1
|
Wei L, Chen H, Xu Z, Hu Y, Zhao B, Lu Y, Zhang N, Lu Q. Quantifying Hydrogen Chemical Diffusivity in NdNiO 3 Thin Films through Operando Multimodal Measurements. NANO LETTERS 2025; 25:6348-6355. [PMID: 40180595 DOI: 10.1021/acs.nanolett.5c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Nickelate oxides show unique properties that make them highly applicable in electrocatalysis, neuromorphic computing, and superconductors. Proton insertion, which effectively tunes their properties, is critical in advancing these applications. Its dynamics is governed by protonation kinetics, mainly controlled by hydrogen chemical diffusivity in nickelates. However, its precise quantification remains a significant knowledge gap, with reported values showing substantial discrepancies and a lack of comprehensive, rigorous methods. In this study, we propose a new quantitative approach that combines operando multimodal measurements. We provide the precise quantification of hydrogen chemical diffusivity in NdNiO3 (NNO), a prototypical nickelate, using rigorous kinetic modeling and cross-validation across multiple data dimensions. Our results reveal that proton mobility in NNO is inherently limited, challenging the assumption of its rapid transport in nickelates. This finding is critical for optimizing proton-based devices and paves the way for further understandings ion dynamics in correlated oxides.
Collapse
Affiliation(s)
- Luhan Wei
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haowen Chen
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zihan Xu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yang Hu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Bin Zhao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Ying Lu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Nian Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qiyang Lu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
2
|
Dey T, Lai X, Manna S, Patel K, Patel RK, Bisht RS, Zhou Y, Shah S, Andrei EY, Sankaranarayanan SKRS, Kuzum D, Schuman C, Ramanathan S. Kelvin Probe Force Microscopy Imaging of Plasticity in Hydrogenated Perovskite Nickelate Multilevel Neuromorphic Devices. ACS NANO 2025; 19:6815-6825. [PMID: 39932424 DOI: 10.1021/acsnano.4c11567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Ion drift in nanoscale electronically inhomogeneous semiconductors is among the most important mechanisms being studied for designing neuromorphic computing hardware. However, nondestructive imaging of the ion drift in operando devices directly responsible for multiresistance states and synaptic memory represents a formidable challenge. Here, we present Kelvin probe force microscopy imaging of hydrogen-doped perovskite nickelate device channels subject to high-speed electric field pulses to directly visualize proton distribution by monitoring surface potential changes spatially, which is also supported with finite element-based electric field distribution studies. First-principles calculations provide mechanistic insights into the origin of surface potential changes as a function of hydrogen donor doping that serves as the contrast mechanism. We demonstrate 128 (7-bit) nonvolatile conductance levels in such devices relevant to in-memory computing applications. The synaptic plasticity measurements are implemented in spiking neural networks and show promising results for classification (SciKit Learn's Iris and Wine data sets) and control (OpenAI's CartPole-v1 and BipedalWalker-v3) simulation tasks.
Collapse
Affiliation(s)
- Tamal Dey
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Xinyuan Lai
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sukriti Manna
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Karan Patel
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, 1520 Middle Dr, Knoxville, Tennessee 37996, United States
| | - Ranjan Kumar Patel
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ravindra Singh Bisht
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yue Zhou
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shaan Shah
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Eva Y Andrei
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Catherine Schuman
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, 1520 Middle Dr, Knoxville, Tennessee 37996, United States
| | - Shriram Ramanathan
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Li Y, Liu C, Zheng H, Jiang JS, Zhu Z, Yan X, Cao H, Narayanachari KVLV, Paudel B, Koirala KP, Zhang Z, Fisher B, Wang H, Karapetrova E, Sun C, Kelly S, Phelan D, Du Y, Buchholz B, Mitchell JF, Bhattacharya A, Fong DD, Zhou H. On the Topotactic Phase Transition Achieving Superconducting Infinite-Layer Nickelates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402484. [PMID: 39219216 DOI: 10.1002/adma.202402484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Topotactic reduction is critical to a wealth of phase transitions of current interest, including synthesis of the superconducting nickelate Nd0.8Sr0.2NiO2, reduced from the initial Nd0.8Sr0.2NiO3/SrTiO3 heterostructure. Due to the highly sensitive and often damaging nature of the topotactic reduction, however, only a handful of research groups have been able to reproduce the superconductivity results. A series of in situ synchrotron-based investigations reveal that this is due to the necessary formation of an initial, ultrathin layer at the Nd0.8Sr0.2NiO3 surface that helps to mediate the introduction of hydrogen into the film such that apical oxygens are first removed from the Nd0.8Sr0.2NiO3 / SrTiO3 (001) interface and delivered into the reducing environment. This allows the square-planar / perovskite interface to stabilize and propagate from the bottom to the top of the film without the formation of interphase defects. Importantly, neither geometric rotations in the square planar structure nor significant incorporation of hydrogen within the films is detected, obviating its need for superconductivity. These findings unveil the structural basis underlying the transformation pathway and provide important guidance on achieving the superconducting phase in reduced nickelate systems.
