1
|
Zhang DY, Wang MX, Cai C, Cheng WW, Cheng YJ, Liu WL, Huang R, Zhang AQ, Qin SY. Bacterial membrane-anchored lipopeptide/MXene nanoplatform for tri-modal therapy toward bacteria-infected diabetic wound. BIOMATERIALS ADVANCES 2025; 175:214324. [PMID: 40373534 DOI: 10.1016/j.bioadv.2025.214324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025]
Abstract
Diabetic wound healing is extremely difficult, originating from the aspects of bacterial infection, continuous inflammation, hypoxia and excessive reactive oxygen species (ROS), etc. Consequently, multifunctional nanoplatforms capable of highly eliminating bacteria, scavenging ROS and promoting angiogenesis possess a promising prospect. This work reports our fabrication of lipopeptide/Ti3C2Tx MXene nanohybrid to cure bacteria-infected diabetic wounds. Ti3C2Tx nanosheet has been employed to disrupt the bacterial membrane through both the physical puncture mediated by direct contact and mild-temperature photothermal therapy (PTT) due to its excellent photothermal conversion efficiency. Moreover, it exhibits the capacities of ROS scavenging and pro-angiogenesis during the diabetic wound healing process. Positively charged lipopeptide integration on 2D Ti3C2Tx MXene improves the contact of Ti3C2Tx nanosheet with negative bacterial membrane for membrane-anchoring. More importantly, drug-free lipopeptide shows antibacterial capacity, which compensates the decline in therapeutic efficacy of mild-temperature PTT because of its inferior heat intensity. The cooperation between 2D Ti3C2Tx MXene and therapeutic lipopeptide allows for the effective cure on bacteria-infected diabetic wound.
Collapse
Affiliation(s)
- Ding-Yi Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Meng-Xi Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Chuang Cai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wei-Wei Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Yin-Jia Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Wen-Long Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Rong Huang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Ai-Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China; Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Guan J, Wang X, Tian Z, Jia F, Wang J, Xie L, Lan J, Han P, Lin H, Huang X, Li M, Huang Y. Controlled-release of cinnamaldehyde from MXene/ZIF8/gelatin composite coatings: An integrated strategy to combat implant-associated infection. Colloids Surf B Biointerfaces 2025; 251:114615. [PMID: 40086209 DOI: 10.1016/j.colsurfb.2025.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Infections and chronic inflammation surrounding titanium implants frequently impair angiogenesis and osseointegration, substantially heightening the risk of implant failure. In this study, titanium dioxide nanotube arrays (TN) were fabricated on titanium metal substrates to serve as reservoirs for cinnamaldehyde (CA). Subsequently, MXene and ZIF-8 were deposited onto the TN surface to seal the nanotube pores. Finally, the gelatin methacrylate (GelMA) hydrogel system was utilized as a nanoparticle-controlled release platform to construct the Gel@MX-ZIF8/CA functional integrated coating. The results demonstrated that the Gel@MX-ZIF8/CA coating exhibited optimized roughness, improved hydrophilicity, and superior bioactivity. Furthermore, the Gel@MX-ZIF8/CA coating exhibited robust antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). At the cellular and molecular levels, Gel@MX-ZIF8/CA modulated mouse macrophage cells (RAW264.7) polarization toward the M2 phenotype, enhanced human umbilical vein endothelial cell (HUVEC) angiogenesis, and facilitated the osteogenic differentiation of mouse embryo osteoblast precursor cell (MC3T3-E1). In vivo studies using a rat bone defect model highlighted the coating's strong anti-inflammatory, antibacterial, angiogenic, and osteogenic capabilities of Gel@MX-ZIF8/CA. Additionally, Gel@MX-ZIF8/CA exhibited excellent blood compatibility and biosafety. In conclusion, the Gel@MX-ZIF8/CA coating integrated multiple advantages, offering significant potential in addressing orthopedic implant-associated infections and bone defects.
Collapse
Affiliation(s)
- Jiaxin Guan
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Xiaofeng Wang
- Department of Medical Aesthetics, Zhangjiakou No. 4 Hospital, Zhangjiakou 075000, China
| | - Zitong Tian
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Fengzhen Jia
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Jiali Wang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jinping Lan
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Pengde Han
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China.
| | - Meiyu Li
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
3
|
Alagarsamy KN, Saleth LR, Sekaran S, Fusco L, Delogu LG, Pogorielov M, Yilmazer A, Dhingra S. MXenes as emerging materials to repair electroactive tissues and organs. Bioact Mater 2025; 48:583-608. [PMID: 40123746 PMCID: PMC11926619 DOI: 10.1016/j.bioactmat.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Nanomaterials with electroactive properties have taken a big leap for tissue repair and regeneration due to their unique physiochemical properties and biocompatibility. MXenes, an emerging class of electroactive materials have generated considerable interest for their biomedical applications from bench to bedside. Recently, the application of these two-dimensional wonder materials have been extensively investigated in the areas of biosensors, bioimaging and repair of electroactive organs, owing to their outstanding electromechanical properties, photothermal capabilities, hydrophilicity, and flexibility. The currently available data reports that there is significant potential to employ MXene nanomaterials for repair, regeneration and functioning of electroactive tissues and organs such as brain, spinal cord, heart, bone, skeletal muscle and skin. The current review is the first report that compiles the most recent advances in the application of MXenes in bioelectronics and the development of biomimetic scaffolds for repair, regeneration and functioning of electroactive tissues and organs including heart, nervous system, skin, bone and skeletal muscle. The content in this article focuses on unique features of MXenes, synthesis process, with emphasis on MXene-based electroactive tissue engineering constructs, biosensors and wearable biointerfaces. Additionally, a section on the future of MXenes is presented with a focus on the clinical applications of MXenes.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Laura Fusco
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Gemma Delogu
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy, 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga, LV-1004, Latvia
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| |
Collapse
|
4
|
Ma H, Su X, Liang J, Liu L, Sun J, Tong J, Lu J, Zhang Y, Lei B, Zhao H. Bioactive protein/polysaccharide hydrogel functionalized bone implants surface for enhanced osteogenesis. Int J Biol Macromol 2025:144626. [PMID: 40419044 DOI: 10.1016/j.ijbiomac.2025.144626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/06/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
Bone implants play a critical role in the treatment of orthopedic diseases, however, conventional polymer or ceramic or metal implants possess various problems in enhancing bone repair and osteointegration. Recent years, the bioactive bone implants with biomimetic mechanical surface with natural extracellular matrix has shown promising role in reinforcing bone integration and regeneration. Biomedical hydrogels coating strategy has attracted much attention in bone implants modification, due to their adjustable surface biomechanics, bioactivities and drug release ability. Based on the principles of mechanical compatibility for biodegradable scaffold materials, it facilitates a "soft-hard synergy" in bone repair. This review provides an overview of recent advances in the field of hydrogel modification for bone implants, including the polysaccharide hydrogels (such as chitosan, alginate, and hyaluronic acid) and protein hydrogels (such as gelatin and collagen). Furthermore, this review explores the current understanding of the biomechanical mechanisms underlying bone formation in hydrogel-modified implants within the body, presents the challenges and future directions in this field. This study integrates engineering, developmental biology, and clinical perspectives, offering unique insights for the development of functional strategies for bone implants aimed at enhancing the treatment of orthopedic diseases.
