1
|
Wang Z, Yuan C, Yang D, Cui M, Tang J, Zhang Z, Qiao X. Defect-derived catalytic sites in Ce/Zr-UiO-66 for degradation of hexachlorobenzene. Dalton Trans 2025; 54:2308-2319. [PMID: 39714129 DOI: 10.1039/d4dt02951h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
It is of great significance to develop catalysts for the degradation of hexachlorobenzene from the industrial thermal process. In this paper, formic acid was used as a modulator to generate defect sites in Ce/Zr-UiO-66 with intrinsic Brønsted acidity. The defective formate ligands were removed through methanol-water vapor treatment to expose additional open metal sites with Lewis acidity. The intrinsic Brønsted acid sites of the resulting Ce/Zr-UiO-66-FA-P achieved a hexachlorobenzene degradation efficiency of 99.5% at 250 °C. The generated Lewis acid sites facilitated the C-C cleavage of degradation intermediates. More than 95.0% of the final products were CO2/CO, coupled with chlorinated alkanes/alkenes, which outperformed other benchmark metal oxide catalysts. The Ce/Zr-UiO-66-FA-P catalyst maintained its catalytic activity in the model industrial flue gas and humid environment. The degradation pathway of hexachlorobenzene was tracked using in situ FT-IR spectra.
Collapse
Affiliation(s)
- Zhengyan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Chenhao Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| |
Collapse
|
2
|
Liang Y, Ning X, Zhen Y. Carboxyethylsilanetriol-Functionalized Al-MIL-53-Supported Palladium Catalyst for Enhancing Suzuki-Miyaura Cross-Coupling Reaction. Molecules 2025; 30:656. [PMID: 39942759 PMCID: PMC11820489 DOI: 10.3390/molecules30030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The application of metal-organic frameworks (MOFs) has attracted increasing attention in organic synthesis. The modification of MOFs can efficiently tailor the structure and improve the property for meeting ongoing demand in various applications, such as the alteration of gas adsorption and separation, catalytic activity, stability, and sustainability or reusability. In this study, carboxyethylsilanetriol (CEST) disodium salt was used as a dual-functional ligand for modified Al-MIL-53 to fabricate CEST-functionalized Al-MIL-53 samples through a hydrothermal reaction of aluminum nitrate, terephthalic acid, and CEST disodium salt by varying the molar ratio of CEST to terephthalic acid and keeping a constant molar ratio of Al3+/-COOH of 1:1. The structure, composition, morphology, pore feature, and stability were characterized by XRD, different spectroscopies, electron microscopy, N2 physisorption, and thermogravimetric analysis. With increasing CEST content, CEST-Al-MIL-53 still preserves an Al-MIL-53-like structure, but the microstructure changed compared with pure Al-MIL-53 due to the integration of CEST. Such a CEST-Al-MIL-53 was used as the support to load Pd particles and afford a catalyst Pd/CEST-Al-MIL-53 for Suzuki-Miyaura C-C cross-coupling reaction of aryl halides and phenylboronic acid under basic conditions. The resulting Pd/CEST-Al-MIL-53 showed a high catalytic activity compared with Pd/Al-MIL-53, due to the nanofibrous structure of silicon species-integrated CEST-Al-MIL-53. The nanofiber microstructure undergoes a remarkable transformation into intricate 3D cross-networks during catalytic reaction, which enables the leachable Pd particles to orientally redeposit and inlay into these networks as the monodisperse spheres and thereby effectively preventing Pd particles from aggregation and leaching, therefore demonstrating a high catalytic performance, long-term stability, and enhanced reusability. Obviously, the integration of CEST into MOFs can effectively prevent the leaching of active Pd species and ensure the re-deposition during catalysis. Moreover, catalytic performance strongly depended on catalyst dosage, temperature, time, solvent, and the type of the substituted group on benzene ring. This work further extends the catalytic application of hybrid metal-organic frameworks.
Collapse
Affiliation(s)
- Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | |
Collapse
|
3
|
Thabit RM, El-Aziz FEZAA, El-Fadl AA, Abu-Sehly AA, Sayed AM. Synthesis and evaluation of nanosized aluminum MOF encapsulating Umbelliferon: assessing antioxidant, anti-inflammatory, and wound healing potential in an earthworm model. BMC Biotechnol 2024; 24:61. [PMID: 39278901 PMCID: PMC11403860 DOI: 10.1186/s12896-024-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Nanoporous aluminum metal-organic framework (Al-MOF) was synthesized via solvothermal methods and employed as a carrier matrix for in vitro drug delivery of Umbelliferon (Um). The encapsulated Um was gradually released over seven days at 37 °C, using simulated body fluid phosphate-buffered saline (PBS) at pH 7.4 as the release medium. The drug release profile suggests the potential of Al-MOF nanoparticles as effective drug delivery carriers. Structural and chemical analyses of Um-loaded Al-MOF nanoparticles (Um-Al MOF) were conducted using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), and ultraviolet-visible (UV-Vis) spectroscopy. Thermal gravimetric analysis (TGA) was employed to investigate the thermal stability of the Al-MOF nanoparticles, while Transmission Electron Microscopy (TEM) was utilized to assess their morphological features. Um-Al MOF nanoparticles demonstrated notable antioxidant and anti-inflammatory properties compared to Um and Al-MOF nanoparticles individually. Moreover, they exhibited significant enhancement in wound healing in an earthworm model. These findings underscore the potential of Al-MOF nanoparticles as a promising drug delivery system, necessitating further investigations to explore their clinical applicability.