Collapse
Affiliation(s)
- Yan Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Changjiang Liu
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hong Zheng
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jidong Samuel Jiang
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xi Yan
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hui Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - K V L V Narayanachari
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Binod Paudel
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zhan Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brandon Fisher
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Huanhua Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Evguenia Karapetrova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Chengjun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shelly Kelly
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Daniel Phelan
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bruce Buchholz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - J F Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Anand Bhattacharya
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
4
|
Yuan Y, Patel RK, Banik S, Reta TB, Bisht RS, Fong DD, Sankaranarayanan SKRS, Ramanathan S. Proton Conducting Neuromorphic Materials and Devices. Chem Rev 2024; 124:9733-9784. [PMID: 39038231 DOI: 10.1021/acs.chemrev.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Neuromorphic computing and artificial intelligence hardware generally aims to emulate features found in biological neural circuit components and to enable the development of energy-efficient machines. In the biological brain, ionic currents and temporal concentration gradients control information flow and storage. It is therefore of interest to examine materials and devices for neuromorphic computing wherein ionic and electronic currents can propagate. Protons being mobile under an external electric field offers a compelling avenue for facilitating biological functionalities in artificial synapses and neurons. In this review, we first highlight the interesting biological analog of protons as neurotransmitters in various animals. We then discuss the experimental approaches and mechanisms of proton doping in various classes of inorganic and organic proton-conducting materials for the advancement of neuromorphic architectures. Since hydrogen is among the lightest of elements, characterization in a solid matrix requires advanced techniques. We review powerful synchrotron-based spectroscopic techniques for characterizing hydrogen doping in various materials as well as complementary scattering techniques to detect hydrogen. First-principles calculations are then discussed as they help provide an understanding of proton migration and electronic structure modification. Outstanding scientific challenges to further our understanding of proton doping and its use in emerging neuromorphic electronics are pointed out.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ranjan Kumar Patel
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Suvo Banik
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tadesse Billo Reta
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ravindra Singh Bisht
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shriram Ramanathan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Yuan Y, Kotiuga M, Park TJ, Patel RK, Ni Y, Saha A, Zhou H, Sadowski JT, Al-Mahboob A, Yu H, Du K, Zhu M, Deng S, Bisht RS, Lyu X, Wu CTM, Ye PD, Sengupta A, Cheong SW, Xu X, Rabe KM, Ramanathan S. Hydrogen-induced tunable remanent polarization in a perovskite nickelate. Nat Commun 2024; 15:4717. [PMID: 38830914 PMCID: PMC11148064 DOI: 10.1038/s41467-024-49213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Materials with field-tunable polarization are of broad interest to condensed matter sciences and solid-state device technologies. Here, using hydrogen (H) donor doping, we modify the room temperature metallic phase of a perovskite nickelate NdNiO3 into an insulating phase with both metastable dipolar polarization and space-charge polarization. We then demonstrate transient negative differential capacitance in thin film capacitors. The space-charge polarization caused by long-range movement and trapping of protons dominates when the electric field exceeds the threshold value. First-principles calculations suggest the polarization originates from the polar structure created by H doping. We find that polarization decays within ~1 second which is an interesting temporal regime for neuromorphic computing hardware design, and we implement the transient characteristics in a neural network to demonstrate unsupervised learning. These discoveries open new avenues for designing ferroelectric materials and electrets using light-ion doping.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Michele Kotiuga
- Theory and Simulation of Materials (THEOS), National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Tae Joon Park
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA.