Collapse
Affiliation(s)
- Hongyun Ma
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Xiaochen Su
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingqi Liang
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Liu
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jianbo Sun
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jin Tong
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jun Lu
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
5
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
6
|
Dutta T, Alam P, Mishra SK. MXenes and MXene-based composites for biomedical applications. J Mater Chem B 2025; 13:4279-4312. [PMID: 40079066 DOI: 10.1039/d4tb02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves. However, several challenges, including biocompatibility, functional stability, and scalable synthesis methods, remain critical for advancing their clinical use. This review comprehensively overviews MXenes and MXene-based composites, their synthesis, properties, and broad biomedical applications. Furthermore, it highlights the latest progress, ongoing challenges, and future perspectives, aiming to inspire innovative approaches to harnessing these versatile materials for next-generation medical solutions.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. - 711103, India
| | - Parvej Alam
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels, Spain.
| | - Satyendra Kumar Mishra
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.
| |
Collapse
|
7
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
8
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
9
|
Li X, Tang J, Guo W, Dong X, Cao K, Tang F. Polydopamine Nanocomposite Hydrogel for Drug Slow-Release in Bone Defect Repair: A Review of Research Advances. Gels 2025; 11:190. [PMID: 40136895 PMCID: PMC11942372 DOI: 10.3390/gels11030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
In recent years, hydrogels have emerged as promising candidates for bone defect repair due to their excellent biocompatibility, high porosity, and water-retentive properties. However, conventional hydrogels face significant challenges in clinical translation, including brittleness, low mechanical strength, and poorly controlled drug degradation rates. To address these limitations, as a multifunctional polymer, polydopamine (PDA) has shown great potential in both bone regeneration and drug delivery systems. Its robust adhesive properties, biocompatibility, and responsiveness to photothermal stimulation make it an ideal candidate for enhancing hydrogel performance. Integrating PDA into conventional hydrogels not only improves their mechanical properties but also creates an environment conducive to cell adhesion, proliferation, and differentiation, thereby promoting bone defect repair. Moreover, PDA facilitates controlled drug release, offering a promising approach to optimizing treatment outcomes. This paper first explores the mechanisms through which PDA promotes bone regeneration, laying the foundation for its clinical translation. Additionally, it discusses the application of PDA-based nanocomposite hydrogels as advanced drug delivery systems for bone defect repair, providing valuable insights for both research and clinical translation.
Collapse
Affiliation(s)
- Xiaoman Li
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; (X.L.); (W.G.); (X.D.); (K.C.)
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi 563006, China
| | - Jianhua Tang
- Cancer Research UK Manchester Institute, The University of Manchester, Cheshire SK10 4TG, UK;
| | - Weiwei Guo
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; (X.L.); (W.G.); (X.D.); (K.C.)
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi 563006, China
| | - Xuan Dong
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; (X.L.); (W.G.); (X.D.); (K.C.)
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi 563006, China
| | - Kaisen Cao
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; (X.L.); (W.G.); (X.D.); (K.C.)
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi 563006, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; (X.L.); (W.G.); (X.D.); (K.C.)
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
10
|
Yu F, Zhao X, Zhang S, Lu W, Li P, Yang W, Zhao Z. Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration. Adv Healthc Mater 2025; 14:e2404015. [PMID: 39764719 DOI: 10.1002/adhm.202404015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Indexed: 03/04/2025]
Abstract
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, Ti3C2Tx MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration. Ti3C2Tx MXenes are synthetized, incorporated into beta-tricalcium phosphate ceramics (β-TCP) nanocomposites (T-MXene), and their osteoinductive and immunomodulatory effects are evaluated. The effects of T-MXene-treated T-cells on bone marrow stromal cells (BMSCs) are explored. In addition, its therapeutic potential for bone regeneration is assessed in vivo using a critical-sized mandibular bone defect model. The underlying mechanisms by which T-MXene regulates T-cell differentiation and bone regeneration are explored via whole-transcriptome RNA sequencing. The scaffolds activate N-glycosylation in T cells, which possess anti-inflammatory and antioxidant effects, thereby inducing a pro-regenerative response. T-MXene increased the proportion of IL-4+ T cells among primary T cells and mandibular lymph nodes, ultimately promoting osteogenesis in BMSCs and injured mandibles. The distinctive function of MXene-based nanocomposites in osteoimmunomodulation provides a solid foundation for further exploration and application of MXenes as immune response modulators, potentially advancing their use in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuting Zhang
- College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Wenxin Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peilin Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Yang Q, Chen X, Liu J, He Y. Gelatin-based biomaterials as a delivery strategy for osteosarcoma treatment. Front Pharmacol 2025; 16:1537695. [PMID: 39936088 PMCID: PMC11811086 DOI: 10.3389/fphar.2025.1537695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor. Although surgery and chemoradiotherapy have made some progress in the treatment of osteosarcoma. However, the high recurrence and metastasis rate of osteosarcoma and bone defects caused by surgery are still the main problems faced by osteosarcoma. Gelatin has excellent biocompatibility and biodegradability, and has made phased progress in tumor treatment. In the treatment of osteosarcoma, gelatin-based biomaterials can be used in delivery strategies to enhance the anti-tumor activity of osteosarcoma and can improve the appropriate compressive strength to improve the bone defects faced after surgery. At present, gelatin-based hydrogels, gelatin scaffolds, and gelatin-based nanoparticles have been reported in preclinical studies. In this article, we introduce the application of gelatin-based biomaterials in the treatment of osteosarcoma, and summarize and look forward to them.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xingpeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yeteng He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
12
|
Saroj S, Saha S, Ali A, Gupta SK, Bharadwaj A, Agrawal T, Pal S, Rakshit T. Plant Extracellular Nanovesicle-Loaded Hydrogel for Topical Antibacterial Wound Healing In Vivo. ACS APPLIED BIO MATERIALS 2025; 8:1-11. [PMID: 39377525 DOI: 10.1021/acsabm.4c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Bacterial infections impede wound healing and pose significant challenges in clinical care. There is an immediate need for safe and targeted antivirulence agents to fight bacterial infections effectively. In this regard, bioderived nanovesicles have shown significant promise. This work demonstrated significant antibacterial properties of extracellular nanovesicles derived from plant (mint) leaf juice (MENV). A hydrogel (HG) was developed using oxidized alginate and chitosan and loaded with antibacterial MENVs (MENV-HG). This formulation was investigated for topical HG dressings to treat Gram-positive Micrococcus luteus and Gram-negative Escherichia coli-invasive wounds. The developed HG was injectable, biocompatible (>95% cell was viable), nonhemolytic (<5% hemolytic capacity), self-healing and exhibited strong physical and mechanical interactions with the bacteria cells (MENV-HG-treated bacteria were significantly more elastic compared to the control in both M. luteus (1.01 ± 0.3 MPa, p < 0.005 vs 5.03 ± 2.6) and E. coli (5.81 ± 2.1 MPa vs 10.81 ± 3.8, p < 0.005). MENV-HG was topically applied on wounds with a slow MENV release profile, ensuring effective healing. These in vivo results demonstrated decreased inflammation and expedited healing within 10 days of treatment (wound area closure was 99% with MENV-HG treatment and 87% for control). Taken together, MENV-HGs have the potential for a scalable and sustainable wound dressing strategy that works satisfactorily for bacteria-infected wound healing and to be validated in clinical trials.
