs, and the development of highly effective catalysts is highly urgent for booming this interesting field. This review focuses on the recent progress of VOC oxidation catalyzed by supported nano-sized precious metal catalysts, and discusses the effects of metal composition, supports, size, and morphology on the catalytic activity. In addition, the roles played by both nano-sized precious metals and supports in enhancing the performance of catalytic VOCs are also systematically discussed, which will guide the further development of more advanced VOC catalysts.
Collapse
Affiliation(s)
- Hui Zhao
- Capital Construction Office, Changzhou University, Changzhou 213164, China
| | - Jipeng Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
12
|
Xu Z, Fan M, Tan S, Wang R, Tu W, Huang X, Pan H, Zhang H, Tang H. Electronic structure optimizing of Ru nanoclusters via Co single atom and N, S co-doped reduced graphene oxide for accelerating water electrolysis. J Colloid Interface Sci 2024; 657:870-879. [PMID: 38091910 DOI: 10.1016/j.jcis.2023.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024]
Abstract
The development of efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is impending for the advancement of water-splitting. In this study, we developed a novel electrocatalyst consisting of highly dispersed Ru nanoclusters ameliorated by cobalt single atoms and N, S co-doped reduced graphene oxide (CoSARuNC@NSG). Benefitted from the optimized electronic structure of the Ru nanoclusters induced by the adjacent single atomic Co and N, S co-doped RGO support, the electrocatalyst exhibits exceptional HER performance with overpotentials of 15 mV and 74 mV for achieving a current density of 10 mA cm-2 in alkaline and acidic water. The catalyst outperforms most noble metal-based HER electrocatalysts. Furthermore, the electrolyzer assembled with CoSARuNC@NSG and RuO2 demonstrated an overall voltage of 1.56 V at 10 mA cm-2 and an excellent operational stability for over 25 h with almost no attenuation. Theoretical calculations also deduce its high HER activity demonstrated by the smaller reaction energy barrier due to the optimized electronic structure of Ru nanoclusters. This strategy involving the regulation of metal nanoparticles activity through flexible single atom and GO support could provide valuable insights into the design of high-performance and low-cost HER catalysts.
Collapse
Affiliation(s)
- Ziyi Xu
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Meiling Fan
- Xiangyang Polytechnic, Xiangyang 441050, China
| | - Shifeng Tan
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| | - Rui Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenmao Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiege Huang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
| | - Hongfei Pan
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haining Zhang
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haolin Tang
- National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
13
|
Chen H, Ding R, Liu BW, Zeng FR, Zhao HB. Electrocatalytic Coenhancement of Bimetallic Polyphthalocyanine-Anchored Ru Nanoclusters Enabling Efficient Overall Water Splitting at Ampere-Level Current Densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306274. [PMID: 37759380 DOI: 10.1002/smll.202306274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Efficient electrocatalysts capable of operating continuously at industrial ampere-level current densities are crucial for large-scale applications of electrocatalytic water decomposition for hydrogen production. However, long-term industrial overall water splitting using a single electrocatalyst remains a major challenge. Here, bimetallic polyphthalocyanine (FeCoPPc)-anchored Ru nanoclusters, an innovative electrocatalyst comprising the hydrogen evolution reaction (HER) active Ru and the oxygen evolution reaction (OER) active FeCoPPc, engineered for efficient overall water splitting are demonstrated. By density functional theory calculations and systematic experiments, the electrocatalytic coenhancement effect resulting from unique charge redistribution, which synergistically boosts the HER activity of Ru and the OER activity of FeCoPPc by optimizing the adsorption energy of intermediates, is unveiled. As a result, even at a large current density of 2.0 A cm-2 , the catalyst exhibits low overpotentials of 220 and 308 mV, respectively, for HER and OER. It exhibits excellent stability, requiring only 1.88 V of cell voltage to achieve a current density of 2.0 A cm-2 in a 6.0 m KOH electrolyte at 70 °C, with a remarkable operational stability of over 100 h. This work provides a new electrocatalytic coenhancement strategy for the design and synthesis of electrocatalyst, paving the way for industrial-scale overall water splitting applications.