| | - Ranjan Kumar Patel
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuanyuan Ni
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Arnob Saha
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, State College, PA, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Jerzy T Sadowski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Abdullah Al-Mahboob
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Haoming Yu
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Kai Du
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Minning Zhu
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sunbin Deng
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Ravindra S Bisht
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Xiao Lyu
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Chung-Tse Michael Wu
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Peide D Ye
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Abhronil Sengupta
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, State College, PA, USA
| | - Sang-Wook Cheong
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Xiaoshan Xu
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Karin M Rabe
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Shriram Ramanathan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Gamage S, Manna S, Zajac M, Hancock S, Wang Q, Singh S, Ghafariasl M, Yao K, Tiwald TE, Park TJ, Landau DP, Wen H, Sankaranarayanan SKS, Darancet P, Ramanathan S, Abate Y. Infrared Nanoimaging of Hydrogenated Perovskite Nickelate Memristive Devices. ACS NANO 2024; 18:2105-2116. [PMID: 38198599 PMCID: PMC10811663 DOI: 10.1021/acsnano.3c09281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Solid-state devices made from correlated oxides, such as perovskite nickelates, are promising for neuromorphic computing by mimicking biological synaptic function. However, comprehending dopant action at the nanoscale poses a formidable challenge to understanding the elementary mechanisms involved. Here, we perform operando infrared nanoimaging of hydrogen-doped correlated perovskite, neodymium nickel oxide (H-NdNiO3, H-NNO), devices and reveal how an applied field perturbs dopant distribution at the nanoscale. This perturbation leads to stripe phases of varying conductivity perpendicular to the applied field, which define the macroscale electrical characteristics of the devices. Hyperspectral nano-FTIR imaging in conjunction with density functional theory calculations unveils a real-space map of multiple vibrational states of H-NNO associated with OH stretching modes and their dependence on the dopant concentration. Moreover, the localization of excess charges induces an out-of-plane lattice expansion in NNO which was confirmed by in situ X-ray diffraction and creates a strain that acts as a barrier against further diffusion. Our results and the techniques presented here hold great potential for the rapidly growing field of memristors and neuromorphic devices wherein nanoscale ion motion is fundamentally responsible for function.
Collapse
Affiliation(s)
- Sampath Gamage
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Sukriti Manna
- Center for
Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Marc Zajac
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Steven Hancock
- Center
for
Simulational Physics and Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Qi Wang
- School
of
Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sarabpreet Singh
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Mahdi Ghafariasl
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Kun Yao
- School
of
Electrical and Computer Engineering, University
of Georgia, Athens, Georgia 30602, United States
| | - Tom E. Tiwald
- J.A. Woollam
Co., Inc., Lincoln, Nebraska 68508, United States
| | - Tae Joon Park
- School
of
Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - David P. Landau
- Center
for
Simulational Physics and Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Haidan Wen
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K.
R. S. Sankaranarayanan
- Center for
Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Pierre Darancet
- Center for
Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Northwestern
Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Shriram Ramanathan
- School
of
Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yohannes Abate
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Bisht RS, Park J, Yu H, Wu C, Tilak N, Rangan S, Park TJ, Yuan Y, Das S, Goteti U, Yi HT, Hijazi H, Al-Mahboob A, Sadowski JT, Zhou H, Oh S, Andrei EY, Allen MT, Kuzum D, Frano A, Dynes RC, Ramanathan S. Spatial Interactions in Hydrogenated Perovskite Nickelate Synaptic Networks. NANO LETTERS 2023; 23:7166-7173. [PMID: 37506183 DOI: 10.1021/acs.nanolett.3c02076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
A key aspect of how the brain learns and enables decision-making processes is through synaptic interactions. Electrical transmission and communication in a network of synapses are modulated by extracellular fields generated by ionic chemical gradients. Emulating such spatial interactions in synthetic networks can be of potential use for neuromorphic learning and the hardware implementation of artificial intelligence. Here, we demonstrate that in a network of hydrogen-doped perovskite nickelate devices, electric bias across a single junction can tune the coupling strength between the neighboring cells. Electrical transport measurements and spatially resolved diffraction and nanoprobe X-ray and scanning microwave impedance spectroscopic studies suggest that graded proton distribution in the inhomogeneous medium of hydrogen-doped nickelate film enables this behavior. We further demonstrate signal integration through the coupling of various junctions.
Collapse
Affiliation(s)
- Ravindra Singh Bisht
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jaeseoung Park
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Haoming Yu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chen Wu
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Nikhil Tilak
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sylvie Rangan
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Tae J Park
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yifan Yuan
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sarmistha Das
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Uday Goteti
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Hee Taek Yi
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Hussein Hijazi
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Abdullah Al-Mahboob
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jerzy T Sadowski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Seongshik Oh
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Eva Y Andrei
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Monica T Allen
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Alex Frano
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Robert C Dynes
- Department of Physics, University of California, San Diego, La Jolla, California 92093, United States