Collapse
Affiliation(s)
- Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sunita Saha
- Department of Chemistry, Indian Institute of Technology-Bhilai, Durg, Chhattisgarh 491002, India
| | - Akbar Ali
- Department of Chemistry, Indian Institute of Technology-Bhilai, Durg, Chhattisgarh 491002, India
| | - Sanjay Kumar Gupta
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Durg 490024, India
| | - Aditi Bharadwaj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Tanya Agrawal
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology-Bhilai, Durg, Chhattisgarh 491002, India
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg 491002, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
13
|
Deng Y, Yao H, Zhao J, Wei J. Immunomodulatory and osteogenic effects of chitosan-based injectable hydrogel with geniposide-loaded mesoporous bioactive glass. Int J Biol Macromol 2025; 284:138050. [PMID: 39608523 DOI: 10.1016/j.ijbiomac.2024.138050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
The immune response dominated by macrophages plays a pivotal role in the regeneration of bone tissue. In this work, an injectable temperature-responsive hydrogel composed of geniposide-loaded mesoporous bioactive glass, chitosan and β-glycerophosphate (G-M Gel) was prepared, showing robustly networks, uniform pore structure, excellent biocompatibility, immunomodulatory effect and osteogenic potential. In an inflammatory microenvironment elicited by lipopolysaccharide (LPS), the proportion of M1 and M2 macrophages measured by flow cytometry were 33.17 % and 2.07 %, respectively. After G-M Gel treatment, the proportion of M1 macrophages decreased to 14.4 %, while the proportion of M2 macrophages increased significantly to 16.2 %. LPS treated macrophage conditioned medium inhibited the expression of osteogenic related factors (OCN, OPN, Runx2), alkaline phosphatase (ALP) and alizarin red S (ARS) in MC3T3-E1 cells. In contrast, LPS + G-M Gel treated macrophage conditioned medium significantly increased the expression of osteogenic related factors, ALP and ARS. These results demonstrated that G-M Gel can augment bone formation by promoting the polarization of M2 macrophages, showing great potential clinical application of G-M Gel in bone regeneration field.
Collapse
Affiliation(s)
- Yunyun Deng
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China
| | - Haiyan Yao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jian Zhao
- Hospital of Nanchang University, Nangchang University, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China.
| |
Collapse
|
14
|
Zhang H, Wang Y, Qiang H, Leng D, Yang L, Hu X, Chen F, Zhang T, Gao J, Yu Z. Exploring the frontiers: The potential and challenges of bioactive scaffolds in osteosarcoma treatment and bone regeneration. Mater Today Bio 2024; 29:101276. [PMID: 39444939 PMCID: PMC11497376 DOI: 10.1016/j.mtbio.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The standard treatment for osteosarcoma combines surgery with chemotherapy, yet it is fraught with challenges such as postoperative tumor recurrence and chemotherapy-induced side effects. Additionally, bone defects after surgery often surpass the body's regenerative ability, affecting patient recovery. Bioengineering offers a novel approach through the use of bioactive scaffolds crafted from metals, ceramics, and hydrogels for bone defect repair. However, these scaffolds are typically devoid of antitumor properties, necessitating the integration of therapeutic agents. The development of a multifunctional therapeutic platform incorporating chemotherapeutic drugs, photothermal agents (PTAs), photosensitizers (PIs), sound sensitizers (SSs), magnetic thermotherapeutic agents (MTAs), and naturally occurring antitumor compounds addresses this limitation. This platform is engineered to target osteosarcoma cells while also facilitating bone tissue repair and regeneration. This review synthesizes recent advancements in integrated bioactive scaffolds (IBSs), underscoring their dual role in combating osteosarcoma and enhancing bone regeneration. We also examine the current limitations of IBSs and propose future research trajectories to overcome these hurdles.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Huifen Qiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Dewen Leng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Luling Yang
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xueneng Hu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Feiyan Chen
- Department of Orthopedics, Huashan Hospital, Fudan University Shanghai, 201508, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| |
Collapse
|
15
|
Paramasivam G, Yadavali SP, Atchudan R, Arya S, Sundramoorthy AK. Recent advances in the medical applications of two-dimensional MXene nanosheets. Nanomedicine (Lond) 2024; 19:2633-2654. [PMID: 39552604 DOI: 10.1080/17435889.2024.2422806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
MXene-based materials are gaining significant attention due to their exceptional properties and adaptability, leading to diverse advanced applications. In 3D printing, MXenes enhance the performance of photoblockers, photocurable inks, and composites, enabling the creation of precise, flexible and durable structures. MXene/siloxane composites offer both flexibility and resilience, while MXene/spidroin scaffolds provide excellent biocompatibility and mechanical strength, making them ideal for tissue engineering. Sustainable inks such as MXene/cellulose nano inks, alginate/MXene and MXene/emulsion underscore their role in high-performance printed materials. In cancer therapy, MXenes enable innovative photothermal and photodynamic therapies, where nanosheets generate heat and reactive oxygen species to destroy cancer cells. MXene theranostic nanoprobes combine imaging and treatment, while MXene/niobium composites support hyperthermia therapy and MXene/cellulose hydrogels allow controlled drug release. Additionally, MXene-based nanozymes enhance catalytic activity, and MXene/gold nanorods enable near-infrared-triggered drug release for noninvasive treatments. In antimicrobial applications, MXene composites enhance material durability and hygiene, providing anticorrosive protection for metals. For instance, MXene/graphene, MXene/polycaprolactone nanofibers and MXene/chitosan hydrogels exhibit significant antibacterial activity. Additionally, MXene sensors have been developed to detect antibiotic residues. MXene cryogels also promote tissue regeneration, while MXene nanohybrids facilitate photocatalytic antibacterial therapy. These advancements underscore the potential of MXenes in regenerative medicine and other fields.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Yadavali
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu & Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics & Materials Science, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
16
|
Wu N, Li J, Li X, Wang R, Zhang L, Liu Z, Jiao T. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol 2024; 279:135227. [PMID: 39218178 DOI: 10.1016/j.ijbiomac.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
17
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
18
|
Li M, Fan Y, Ran M, Chen H, Han J, Zhai J, Wang Z, Ning C, Shi Z, Yu P. Hydrogel Coatings of Implants for Pathological Bone Repair. Adv Healthc Mater 2024; 13:e2401296. [PMID: 38794971 DOI: 10.1002/adhm.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Hydrogels are well-suited for biomedical applications due to their numerous advantages, such as excellent bioactivity, versatile physical and chemical properties, and effective drug delivery capabilities. Recently, hydrogel coatings have developed to functionalize bone implants which are biologically inert and cannot withstand the complex bone tissue repair microenvironment. These coatings have shown promise in addressing unique and pressing medical needs. This review begins with the major functionalized performance and interfacial bonding strategy of hydrogel coatings, with a focus on the novel external field response properties of the hydrogel. Recent advances in the fabrication strategies of hydrogel coatings and their use in the treatment of pathologic bone regeneration are highlighted. Finally, challenges and emerging trends in the evolution and application of physiological environment-responsive and external electric field-responsive hydrogel coatings for bone implants are discussed.