Collapse
Affiliation(s)
- Hao Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University., No. 24, South Section 1, Yihuan Road, Chengdu, Sichuan, 610064, China
| | - Rong Ding
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University., No. 24, South Section 1, Yihuan Road, Chengdu, Sichuan, 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University., No. 24, South Section 1, Yihuan Road, Chengdu, Sichuan, 610064, China
| | - Fu-Rong Zeng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University., No. 24, South Section 1, Yihuan Road, Chengdu, Sichuan, 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University., No. 24, South Section 1, Yihuan Road, Chengdu, Sichuan, 610064, China
| |
Collapse
|
14
|
Shen S, Zhang H, Song K, Wang Z, Shang T, Gao A, Zhang Q, Gu L, Zhong W. Multi-d Electron Synergy in LaNi 1-x Co x Ru Intermetallics Boosts Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202315340. [PMID: 37985934 DOI: 10.1002/anie.202315340] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Despite the fact that d-band center theory links the d electron structure of transition metals to their catalytic activity, it is yet unknown how the synergistic effect of multi-d electrons impacts catalytic performance. Herein, novel LaNi1-x Cox Ru intermetallics containing 5d, 4d, and 3d electrons were prepared. In these compounds, the 5d orbital of La transfers electrons to the 4d orbital of Ru, which provides adsorption sites for H*. The 3d orbitals of Ni and Co interact with the 5d and 4d orbitals to generate an anisotropic electron distribution, which facilitates the adsorption and desorption of OH*. The synergistic effect of multi-d electrons ensures efficient catalytic activity. The optimized LaNi0.5 Co0.5 Ru has an overpotential of 43mV at 10 mA cm-2 for alkaline electrocatalytic hydrogen evolution reaction. Beyond offering a variety of new electrocatalysts, this work reveals the multi-d electron synergy in promoting catalytic reaction.
Collapse
Affiliation(s)
- Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Huanhuan Zhang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Kai Song
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Tongtong Shang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ang Gao
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academy of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, 100190, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
15
|
Feng W, Zhang W, Lin Q, Zhang H, Qiao J, Xia L, Moloto N, He W, Sun Z. Metal–support interactions of 2D carbon-based heterogeneous catalysts for the hydrogen evolution reaction. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:18866-18878. [DOI: 10.1039/d4ta02079k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The synthesis, modulation and effect of MSI on 2D carbon-based heterogeneous catalysts for the HER.
Collapse
Affiliation(s)
- Weihang Feng
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Quanying Lin
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Heshuang Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jingyuan Qiao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Linhong Xia
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhengming Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| |
Collapse
|
16
|
Cheng W, Yang H, Wang T, He X, Tian L, Li Z. Heteroatom Doping Promoting CoP for Driving Water Splitting. CHEM REC 2024; 24:e202300088. [PMID: 37098879 DOI: 10.1002/tcr.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Indexed: 04/27/2023]
Abstract
CoP nanomaterials have been extensively regarded as one of the most promising electrocatalysts for overall water splitting due to their unique bifunctionality. Although the great promise for future applications, some important issues should also be addressed. Heteroatom doping has been widely acknowledged as a potential strategy for improving the electrocatalytic performance of CoP and narrowing the gap between experimental study and industrial applications. Recent years have witnessed the rapid development of heteroatom-doped CoP electrocatalysts for water splitting. Aiming to provide guidance for the future development of more effective CoP-based electrocatalysts, we herein organize a comprehensive review of this interesting field, with the special focus on the effects of heteroatom doping on the catalytic performance of CoP. Additionally, many heteroatom-doped CoP electrocatalysts for water splitting are also discussed, and the structure-activity relationship is also manifested. Finally, a systematic conclusion and outlook is well organized to provide direction for the future development of this interesting field.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Tingjian Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|
17
|