| | - Shriram Ramanathan
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Wang Q, Gu Y, Chen C, Qiao L, Pan F, Song C. Realizing Metastable Cobaltite Perovskite via Proton-Induced Filling of Oxygen Vacancy Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1574-1582. [PMID: 36537655 DOI: 10.1021/acsami.2c18311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interaction between transition-metal oxides (TMOs) and protons has become a key issue in magneto-ionics and proton-conducting fuel cells. Until now, most investigations on oxide-proton reactions rely on electrochemical tools, while the direct interplay between protons and oxides remains basically at simple dissolution of metal oxides by an acidic solution. In this work, we find classical TMO brownmillerite SrCoO2.5 (B-SCO) films with ordered oxygen vacancy channels experiencing an interesting transition to a metastable perovskite phase (M-SCO) in a weak acidic solution. M-SCO exhibits a strong ferromagnetism (1.01 μB/Co, Tc > 200 K) and a greatly elevated electrical conductivity (∼104 of pristine SrCoO2.5), which is similar to the prototypical perovskite SrCoO3. Besides, such M-SCO tends to transform back to B-SCO in a vacuum environment or heating at a relatively low temperature. Two possible mechanisms (H2O addition/active oxygen filling) have been proposed to explain the phenomenon, and the control experiments demonstrate that the latter mechanism is the dominant process. Our work finds a new way to realize cobaltite perovskite with enhanced magnetoelectric properties and may deepen the understanding of oxide-proton interaction in an aqueous solution.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Leilei Qiao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
9
|
Lee J, Kim GY, Jeong S, Yang M, Kim JW, Cho BG, Choi Y, Kim S, Choi JS, Lee TK, Kim J, Lee DR, Chang SH, Park S, Jung JH, Bark CW, Koo TY, Ryan PJ, Ihm K, Kim S, Choi SY, Kim TH, Lee S. Template Engineering of Metal-to-Insulator Transitions in Epitaxial Bilayer Nickelate Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54466-54475. [PMID: 34739229 DOI: 10.1021/acsami.1c13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding metal-to-insulator phase transitions in solids has been a keystone not only for discovering novel physical phenomena in condensed matter physics but also for achieving scientific breakthroughs in materials science. In this work, we demonstrate that the transport properties (i.e., resistivity and transition temperature) in the metal-to-insulator transitions of perovskite nickelates are tunable via the epitaxial heterojunctions of LaNiO3 and NdNiO3 thin films. A mismatch in the oxygen coordination environment and interfacial octahedral coupling at the oxide heterointerface allows us to realize an exotic phase that is unattainable in the parent compound. With oxygen vacancy formation for strain accommodation, the topmost LaNiO3 layer in LaNiO3/NdNiO3 bilayer thin films is structurally engineered and it electrically undergoes a metal-to-insulator transition that does not appear in metallic LaNiO3. Modification of the NdNiO3 template layer thickness provides an additional knob for tailoring the tilting angles of corner-connected NiO6 octahedra and the linked transport characteristics further. Our approaches can be harnessed to tune physical properties in complex oxides and to realize exotic physical phenomena through oxide thin-film heterostructuring.
Collapse
Affiliation(s)
- Jongmin Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gi-Yeop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seyeop Jeong
- Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mihyun Yang
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Byeong-Gwan Cho
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Sangmo Kim
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Jin San Choi
- Department of Physics, University of Ulsan and Energy Harvest-Storage Research Center (EHSRC), Ulsan 44610, Republic of Korea
| | - Tae Kwon Lee
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Jiwoong Kim
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Ryeol Lee
- Department of Physics, Soongsil University, Seoul 06978, Republic of Korea
| | - Seo Hyoung Chang
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Jong Hoon Jung
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Tae-Young Koo
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Philip J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kyuwook Ihm
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sanghoon Kim
- Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tae Heon Kim
- Department of Physics, University of Ulsan and Energy Harvest-Storage Research Center (EHSRC), Ulsan 44610, Republic of Korea
| | - Sanghan Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
10
|
Salev P, Fratino L, Sasaki D, Berkoun R, Del Valle J, Kalcheim Y, Takamura Y, Rozenberg M, Schuller IK. Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nat Commun 2021; 12:5499. [PMID: 34535660 PMCID: PMC8448889 DOI: 10.1038/s41467-021-25802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
Application of an electric stimulus to a material with a metal-insulator transition can trigger a large resistance change. Resistive switching from an insulating into a metallic phase, which typically occurs by the formation of a conducting filament parallel to the current flow, is a highly active research topic. Using the magneto-optical Kerr imaging, we found that the opposite type of resistive switching, from a metal into an insulator, occurs in a reciprocal characteristic spatial pattern: the formation of an insulating barrier perpendicular to the driving current. This barrier formation leads to an unusual N-type negative differential resistance in the current-voltage characteristics. We further demonstrate that electrically inducing a transverse barrier enables a unique approach to voltage-controlled magnetism. By triggering the metal-to-insulator resistive switching in a magnetic material, local on/off control of ferromagnetism is achieved using a global voltage bias applied to the whole device.
Collapse
Affiliation(s)
- Pavel Salev
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, USA.
| | - Lorenzo Fratino
- Université Paris-Saclay, CNRS Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Dayne Sasaki
- Department of Materials Science and Engineering, University of California Davis, Davis, CA, USA
| | - Rani Berkoun
- Université Paris-Saclay, CNRS Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Javier Del Valle
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, USA
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland
| | - Yoav Kalcheim
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, USA
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yayoi Takamura
- Department of Materials Science and Engineering, University of California Davis, Davis, CA, USA
| | - Marcelo Rozenberg
- Université Paris-Saclay, CNRS Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Ivan K Schuller
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|