Collapse
Affiliation(s)
- Mengqing Li
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Youzhun Fan
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Maofei Ran
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Haoyan Chen
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jien Han
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhifeng Shi
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| |
Collapse
|
19
|
Li X, Wang S, Zheng M, Ma Z, Chen Y, Deng L, Xu W, Fan G, Khademolqorani S, Banitaba SN, Osman AI. Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications. NANOSCALE HORIZONS 2024; 9:1703-1724. [PMID: 39087682 DOI: 10.1039/d4nh00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Minyan Zheng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Zhanying Ma
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Lingjuan Deng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Weixia Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Guang Fan
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | | | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
20
|
Kohestani AA, Xu Z, Baştan FE, Boccaccini AR, Pishbin F. Electrically conductive coatings in tissue engineering. Acta Biomater 2024; 186:30-62. [PMID: 39128796 DOI: 10.1016/j.actbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Recent interest in tissue engineering (TE) has focused on electrically conductive biomaterials. This has been inspired by the characteristics of the cells' microenvironment where signalling is supported by electrical stimulation. Numerous studies have demonstrated the positive influence of electrical stimulation on cell excitation to proliferate, differentiate, and deposit extracellular matrix. Even without external electrical stimulation, research shows that electrically active scaffolds can improve tissue regeneration capacity. Tissues like bone, muscle, and neural contain electrically excitable cells that respond to electrical cues provided by implanted biomaterials. To introduce an electrical pathway, TE scaffolds can incorporate conductive polymers, metallic nanoparticles, and ceramic nanostructures. However, these materials often do not meet implantation criteria, such as maintaining mechanical durability and degradation characteristics, making them unsuitable as scaffold matrices. Instead, depositing conductive layers on TE scaffolds has shown promise as an efficient alternative to creating electrically conductive structures. A stratified scaffold with an electroactive surface synergistically excites the cells through active top-pathway, with/without electrical stimulation, providing an ideal matrix for cell growth, proliferation, and tissue deposition. Additionally, these conductive coatings can be enriched with bioactive or pharmaceutical components to enhance the scaffold's biomedical performance. This review covers recent developments in electrically active biomedical coatings for TE. The physicochemical and biological properties of conductive coating materials, including polymers (polypyrrole, polyaniline and PEDOT:PSS), metallic nanoparticles (gold, silver) and inorganic (ceramic) particles (carbon nanotubes, graphene-based materials and Mxenes) are examined. Each section explores the conductive coatings' deposition techniques, deposition parameters, conductivity ranges, deposit morphology, cell responses, and toxicity levels in detail. Furthermore, the applications of these conductive layers, primarily in bone, muscle, and neural TE are considered, and findings from in vitro and in vivo investigations are presented. STATEMENT OF SIGNIFICANCE: Tissue engineering (TE) scaffolds are crucial for human tissue replacement and acceleration of healing. Neural, muscle, bone, and skin tissues have electrically excitable cells, and their regeneration can be enhanced by electrically conductive scaffolds. However, standalone conductive materials often fall short for TE applications. An effective approach involves coating scaffolds with a conductive layer, finely tuning surface properties while leveraging the scaffold's innate biological and physical support. Further enhancement is achieved by modifying the conductive layer with pharmaceutical components. This review explores the under-reviewed topic of conductive coatings in tissue engineering, introducing conductive biomaterial coatings and analyzing their biological interactions. It provides insights into enhancing scaffold functionality for tissue regeneration, bridging a critical gap in current literature.
Collapse
Affiliation(s)
- Abolfazl Anvari Kohestani
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran
| | - Zhiyan Xu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Fatih Erdem Baştan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany; Thermal Spray Research and Development Laboratory, Metallurgical and Materials Engineering Department, Sakarya University, Esentepe Campus, 54187, Turkey
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran.
| |
Collapse
|
21
|
Avinashi SK, Mishra RK, Singh R, Shweta, Rakhi, Fatima Z, Gautam CR. Fabrication Methods, Structural, Surface Morphology and Biomedical Applications of MXene: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47003-47049. [PMID: 39189322 DOI: 10.1021/acsami.4c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recently, two-dimensional (2-D) layered materials have revealed outstanding properties and play a crucial role for numerous advanced applications. The emerging transition metal carbides and nitrides, known as MXene with empirical formula Mn+1XnTx, have generated widespread attention and demonstrated impressive potential in various fields. The fabrication of 2-D novel MXene and its composites and their characterizations are applicable to vast applications in different areas such as energy storage, gas sensors, catalysis, and biomedical applications. In this review, the main focus is on the various synthesis methods, their properties, and biomedical applications. This review provides detailed illustrations of MXenes for many biomedical applications, including bioimaging, drug delivery, therapies, biosensors, tissue engineering, and antibacterial reagents. The challenges and future prospects were highlighted in a comprehensive manner, and the existing problems and potential for MXene-based biomaterials were analyzed with the goal of accelerating their use in the biomedical field.
Collapse
Affiliation(s)
- Sarvesh Kumar Avinashi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rajat Kumar Mishra
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rahul Singh
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Shweta
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rakhi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Zaireen Fatima
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chandki Ram Gautam
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| |
Collapse
|
22
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
23
|
Zhang Y, Wei H, Zhu P, Hao X, Chen J, Zhang H. NH 2-MXene/OXG nanocomposite hydrogel with efficient photothermal antibacterial activity for potentially removing biofilms. Heliyon 2024; 10:e34889. [PMID: 39157356 PMCID: PMC11327595 DOI: 10.1016/j.heliyon.2024.e34889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
The adhesion of bacteria to the surface leads to formation of biofilms causing numerous infection problems in implanting medical devices or interventional therapy. Traditional treatment for such problems is generally to administrate patients with antibiotics or antifungal agent. Alternatively, devices are taken out of the body to mechanically destroy the biofilm and re-used by surgery. In this study, a straightforward method was developed to remove biofilms using a MXene-based photothermal hydrogel. The hydrogel consists of dynamic crosslinking network formed by Schiff-base reaction between aldehyde-containing xyloglucan (OXG) and amine-containing MXene (NH2-MXene), which showed efficient killing of both gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) bacteria upon near-infrared (NIR) laser irradiation. The NH2-MXene/OXG nanocomposite hydrogel showed a high photothermal antibacterial efficiency and stable photothermal conversion, demonstrated by efficient removal of biofilms ex vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Pingguang Zhu
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
| | - Xiaojuan Hao
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Haina Zhang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315799, China
| |
Collapse
|
24
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
26
|
Chen H, Wang Y, Chen X, Wang Z, Wu Y, Dai Q, Zhao W, Wei T, Yang Q, Huang B, Li Y. Research Progress on Ti 3C 2T x-Based Composite Materials in Antibacterial Field. Molecules 2024; 29:2902. [PMID: 38930967 PMCID: PMC11206357 DOI: 10.3390/molecules29122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The integration of two-dimensional Ti3C2Tx nanosheets and other materials offers broader application options in the antibacterial field. Ti3C2Tx-based composites demonstrate synergistic physical, chemical, and photodynamic antibacterial activity. In this review, we aim to explore the potential of Ti3C2Tx-based composites in the fabrication of an antibiotic-free antibacterial agent with a focus on their systematic classification, manufacturing technology, and application potential. We investigate various components of Ti3C2Tx-based composites, such as metals, metal oxides, metal sulfides, organic frameworks, photosensitizers, etc. We also summarize the fabrication techniques used for preparing Ti3C2Tx-based composites, including solution mixing, chemical synthesis, layer-by-layer self-assembly, electrostatic assembly, and three-dimensional (3D) printing. The most recent developments in antibacterial application are also thoroughly discussed, with special attention to the medical, water treatment, food preservation, flexible textile, and industrial sectors. Ultimately, the future directions and opportunities are delineated, underscoring the focus of further research, such as elucidating microscopic mechanisms, achieving a balance between biocompatibility and antibacterial efficiency, and investigating effective, eco-friendly synthesis techniques combined with intelligent technology. A survey of the literature provides a comprehensive overview of the state-of-the-art developments in Ti3C2Tx-based composites and their potential applications in various fields. This comprehensive review covers the variety, preparation methods, and applications of Ti3C2Tx-based composites, drawing upon a total of 171 English-language references. Notably, 155 of these references are from the past five years, indicating significant recent progress and interest in this research area.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yilun Wang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Xuguang Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Zihan Wang
- Department of Computer Science and Technology, China Three Gorges University, Yichang 443002, China
| | - Yue Wu
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qiongqiao Dai
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Wenjing Zhao
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Tian Wei
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qingyuan Yang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
27
|
Zhao C, Wu Z, Pan B, Zhang R, Golestani A, Feng Z, Ge Y, Yang H. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int J Biol Macromol 2024; 267:131650. [PMID: 38636756 DOI: 10.1016/j.ijbiomac.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.