Chen S, Liu W, Mei Z, Li H, Zhao W, Zhao J, Tao H. The synthesis of copper-modified biochar from Elsholtzia Harchowensis and its electrochemical activity towards the reduction of carbon dioxide. Front Chem 2023; 11:1238424. [PMID: 37711316 PMCID: PMC10499400 DOI: 10.3389/fchem.2023.1238424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Phytoremediation techniques have been widely used in the treatment of heavy metal contaminated soils in recent years, but there is no effective post-treatment method for plant tissues containing heavy metals after remediation. Elsholtzia Harchowensis is a copper hyperaccumulator, commonly distributed in copper mining areas and often used for soil remediation of mine tailings. Moreover, copper-based catalysts are widely used in electrocatalytic reduction of carbon dioxide, which aims to convert carbon dioxide into useful fuels or chemicals. In this study, copper-modified biochar was prepared from Elsholtzia Harchowensis. Its specific surface area can reach as high as 1202.9 m2/g, with a certain porous structure and even distribution of copper on the amorphous carbon. Various products (such as carbon monoxide, methane, ethanol, and formic acid) could be obtained from the electrolytic reduction of carbon dioxide by using the as-prepared catalyst. Instantaneous current density of up to 15.3 mA/cm2 were achieved in 1.0 M KHCO3 solution at a potential of -0.82 V (vs. RHE). Electrolysis at a potential of -0.32 V (vs. RHE) for 8 h resulted in a stable current of about 0.25 mA/cm2, and the Faraday efficiency (FE) of carbon monoxide can reach as high as 74.6%. In addition, electrolysis at a potential of -0.52 V (vs. RHE) for 8 h led to a stable current of about 2.2 mA/cm2 and a FE of 8.7% for the C2 product. The rich variety of elements in plants leads to catalysts with complex structural and elemental characteristics as well, which facilitates the electrolytic reduction of carbon dioxide with a variety of useful products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Tao
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Gao L, Zhong X, Chen J, Zhang Y, Liu J, Zhang B. Optimizing the electronic structure of Fe-doped Co3O4 supported Ru catalyst via metal-support interaction boosting oxygen evolution reaction and hydrogen evolution reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Munirathinam B, Lerch L, Hüne D, Lentz L, Lenk T, Görke M, Garnweitner G, Schlüter N, Kubannek F, Schröder D, Gimpel T. Enhanced Performance of Laser‐Structured Copper Electrodes Towards Electrocatalytic Hydrogenation of Furfural. ChemElectroChem 2022. [DOI: 10.1002/celc.202200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Balakrishnan Munirathinam
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Lukas Lerch
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Dorian Hüne
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| | - Lukas Lentz
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| | - Thorben Lenk
- Institut für Ökologische und Nachhaltige Chemie (IÖNC) Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Marion Görke
- Institute for Particle Technology (iPAT) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
- Battery Lab Factory Braunschweig (BLB) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Nicolas Schlüter
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Fabian Kubannek
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
| | - Daniel Schröder
- Institute of Energy and Process Systems Engineering (InES) Technische Universität Braunschweig Langer Kamp 19B 38106 Braunschweig Germany
- Battery Lab Factory Braunschweig (BLB) Technische Universität Braunschweig Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Thomas Gimpel
- Research Center Energy Storage Technologies (EST) Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany
| |
Collapse
|
20
|
Jiang J, Xie K, Liu Y, Sun H, Yang W, Yang H. Hydrogen Production Technology Promotes the Analysis and Prospect of the Hydrogen Fuel Cell Vehicles Development under the Background of Carbon Peak and Carbon Neutrality in China. ACS OMEGA 2022; 7:40625-40637. [PMID: 36406550 PMCID: PMC9670702 DOI: 10.1021/acsomega.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen fuel cell vehicles have always been regarded as the main direction for developing new energy vehicles in the future due to their advantages of zero emission, high cruising range, and strong environmental adaptability. Currently, although the related technologies have gradually matured, there are still many factors hindering its development. One of the main reasons is that the price of hydrogen fuel increases the cost of using vehicles, which puts it at a competitive disadvantage compared with traditional fuel vehicles and pure electric vehicles. Herein, we summarize the recent development status of hydrogen fuel cell vehicles at home and abroad, and analyze the cost and sustainability brought by the latest scientific research progress to the hydrogen production industry, which is derived from basic research on electrocatalysts used in industrial electrocatalytic water splitting with an alkaline electrolyte. Finally, the development of hydrogen fuel cell vehicles was analyzed and prospected, which is one of the main application fields of hydrogen in the future.
Collapse
Affiliation(s)
- Jianhua Jiang
- School
of Economics and Management, Changchun University
of Technology, Changchun130012, Jilin, China
| | - Kun Xie
- School
of Economics and Management, Changchun University
of Technology, Changchun130012, Jilin, China
| | - Yuhua Liu
- School
of Materials Science and Engineering, Jilin
University, Changchun130012, Jilin, China
| | - Hao Sun
- School
of Economics and Management, Changchun University
of Technology, Changchun130012, Jilin, China
| | - Weikang Yang
- School
of Economics and Management, Changchun University
of Technology, Changchun130012, Jilin, China
| | - Haoming Yang
- School
of Economics and Management, Changchun University
of Technology, Changchun130012, Jilin, China
| |
Collapse
|
21
|
Rajkumar C, Kim H. Interface engineering of ruthenium-supported sulfur-doped graphitic carbon nitride for ultrasensitive electrochemical determination of riboflavin. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Guo Y, Wu D, Li M, Wang K, Zhang S, He G, Yin H, Huang C, Yang B, Zhang J. Coordination Engineering of Ultra‐Uniform Ruthenium Nanoclusters as Efficient Multifunctional Catalysts for Zinc–Air Batteries. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yingying Guo
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Donghai Wu
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Minhan Li
- College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kaixi Wang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Guangli He
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Hengbo Yin
- College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Chenyu Huang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P. R. China
| | - Jianan Zhang
- College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
23
|
Chen S, Li X, Kao C, Luo T, Chen K, Fu J, Ma C, Li H, Li M, Chan T, Liu M. Unveiling the Proton‐Feeding Effect in Sulfur‐Doped Fe−N−C Single‐Atom Catalyst for Enhanced CO
2
Electroreduction. Angew Chem Int Ed Engl 2022; 61:e202206233. [DOI: 10.1002/anie.202206233] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University Changsha 410083 China
- Guangdong Key Laboratory of Environmental Pollution and Health School of Environment Jinan University Guangzhou 511443 China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University Changsha 410083 China
| | - Cheng‐Wei Kao
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University Changsha 410083 China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University Changsha 410083 China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University Changsha 410083 China
| | - Chao Ma
- School of Materials Science and Engineering Hunan University Changsha 410082 China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University Changsha 410083 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Ming Li
- College of Science & Ministry-province jointly-constructed Cultivation Base for State Key Laboratory of Processing for Mom-ferrous Metal and Featured Materials & Key Lab. of Nonferrous Materials and New Processing Technology Guilin University of Technology Guilin 541004 China
| | - Ting‐Shan Chan
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization State Key Laboratory of Powder Metallurgy School of Physical and Electronics Central South University Changsha 410083 China
| |
Collapse
|
24
|
Ma J, Wang J, Liu J, Li X, Sun Y, Li R. Electron-rich ruthenium encapsulated in nitrogen-doped carbon for efficient hydrogen evolution reaction over the whole pH. J Colloid Interface Sci 2022; 620:242-252. [DOI: 10.1016/j.jcis.2022.03.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
|
25
|
Chen Z, Zeng X, Wang S, Cheng A, Zhang Y. Advanced Carbon-Based Nanocatalysts and their Application in Catalytic Conversion of Renewable Platform Molecules. CHEMSUSCHEM 2022; 15:e202200411. [PMID: 35366059 DOI: 10.1002/cssc.202200411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The transformation of renewable platform molecules to produce value-added fuels and fine-chemicals is a promising strategy to sustainably meet future demands. Owing to their finely modified electronic and geometric properties, carbon-based nanocatalysts have shown great capability to regulate their catalytic activity and stability. Their well-defined and uniform structures also provide both the opportunity to explore intrinsic reaction mechanisms and the site-requirement for valorization of renewable platform molecules to advanced fuels and chemicals. This Review highlights the progress achieved in carbon-based nanocatalysts, mainly by using effective regulation approaches such as heteroatom anchoring, bimetallic synergistic effects, and carbon encapsulation to enhance catalyst performance and stability, and their applications in renewable platform molecule transformations. The foundation for understanding the structure-performance relationship of carbon-based catalysts has been established by investigating the effect of these regulation methods on catalyst performance. Finally, the opportunities, challenges and potential applications of carbon-based nanocatalysts are discussed.