Collapse
Affiliation(s)
- Chenyu Zhao
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Zhaoqi Wu
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Boyue Pan
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Avin Golestani
- Faculty of Life Science and Medicine, King's College London, London SE1 1UL, UK
| | - Ziyi Feng
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of Plastic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yi Ge
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
28
|
C D, A G, Igk I, S V, S B. Graphene-Functionalized Titanium Carbide Synthesis and Characterization and Its Cytotoxic Effect on Cancer Cell Lines. Cureus 2024; 16:e61049. [PMID: 38915990 PMCID: PMC11195330 DOI: 10.7759/cureus.61049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Background Graphene is a versatile material with promising applications in various fields such as electronics, energy, biomedicine, and the environment due to its exceptional mechanical strength, thermal and electrical conductivity, transparency, and chemical stability. Graphene has been extensively used in biological and medical settings. MXene is a two-dimensional (2D) material that exhibits a strong affinity for water and electrical conductivity because of its surface terminations (oxygen {-O}, fluorine {-F}, and hydroxyl {-OH}) and transition metal carbide or nitride. MXene has attracted significant attention recently for its wide range of applications and unique properties. This study focuses on the synthesis and characterization of graphene-functionalized MXene. Furthermore, we investigated its cytotoxic effects on cancer cell lines. The characterization of graphene-functionalized MXene is carried out using scanning electron microscopy (SEM), X-ray diffraction(XRD), and Fourier transform infrared spectroscopy (FTIR) assays. Materials and methods Graphene powder was finely ground in isopropyl alcohol and then sonicated for two hours to produce solution A. MXene was synthesized by reacting titanium aluminum carbide (Ti3AlC3) with hydrofluoric acid (HF). A mixture of Ti3AlC3 and HF was heated to 40°C with continuous stirring for 24 hours to form solution B. Subsequently, solutions A and B were combined and stirred for 30 minutes. The resulting mixture was transferred to a hydrothermal reactor and maintained at 180°C for 12 hours. After the completion of the reaction, the resulting material was cooled to room temperature and purified through washing with distilled water, ethanol, and acetone. The sample was then dried at 80°C for 12 hours. Results The X-ray diffraction (XRD) study confirms the formation of graphene-functionalized titanium carbide (Ti3C2). The sharp peaks indicate a highly crystalline nature. Graphene is a sheet-like structure with numerous gaps. Particles exhibit a multitude of voids and pores on their surfaces. Upon incorporation, graphene displays a small sheet-like structure. Graphene-functionalized titanium carbide confirms the presence of distinct layered or sheet-like structures stacked together. Following the addition of the material, some cancer cells are eradicated, and they exhibit increased biocompatibility, demonstrating anticancer activity. Conclusion Graphene-functionalized titanium carbide has been successfully synthesized and characterized, as evidenced by various analytical methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and methyl-thiazoldiphenyl-tetrazolium (MTT) assays. The cytotoxic impact of the synthesized graphene-functionalized titanium carbide on cancer cell lines was examined. The findings reveal a notable cytotoxic effect, indicating its potential as an anticancer agent. Further research in collaboration with experts from diverse fields will be crucial to advance and translate this technology into practical applications for cancer patients. Future scope Graphene and titanium carbide are promising materials for cancer research, biomedical applications, and imaging. Nevertheless, additional research is required to comprehend their mechanisms, enhance their properties, assess their safety and efficacy, and conduct clinical trials.
Collapse
Affiliation(s)
- Devanshi C
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Geetha A
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Ilangovar Igk
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Vasugi S
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Balachandran S
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| |
Collapse
|
29
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
30
|
Wang H, Hsu YC, Wang C, Xiao X, Yuan Z, Zhu Y, Yang D. Conductive and Enhanced Mechanical Strength of Mo 2Ti 2C 3 MXene-Based Hydrogel Promotes Neurogenesis and Bone Regeneration in Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17208-17218. [PMID: 38530974 DOI: 10.1021/acsami.3c19410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bone defects are common with increasing high-energy fractures, tumor bone invasion, and implantation revision surgery. Bone is an electroactive tissue that has electromechanical interaction with collogen, osteoblasts, and osteoclasts. Hydrogel provides morphological plasticity and extracellular matrix (ECM) 3D structures for cell survival, and is widely used as a bone engineering material. However, the hydrogels have poor mechanical intensity and lack of cell adhesion, slow gelation time, and limited conductivity. MXenes are novel nanomaterials with hydrophilic groups that sense cell electrophysiology and improve hydrogel electric conductivity. Herein, gelatin had multiple active groups (NH2, OH, and COOH) and an accelerated gelation time. Acrylamide has Schiff base bonds to cross-link with gelatin and absorb metal ions. Deacetylated chitosan improved cell adhesion and active groups to connect MXene and acrylamide. We constructed Mo2Ti2C3 MXene hydrogel with improved elastic modulus and viscosity, chemical cross-linking structure, electric conductivity, and good compatibility. Mo2Ti2C3 MXene hydrogel exhibits outstanding osteogenesis in vitro. Mo2Ti2C3 MXene hydrogel promotes osteogenesis via alkaline phosphatase (ALP) and alizarin red S (ARS) staining, improving osteogenic marker genes and protein expressions in vitro. Mo2Ti2C3 MXene hydrogel aids new bone formation in the in vivo calvarial bone defect model via micro-CT and histology. Mo2Ti2C3 MXene hydrogel facilitates neurogenesis factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression, and aids newly born neuron marker Tuj-1 and sensory neuron marker serotonin (5-HT) and osteogenesis pathway proteins, runt-related transcription factor 2 (Runx2), osteocalcin (OCN), SMAD family member 4 (SMAD4), and bone morphogenetic protein-2 (BMP2) in the bone defect repair process. Mo2Ti2C3 MXene hydrogel promotes osteogenesis and neurogenesis, which extends its biomedical application in bone defect reconstruction.