Collapse
Affiliation(s)
- Zemin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiang Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenyu Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Aohua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ying Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
26
|
Chen S, Li X, Kao CW, Luo T, Chen K, Fu J, Ma C, Li H, Li M, Chan TS, Liu M. Unveiling Proton‐feeding Effect in Sulfur‐doped Fe‐N‐C Single‐Atom Catalyst for Enhanced CO2 Electroreduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shanyong Chen
- Central South University School of Physical and Electronics 410083 Changsha CHINA
| | - Xiaoqing Li
- Central South University School of Physical and Electronics 410083 Changsha CHINA
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center National Synchrotron Radiation Research Center 30076 Taiwan TAIWAN
| | - Tao Luo
- Central South University School of Physical and Electronics 410083 Changsha CHINA
| | - Kejun Chen
- Central South University School of Physical and Electronics 410083 Changsha CHINA
| | - Junwei Fu
- Central South University School of Physical and Electronics 410083 Changsha CHINA
| | - Chao Ma
- Hunan University School of Materials Science and Engineering 410082 Changsha CHINA
| | - Hongmei Li
- Zhengzhou University School of Materials Science and Engineering 450001 Zhengzhou CHINA
| | - Ming Li
- Guilin University of Technology College of Science 541004 Guilin CHINA
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center National Synchrotron Radiation Research Center 30076 Taiwan TAIWAN
| | - Min Liu
- Central South University School of Physics and Electronics 932 Lushan Nan Road 410081 Changsha CHINA
| |
Collapse
|
27
|
Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. NANOMATERIALS 2022; 12:nano12111806. [PMID: 35683662 PMCID: PMC9182338 DOI: 10.3390/nano12111806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
Hydrogen is regarded as a key renewable energy source to meet future energy demands. Moreover, graphene and its derivatives have many advantages, including high electronic conductivity, controllable morphology, and eco-friendliness, etc., which show great promise for electrocatalytic splitting of water to produce hydrogen. This review article highlights recent advances in the synthesis and the applications of graphene-based supported electrocatalysts in hydrogen evolution reaction (HER). Herein, powder-based and self-supporting three-dimensional (3D) electrocatalysts with doped or undoped heteroatom graphene are highlighted. Quantum dot catalysts such as carbon quantum dots, graphene quantum dots, and fullerenes are also included. Different strategies to tune and improve the structural properties and performance of HER electrocatalysts by defect engineering through synthetic approaches are discussed. The relationship between each graphene-based HER electrocatalyst is highlighted. Apart from HER electrocatalysis, the latest advances in water electrolysis by bifunctional oxygen evolution reaction (OER) and HER performed by multi-doped graphene-based electrocatalysts are also considered. This comprehensive review identifies rational strategies to direct the design and synthesis of high-performance graphene-based electrocatalysts for green and sustainable applications.
Collapse
|
28
|
Polydopamine Decorated Ru-Ni(OH)2 Nanosheets for Enhanced Performance of Hydrogen Evolution in Alkaline Media. Catal Letters 2022. [DOI: 10.1007/s10562-022-04036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63945-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Boron-induced activation of Ru nanoparticles anchored on carbon nanotubes for the enhanced pH-independent hydrogen evolution reaction. J Colloid Interface Sci 2022; 616:338-346. [PMID: 35219199 DOI: 10.1016/j.jcis.2022.02.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/29/2022]
Abstract
As a promising dopant, electron deficient B atom not only tunes the electronic structure of electrocatalysts for improving their intrinsic catalytic activities, but also combines with hydroxy radical as strong adsorption sites for accelerating the water dissociation during the hydrogen evolution reaction (HER). In this paper, we report an electrocatalyst based on boron-modified Ru anchored on carbon nanotubes (B-Ru@CNT) that shows impressive HER activity in acidic and alkaline media. The boron-rich closo-[B12H12]2- borane was selected as a moderately strong reductant for the in situ reduction of a Ru salt, which yielded B-doped Ru nanoparticles. The experimental and theoretical results indicate that the incorporation of B not only weakens the Ru-H bond and downshifts the d-bond centre of Ru from the Fermi level by reducing the electron density at Ru but also accelerates the water dissociation reaction by providing B sites, which strongly adsorb OH* intermediates, and nearby Ru sites, which act as sites for the adsorption of the H* intermediate, thus boosting the HER performance and enhancing the HER kinetics. As a result of the tuning of the electronic structure via B doping, B-Ru@CNT showed excellent HER performance, yielding overpotentials of 17 and 62 mV at a current density of 10 mA cm-2 in alkaline and acidic solutions, respectively. These results indicate that our synthetic method is a promising route to B-doped metallic Ru with enhanced pH-independent HER performance.
Collapse
|
31
|
Jiang Y, Qin Y, Luo W, Liu H, Shen W, Jiang Y, Li M, He R. Highly Efficient Oxygen‐Modulated Ru‐Based HER Electrocatalyst in a Wide pH Range. ChemElectroChem 2022. [DOI: 10.1002/celc.202101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Youcheng Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Wei Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Hao Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| |
Collapse
|
32
|
Gao X, Li B, Sun X, Wu B, Hu Y, Ning Z, Li J, Wang N. Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Wang Y, Luo W, Li H, Cheng C. Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction. NANOSCALE ADVANCES 2021; 3:5068-5074. [PMID: 36132347 PMCID: PMC9419886 DOI: 10.1039/d1na00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 05/15/2023]
Abstract
The construction of highly-active and stable electrocatalysts for the hydrogen evolution reaction (HER) is significant for efficient water splitting processes. Herein, we develop an efficient HER catalyst of ultrafine Ru nanoclusters supported on a N/S doped macroporous hollow carbon sphere (Ru/H-S,N-C). The N/S co-doping strategy not only facilitates the reduction of the Ru nanocluster sizes, but also regulates the electronic structure of metallic Ru, improving the HER activity of the metallic Ru catalyst. Due to the structural advantages of N/S-doped macroporous carbon spheres that provide a fast mass transfer process and the high intrinsic activity of Ru nanoclusters, the optimized Ru/H-S,N-C catalyst exhibits excellent HER performance in alkaline medium, with a low overpotential of 32 mV to reach 10 mA cm-2, fast HER kinetics (a Tafel slope of 24 mV dec-1) and excellent durability, superior to the performances of the Ru/H-N-C sample and commercial Pt/C catalyst. Our work offers some guidance on the design of efficient Ru-based electrocatalysts.
Collapse
Affiliation(s)
- Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Wenjie Luo
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Haojie Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| |
Collapse
|
34
|
Yang Y, Yu Y, Li J, Chen Q, Du Y, Rao P, Li R, Jia C, Kang Z, Deng P, Shen Y, Tian X. Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2021; 13:160. [PMID: 34302536 PMCID: PMC8310550 DOI: 10.1007/s40820-021-00679-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
The investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.
Collapse
Affiliation(s)
- Yingjie Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Yanhui Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.
| | - Qingrong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Yanlian Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Peng Rao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Ruisong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Chunman Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Zhenye Kang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
35
|
Fei Z, Wang Z, Li D, Xue F, Cheng C, Liu Q, Chen X, Cui M, Qiao X. Silica-confined Ru highly dispersed on ZrO 2 with enhanced activity and thermal stability in dichloroethane combustion. NANOSCALE 2021; 13:10765-10770. [PMID: 34109329 DOI: 10.1039/d1nr01538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient strategy (spontaneous deposition to enhance noble metal dispersity and core-shell confinement to inhibit noble metal sintering) is presented to synthesize highly active and thermally stable Ru/ZrO2@SiO2 catalysts for dichloroethane combustion.
Collapse
Affiliation(s)
- Zhaoyang Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Zhicheng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Dunfei Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Fan Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Chao Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Qing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Xian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
36
|
Bharath G, Banat F. High-Grade Biofuel Synthesis from Paired Electrohydrogenation and Electrooxidation of Furfural Using Symmetric Ru/Reduced Graphene Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24643-24653. [PMID: 34008951 PMCID: PMC8289174 DOI: 10.1021/acsami.1c02231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical hydrogenation is a challenging technoeconomic process for sustainable liquid fuel production from biomass-derived compounds. In general, half-cell hydrogenation is paired with water oxidation to generate the low economic value of O2 at the anode. Herein, a new strategy for the rational design of Ru/reduced graphene oxide (Ru/RGO) nanocomposites through a cost-effective and straightforward microwave irradiation technique is reported for the first time. The Ru nanoparticles with an average size of 3.5 nm are well anchored into the RGO frameworks with attractive nanostructures to enhance the furfural's paired electrohydrogenation (ECH) and electrooxidation (ECO) process to achieve high-grade biofuel. Furfural is used as a reactant with the paired electrolyzer to produce furfuryl alcohol and 2-methylfuran at the cathode side. Simultaneously, 2-furic acid and 5-hydroxyfuroic acid along with plenty of H+ and e- are generated at the anode side. Most impressively, the paired electrolyzer induces an extraordinary ECH and ECO of furfural, with the desired production of 2-methylfuran (yield = 91% and faradic efficiency (FE) of 95%) at XFF = 97%, outperforming the ECH half-cell reaction. The mechanisms of the half-cell reaction and paired cell reaction are discussed. Exquisite control of the reaction parameters, optimized strategies, and the yield of individual products are demonstrated. These results show that the Ru/RuO nanocomposite is a potential candidate for biofuel production in industrial sectors.