Collapse
Affiliation(s)
- Hongyu Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Ching Hsu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 999077, China
| | - Chune Wang
- Department of Ophthalmology, Jiyang People's Hospital of Jinan, Jinan 250000, China
| | - Xiao Xiao
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengbin Yuan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Zhu
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
31
|
Iravani S, Nazarzadeh Zare E, Makvandi P. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering. ACS Biomater Sci Eng 2024; 10:1892-1909. [PMID: 38466909 DOI: 10.1021/acsbiomaterials.3c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Avenue, Isfahan 81756-33551, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Chitkara Centre for Research and Development, Chitkara University, Kalujhanda 174103, Himachal Pradesh, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| |
Collapse
|
32
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
33
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
34
|
Tan Y, Sun H, Lan Y, Khan HM, Zhang H, Zhang L, Zhang F, Cui Y, Zhang L, Huang D, Chen X, Zhou C, Sun J, Zhou X. Study on 3D printed MXene-berberine-integrated scaffold for photo-activated antibacterial activity and bone regeneration. J Mater Chem B 2024; 12:2158-2179. [PMID: 38323437 DOI: 10.1039/d3tb02306k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The repair of mandibular defects is a challenging clinical problem, and associated infections often hinder the treatment, leading to failure in bone regeneration. Herein, a multifunctional platform is designed against the shortages of existing therapies for infected bone deficiency. 2D Ti3C2 MXene and berberine (BBR) are effectively loaded into 3D printing biphasic calcium phosphate (BCP) scaffolds. The prepared composite scaffolds take the feature of the excellent photothermal capacity of Ti3C2 as an antibacterial, mediating NIR-responsive BBR release under laser stimuli. Meanwhile, the sustained release of BBR enhances its antibacterial effect and further accelerates the bone healing process. Importantly, the integration of Ti3C2 improves the mechanical properties of the 3D scaffolds, which are beneficial for new bone formation. Their remarkable biomedical performances in vitro and in vivo present the outstanding antibacterial and osteogenic properties of the Ti3C2-BBR functionalized BCP scaffolds. The synergistic therapy makes it highly promising for repairing infected bone defects and provides insights into a wide range of applications of 2D nanosheets in biomedicine.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Huan Sun
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Yuanchen Lan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Zhang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linli Zhang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengying Zhang
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Paediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Zhang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Dingming Huang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xinmei Chen
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Jianxun Sun
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
35
|
Qin X, Lei S, Yang K, Xie W, Wang J. Green synthetic sodium alginate-glycerol-MXene nanocomposite membrane with excellent flexibility and mineralization ability for guided bone regeneration. J Mech Behav Biomed Mater 2024; 150:106336. [PMID: 38169210 DOI: 10.1016/j.jmbbm.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
Developing a novel bioactive material as a barrier membrane for guided bone regeneration (GBR) surgery remains challenging. As a new member of two-dimensional (2D) material family, MXene is a promising candidate component for barrier membranes due to its high specific surface area and osteogenic differentiation ability. In this work, a green and simple SA/glycerol/MXene (SgM) composite membrane was prepared via solvent casting method by using sodium alginate (SA) and MXene (M) as raw materials while employing glycerol (g) as a plasticizer. The addition of glycerol significantly increased the elongation at the break of SA from 10%-20% to 240%-360%, while the introduction of MXene promoted the deposition of calcium and phosphorus to form hydroxyapatite. At the same time, the roughness of the SgM composite membrane is apparently improved, which is conducive to cell adhesion and proliferation. This work provides a basis for further research on SgM composite membrane as GBR membrane for the treatment of bone defects.
Collapse
Affiliation(s)
- Xiaoli Qin
- School of Stomatology of Lanzhou University, Lanzhou, 730070, China; Lanzhou University Second Hospital, Lanzhou, 730000, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Siqi Lei
- School of Stomatology of Lanzhou University, Lanzhou, 730070, China; Lanzhou University Second Hospital, Lanzhou, 730000, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Kefan Yang
- School of Stomatology of Lanzhou University, Lanzhou, 730070, China; Lanzhou University Second Hospital, Lanzhou, 730000, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weibo Xie
- School of Stomatology of Lanzhou University, Lanzhou, 730070, China; Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Zhang H, Liu N, Zhang Y, Cang H, Cai Z, Huang Z, Li J. Croconaine conjugated cationic polymeric nanoparticles for NIR enhanced bacterial killing. Colloids Surf B Biointerfaces 2024; 233:113665. [PMID: 38008013 DOI: 10.1016/j.colsurfb.2023.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Light-triggered treatment approach has been regarded as an effective option for sterilization due to noninvasiveness, limited drug resistance, and minimized adverse effects. Herein, we designed and synthesized a functionalized cationic polymer, CR-PQAC, with croconaine bridging agent and quaternary ammonium groups for photothermal enhanced antimicrobial therapy under near-infrared irradiation. The quaternary ammonium group on the pendent chain endowing CR-PQAC the ability to effectively bind to bacteria. The CR-PQAC could self-assembles into micellar nanoparticles in aqueous solution, which exhibited strong absorption in the near-infrared (NIR) region, excellent photostability, and photothermal conversion efficiency of up to 43.8 %. Notably, the CR-PQAC nanoparticles presented remarkable antibacterial activity against both methicillin-resistant Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria with 808 nm laser irradiation. Moreover, the developed CR-PQAC has negligible dark cytotoxicity and good hemolytic compatibility against mammalian cells. Both in vitro and in vivo studies have demonstrated that the desirable antibacterial efficacy of CR-PQAC was obtained. Therefore, the proposed CR-PQAC may be a promising antimicrobial agent for NIR-enhanced killing bacterial.
Collapse
Affiliation(s)
- Huaihong Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Na Liu
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuting Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hui Cang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaosheng Cai
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ziqun Huang
- College of Materials and Chemical Engineering, West Anhui University, Luan 237012, China.
| | - Jun Li
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
37
|
Chen X, Yang L, Wu Y, Wang L, Li H. Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration. ACS OMEGA 2023; 8:46362-46375. [PMID: 38107965 PMCID: PMC10720008 DOI: 10.1021/acsomega.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Photothermal therapy is a promising approach to cancer treatment. The energy generated by the photothermal effect can effectively inhibit the growth of cancer cells without harming normal tissues, while the right amount of heat can also promote cell proliferation and accelerate tissue regeneration. Various nanomaterials have recently been used as photothermal agents (PTAs). The photothermal composite scaffolds can be obtained by introducing PTAs into bone tissue engineering (BTE) scaffolds, which produces a photothermal effect that can be used to ablate bone cancer with subsequent further use of the scaffold as a support to repair the bone defects created by ablation of osteosarcoma. Osteosarcoma is the most common among primary bone malignancies. However, a review of the efficacy of different types of photothermal composite scaffolds in osteosarcoma is lacking. This article first introduces the common PTAs, BTE materials, and preparation methods and then systematically summarizes the development of photothermal composite scaffolds. It would provide a useful reference for the combination of tumor therapy and tissue engineering in bone tumor-related diseases and complex diseases. It will also be valuable for advancing the clinical applications of photothermal composite scaffolds.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department
of Pediatric Internal Medicine, Haining
Central Hospital, Jiaxing 314400, China
| | - Liqun Yang
- Department
of Nursing, Tongxiang Traditional Chinese
Medicine Hospital, Jiaxing 314500, China
| | - Yanfang Wu
- Department
of Hematology, The First People’s
Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Lina Wang
- Department
of Internal Medicine, The Second People’s
Hospital of Luqiao Taizhou, Taizhou 318058, China
| | - Huafeng Li
- Department
of General Surgery, Haining Central Hospital, Jiaxing 314400, China
| |
Collapse
|
38
|
Zhao C, Pan B, Wang T, Yang H, Vance D, Li X, Zhao H, Hu X, Yang T, Chen Z, Hao L, Liu T, Wang Y. Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment. Pharmaceutics 2023; 15:2729. [PMID: 38140070 PMCID: PMC10747500 DOI: 10.3390/pharmaceutics15122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.