Collapse
|
37
|
Cao K, Sun H, Xue Q, Ding Y, Wang T, Li F, Xu G, Chen P, Yang Y, Chen Y. Functionalized Ultrafine Rhodium Nanoparticles on Graphene Aerogels for the Hydrogen Evolution Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai‐Wen Cao
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| | - Hui‐Ying Sun
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| | - Qi Xue
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| | - Yu Ding
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| | - Tian‐Jiao Wang
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| | - Fu‐Min Li
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| | - Guang‐Rui Xu
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
- School of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 PR China
| | - Pei Chen
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory Wenzhou University Wenzhou 325035 PR China
| | - Yu Chen
- School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 PR China
| |
Collapse
|
38
|
He F, Xia N, Zheng Y, Zhang Y, Fan H, Ma D, Liu Q, Hu X. In Situ Electrochemical Fabrication of Ultrasmall Ru-Based Nanoparticles for Robust N 2H 4 Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8488-8496. [PMID: 33576236 DOI: 10.1021/acsami.0c22700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasmall Ru nanoparticles is expected as a potential alternative to Pt for efficient hydrazine oxidation (HzOR). However, preparation of ultrasmall and well-distributed Ru nanoparticles usually suffered from the steps of modification of supports, coordination, reduction with strong reducing reagents (e.g., NaBH4) or pyrolysis, imposing the complexity. Based on the self-reducibility of C-OH group and physical adsorption ability of commercial Ketjen black (KB), we developed an efficient, stable and robust Ru-based electrocatalyst (A-Ru-KB) by coupling impregnation of KB in RuCl3 solution and simple in situ electrochemical activation strategy, which endowed the formation of ultrasmall and well-distributed Ru nanoparticles. Benefiting from an enhanced exposure of Ru sites and the faster mass transport, A-Ru-KB achieved 63.4 and 3.9-fold enhancements of mass activity compared with Pt/C and Ru/C, respectively, accompanied by a ∼144 mV lower onset potential and faster catalytic kinetics than Pt/C. In the hydrazine fuel cell, the open-circuit voltage and maximal mass power density of A-Ru-KB was 130 mV and ∼3.8-fold higher than those of Pt/C, respectively, together with the long-term stability. This work would provide a facile and sustainable approach for large-scale production of other robust metal (electro)catalysts with ultrasmall nanosize for various energy conversion and electrochemical organic synthesis.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Nannan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yan Zheng
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Yixin Zhang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Huailin Fan
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Delong Ma
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Qianhe Liu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
39
|
Li Y, Guo Y, Yang S, Li Q, Chen S, Lu B, Zou H, Liu X, Tong X, Yang H. Mesoporous RhRu Nanosponges with Enhanced Water Dissociation toward Efficient Alkaline Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5052-5060. [PMID: 33480250 DOI: 10.1021/acsami.0c19571] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lowering the energy barrier of water dissociation is critical to achieving highly efficient hydrogen evolution in alkaline conditions. Herein, we reported mesoporous RhRu nanosponges with enhanced water dissociation behavior as a new class of high-performance electrocatalysts for alkaline hydrogen evolution reaction (HER). The obtained nanosponges have a binary alloy structure (fcc) and a highly porous structure with high surface area. Our RhRu catalyst displayed an outstanding HER activity with an overpotential of 25 mV at 10 mA cm-2 and a Tafel slope of 47.5 mV dec-1 in 1.0 M KOH, which significantly outperformed that of commercial Pt/C catalyst and was even comparable to the classic Pt/metal (hydro)oxide catalysts. Density functional theory (DFT) calculations disclosed that charge redistribution on the RhRu alloy surface enabled tuning of the Ru d-band center and then promoted the adsorption and dissociation of water molecules. Based on the experimental results and theoretical modeling, a bifunctional mechanism contributed to the remarkable alkaline HER activity on the RhRu catalyst surface.
Collapse
Affiliation(s)
- Yuan Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yan Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sufang Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qibiao Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Baoying Lu
- Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xili Tong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|