Collapse
Affiliation(s)
- Chenyu Zhao
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Boyue Pan
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Tianlin Wang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - Huazhe Yang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - David Vance
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Haiyang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Xinru Hu
- The 1st Clinical Department, China Medical University, Shenyang 110122, China;
| | - Tianchang Yang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Zihao Chen
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Ting Liu
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Yang Wang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| |
Collapse
|
39
|
Wu K, Zhou Z, Liu T, Liu C, Mu X, Jiang J. Co-delivery of curcumin and si-STAT3 with a bioinspired tumor homing for polydopamine nanoparticles for synergistic osteosarcoma therapy. Cancer Nanotechnol 2023; 14:66. [DOI: 10.1186/s12645-023-00215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/02/2023] [Indexed: 01/06/2025] Open
Abstract
Abstract
Purpose
Owing to the complexity of cancer, a synergistic combination of chemotherapy and gene therapy can be a promising therapeutic strategy. This study aimed to use stem cell membrane (SCM)-camouflaged polydopamine nanoparticles for simultaneous delivery of curcumin (CUR) and siRNA-targeting STAT3 (CPDA/siSTAT3@SCM NPs) for osteosarcoma (OS).
Methods
Transmission electron microscopy, UV–Vis absorbance spectra, zeta potential, cell co-localization, and Coomassie bright blue staining were used to characterize CPDA/siSTAT3@SCM NPs constructed by the self-assembly method. Drug release, cellular uptake, cell proliferation, apoptosis, wound healing, and transwell assays were evaluated in vitro. The expression levels of epithelial–mesenchymal transition (EMT)- and apoptosis-related proteins were measured by western blotting. Furthermore, the biodistribution, antitumor efficacy, and biosafety of CPDA/siSTAT3@SCM NPs in an MG63 xenograft mouse model were evaluated.
Results
CPDA/siSTAT3@SCM NPs were successfully synthesized to deliver CUR and siRNA simultaneously, and they showed osteosarcoma-targeting ability. Furthermore, it showed high cellular uptake and excellent synergistic antitumor effects in vitro. CPDA/siSTAT3@SCM NPs suppressed OS cell proliferation, migration, invasion, and EMT progression, and promoted the apoptotic process. In tumor-bearing mice, the treatment with CPDA/siSTAT3@SCM NPs showed an excellent antitumor effect with no side effects in major organs.
Conclusion
This study revealed that CPDA/siSTAT3@SCM NPs can target drug delivery by biomimetic multifunctional nanoparticles to treat OS through chemo-gene combined therapy.
Collapse
|
40
|
Wu J, Liang B, Lu S, Xie J, Song Y, Wang L, Gao L, Huang Z. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater 2023; 19:012002. [PMID: 37918002 DOI: 10.1088/1748-605x/ad08e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
3D printing technology is an increasing approach consisting of material manufacturing through the selective incremental delamination of materials to form a 3D structure to produce products. This technology has different advantages, including low cost, short time, diversification, and high precision. Widely adopted additive manufacturing technologies enable the creation of diagnostic tools and expand treatment options. Coupled with its rapid deployment, 3D printing is endowed with high customizability that enables users to build prototypes in shorts amounts of time which translates into faster adoption in the medical field. This review mainly summarizes the application of 3D printing technology in the diagnosis and treatment of cancer, including the challenges and the prospects combined with other technologies applied to the medical field.
Collapse
Affiliation(s)
- Jinmei Wu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Bing Liang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Shuoqiao Lu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Jinlan Xie
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Yan Song
- China Automotive Engineering Research Institute Co., Ltd (CAERI), Chongqing 401122, People's Republic of China
| | - Lude Wang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
41
|
Yuan J, Zeng Y, Pan Z, Feng Z, Bao Y, Ye Z, Li Y, Tang J, Liu X, He Y. Amino-Functionalized Zirconium-Based Metal-Organic Frameworks as Bifunctional Nanomaterials to Treat Bone Tumors and Promote Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53217-53227. [PMID: 37943099 DOI: 10.1021/acsami.3c11787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Bone tumor patients often encounter challenges associated with cancer cell residues and bone defects postoperation. To address this, there is an urgent need to develop a material that can enable tumor treatment and promote bone repair. Metal-organic frameworks (MOFs) have attracted the interest of many researchers due to their special porous structure, which has great potential in regenerative medicine and drug delivery. However, few studies explore MOFs with dual antitumor and bone regeneration properties. In this study, we investigated amino-functionalized zirconium-based MOF nanoparticles (UiO-66-NH2 NPs) as bifunctional nanomaterials for bone tumor treatment and osteogenesis promotion. UiO-66-NH2 NPs loading with doxorubicin (DOX) (DOX@UiO-66-NH2 NPs) showed good antitumor efficacy both in vitro and in vivo. Additionally, DOX@UiO-66-NH2 NPs significantly reduced lung injury compared to free DOX in vivo. Interestingly, the internalized UiO-66-NH2 NPs notably promoted the osteogenic differentiation of preosteoblasts. RNA-sequencing data revealed that PI3K-Akt signaling pathways or MAPK signaling pathways might be involved in this enhanced osteogenesis. Overall, UiO-66-NH2 NPs exhibit dual functionality in tumor treatment and bone repair, making them highly promising as a bifunctional material with broad application prospects.
Collapse
Affiliation(s)
- Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - ZhenZhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junze Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
42
|
Chao B, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Wang L, Liu H, Zhang H, Wang Z, Wu M. Application of advanced biomaterials in photothermal therapy for malignant bone tumors. Biomater Res 2023; 27:116. [PMID: 37968707 PMCID: PMC10652612 DOI: 10.1186/s40824-023-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Malignant bone tumors are characterized by severe disability rate, mortality rate, and heavy recurrence rate owing to the complex pathogenesis and insidious disease progression, which seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment offering prominent hyperthermal therapeutic effects to enhance the effectiveness of surgical treatment and avoid recurrence. Simultaneously, various advanced biomaterials with photothermal capacity are currently created to address malignant bone tumors, performing distinctive biological functions, including nanomaterials, bioceramics (BC), polymers, and hydrogels et al. Furthermore, PTT-related combination therapeutic strategies can provide more significant curative benefits by reducing drug toxicity, improving tumor-killing efficiency, stimulating anti-cancer immunity, and improving immune sensitivity relative to monotherapy, even in complex tumor microenvironments (TME). This review summarizes the current advanced biomaterials applicable in PTT and relevant combination therapies on malignant bone tumors for the first time. The multiple choices of advanced biomaterials, treatment methods, and new prospects for future research in treating malignant bone tumors with PTT are generalized to provide guidance. Malignant bone tumors seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment enhancing the effectiveness of surgical treatment and avoiding recurrence. In this review, advanced biomaterials applicable in the PTT of malignant bone tumors and their distinctive biological functions are comprehensively summarized for the first time. Simultaneously, multiple PTT-related combination therapeutic strategies are classified to optimize practical clinical issues, contributing to the selection of biomaterials, therapeutic alternatives, and research perspectives for the adjuvant treatment of malignant bone tumors with PTT in the future.
Collapse
Affiliation(s)
- Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Linfeng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
43
|
Liu M, Zheng L, Zha K, Yang Y, Hu Y, Chen K, Wang F, Zhang K, Liu W, Mi B, Xiao X, Feng Q. Cu(II)@MXene based photothermal hydrogel with antioxidative and antibacterial properties for the infected wounds. Front Bioeng Biotechnol 2023; 11:1308184. [PMID: 38026853 PMCID: PMC10665530 DOI: 10.3389/fbioe.2023.1308184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The regeneration of skin tissue is often impeded by bacterial infection seriously. At the same time, reactive oxygen species (ROS) are often overexpressed in infected skin wounds, causing persistent inflammation that further hinders the skin repair process. All of these make the treatment of infected wounds is still a great challenge in clinic. In this study, we fabricate Cu(II)@MXene photothermal complex based on electrostatic self-assembly between Cu2+ and MXene, which are then introduced into a hyaluronic acid (HA) hydrogel to form an antibacterial dressing. The rapid adhesion, self-healing, and injectability of the dressing allows the hydrogel to be easily applied to different wound shapes and to provide long-term wound protection. More importantly, this easily prepared Cu(II)@MXene complex can act as a photothermal antibacterial barrier, ROS scavenger and angiogenesis promoter simultaneously to accelerate the healing rate of infected wounds. Our in vivo experiments strongly proved that the inflammatory condition, collagen deposition, vessel formation, and the final wound closure area were all improved by the application of Cu(II)@MXene photothermal hydrogel dressing.
Collapse
Affiliation(s)
- Mingxiang Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yayan Yang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kai Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Feng Wang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kunyu Zhang
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wei Liu
- Department of Neurosurgery, Renhe Hospital, Huashan North Hospital Baoshan Branch Affiliated to Fudan University, Shanghai, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
44
|
Ma J, Zhang L, Lei B. Multifunctional MXene-Based Bioactive Materials for Integrated Regeneration Therapy. ACS NANO 2023; 17:19526-19549. [PMID: 37804317 DOI: 10.1021/acsnano.3c01913] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
The reconstruction engineering of tissue defects accompanied by major diseases including cancer, infection, and inflammation is one of the important challenges in clinical medicine. The development of innovative tissue engineering strategies such as multifunctional bioactive materials presents a great potential to overcome the challenge of disease-impaired tissue regeneration. As the major representative of two-dimensional nanomaterials, MXenes have shown multifunctional physicochemical properties and have been diffusely studied as multimodal nanoplatforms in the field of biomedicine. This review summarized the recent advances in the multifunctional properties of MXenes and integrated regeneration-therapy applications of MXene-based biomaterials, including tissue regeneration-tumor therapy, tissue regeneration-infection therapy, and tissue regeneration-inflammation therapy. MXenes have been recognized as good candidates for promoting tissue regeneration and treating diseases through photothermal therapy, regulating cell behavior, and drug and gene delivery. The current challenges and future perspectives of MXene-based biomaterials in integrated regeneration-therapy are also discussed well in this review. In summary, MXene-based biomaterials have shown promising potential for integrated tissue regeneration and disease treatment due to their favorable physicochemical properties and bioactive functions. However, there are still many obstacles and challenges that must be addressed for the regeneration-therapy applications of MXene-based biomaterials, including understanding the bioactive mechanism, ensuring long-term biosafety, and improving their targeting therapy capacity.
Collapse
Affiliation(s)
- Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
45
|
Xu C, Xia Y, Zhuang P, Liu W, Mu C, Liu Z, Wang J, Chen L, Dai H, Luo Z. FePSe 3 -Nanosheets-Integrated Cryogenic-3D-Printed Multifunctional Calcium Phosphate Scaffolds for Synergistic Therapy of Osteosarcoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303636. [PMID: 37217971 DOI: 10.1002/smll.202303636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Clinical treatment of osteosarcoma encounters great challenges of postsurgical tumor recurrence and extensive bone defect. To develop an advanced artificial bone substitute that can achieve synergistic bone regeneration and tumor therapy for osteosarcoma treatment, a multifunctional calcium phosphate composite enabled by incorporation of bioactive FePSe3 -nanosheets within the cryogenic-3D-printed α-tricalcium phosphate scaffold (TCP-FePSe3 ) is explored. The TCP-FePSe3 scaffold exhibits remarkable tumor ablation ability due to the excellent NIR-II (1064 nm) photothermal property of FePSe3 -nanosheets. Moreover, the biodegradable TCP-FePSe3 scaffold can release selenium element to suppress tumor recurrence by activating of the caspase-dependent apoptosis pathway. In a subcutaneous tumor model, it is demonstrated that tumors can be efficiently eradicated via the combination treatment with local photothermal ablation and the antitumor effect of selenium element. Meanwhile, in a rat calvarial bone defect model, the superior angiogenesis and osteogenesis induced by TCP-FePSe3 scaffold have been observed in vivo. The TCP-FePSe3 scaffold possesses improved capability to promote the repair of bone defects via vascularized bone regeneration, which is induced by the bioactive ions of Fe, Ca, and P released during the biodegradation of the implanted scaffolds. The TCP-FePSe3 composite scaffolds fabricated by cryogenic-3D-printing illustrate a distinctive strategy to construct multifunctional platform for osteosarcoma treatment.
Collapse
Affiliation(s)
- Chao Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuhao Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengzhen Zhuang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenliang Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jianglin Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
46
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
47
|
Li Y, Liu C, Cheng X, Wang J, Pan Y, Liu C, Zhang S, Jian X. PDA-BPs integrated mussel-inspired multifunctional hydrogel coating on PPENK implants for anti-tumor therapy, antibacterial infection and bone regeneration. Bioact Mater 2023; 27:546-559. [PMID: 37397628 PMCID: PMC10313727 DOI: 10.1016/j.bioactmat.2023.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 07/04/2023] Open
Abstract
Currently, many cancer patients with bone defects are still threatened by tumor recurrence, postoperative bacterial infection, and massive bone loss. Many methods have been studied to endow bone implants with biocompatibility, but it is difficult to find an implant material that can simultaneously solve the problems of anticancer, antibacterial and bone promotion. Here, a multifunctional gelatin methacrylate/dopamine methacrylate adhesive hydrogel coating containing 2D black phosphorus (BP) nanoparticle protected by polydopamine (pBP) is prepared by photocrosslinking to modify the surface of poly (aryl ether nitrile ketone) containing phthalazinone (PPENK) implant. The multifunctional hydrogel coating works in conjunction with pBP, which can deliver drug through photothermal mediation and kill bacteria through photodynamic therapy at the initial phase followed by promotion of osteointegration. In this design, photothermal effect of pBP control the release of doxorubicin hydrochloride loaded via electrostatic attraction. Meanwhile, pBP can generate reactive oxygen species (ROS) to eliminate bacterial infection under 808 nm laser. In the slow degradation process, pBP not only effectively consumes excess ROS and avoid apoptosis induced by ROS in normal cells, but also degrade into PO43- to promote osteogenesis. In summary, nanocomposite hydrogel coatings provide a promising strategy for treatment of cancer patients with bone defects.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinyan Wang
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shouhai Zhang
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- Liaoning Province Engineering Research Centre of High-Performance Resins, Dalian, 116024, China
| |
Collapse
|
48
|
Stoilov B, Truong VK, Gronthos S, Vasilev K. Noninvasive and Microinvasive Nanoscale Drug Delivery Platforms for Hard Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:2925-2943. [PMID: 37565698 DOI: 10.1021/acsabm.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.
Collapse
Affiliation(s)
- Borislav Stoilov
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide/SAHMRI, North Terrace, Adelaide, South Australia 5001, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
49
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
50
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|