Collapse
Affiliation(s)
- Rabab M Thabit
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - A Abu El-Fadl
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - A A Abu-Sehly
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ahmed M Sayed
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
4
|
Wei W, Lu P. Designing Dual-Responsive Drug Delivery Systems: The Role of Phase Change Materials and Metal-Organic Frameworks. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3070. [PMID: 38998154 PMCID: PMC11242594 DOI: 10.3390/ma17133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Stimuli-responsive drug delivery systems (DDSs) offer precise control over drug release, enhancing therapeutic efficacy and minimizing side effects. This review focuses on DDSs that leverage the unique capabilities of phase change materials (PCMs) and metal-organic frameworks (MOFs) to achieve controlled drug release in response to pH and temperature changes. Specifically, this review highlights the use of a combination of lauric and stearic acids as PCMs that melt slightly above body temperature, providing a thermally responsive mechanism for drug release. Additionally, this review delves into the properties of zeolitic imidazolate framework-8 (ZIF-8), a stable MOF under physiological conditions that decomposes in acidic environments, thus offering pH-sensitive drug release capabilities. The integration of these materials enables the fabrication of complex structures that encapsulate drugs within ZIF-8 or are enveloped by PCM layers, ensuring that drug release is tightly controlled by either temperature or pH levels, or both. This review provides comprehensive insights into the core design principles, material selections, and potential biomedical applications of dual-stimuli responsive DDSs, highlighting the future directions and challenges in this innovative field.
Collapse
Affiliation(s)
- Wanying Wei
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
5
|
Yang D, Gates BC. Analyzing Stabilities of Metal-Organic Frameworks: Correlation of Stability with Node Coordination to Linkers and Degree of Node Metal Hydrolysis. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:8551-8559. [PMID: 38835934 PMCID: PMC11145649 DOI: 10.1021/acs.jpcc.4c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
Among the important properties of metal-organic frameworks (MOFs) is stability, which may limit applications, for example, in separations and catalysis. Many MOFs consist of metal oxo cluster nodes connected by carboxylate linkers. Addressing MOF stability, we highlight connections between metal oxo cluster chemistry and MOF node chemistry, including results characterizing Keggin ions and biological clusters. MOF syntheses yield diverse metal oxo cluster node structures, with varying numbers of metal atoms (3-13) and the tendency to form chains. MOF stabilities reflect a balance between the number of node-linker connections and the degree of node hydrolysis. We summarize literature results showing how MOF stability (the temperature of decomposition in air) depends on the degree of hydrolysis/condensation of the node metals, which is correlated to their degree of substitution with linkers. We suggest that this correlation may help guide the discovery of stable new MOFs, and we foresee opportunities for progress in MOF chemistry emerging from progress in metal oxo cluster chemistry.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Kumari S, Yadav A, Kumari A, Mahapatra S, Kumar D, Sharma J, Yadav P, Ghosh D, Chakraborty A, Kanoo P. Quest for a Desolvated Structure Unveils Breathing Phenomena in a MOF Leading to Greener Catalysis in a Solventless Setup: Insights from Combined Experimental and Computational Studies. Inorg Chem 2024; 63:7146-7160. [PMID: 38592926 DOI: 10.1021/acs.inorgchem.3c04062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The crystal structure of the metal-organic framework (MOF), {Mn2(1,4-bdc)2(DMF)2}n (1) (1,4-bdcH2, 1,4-benzenedicarboxylic acid; DMF, N,N-dimethylformamide), is known for a long time; however, its desolvated structure, {Mn2(1,4-bdc)2}n (1'), is not yet known. The first-principles-based computational simulation was used to unveil the structure of 1' that shows the expansion in the framework, leading to pore opening after the removal of coordinated DMF molecules. We have used 1' that contains open metal sites (OMSs) in the structure in cyanosilylation and CO2 cycloaddition reactions and recorded complete conversions in a solventless setup. The pore opening in 1' allows the facile diffusion of small aldehyde molecules into the channels, leading to complete conversion. The reactions with larger aldehydes, 2-naphthaldehyde and 9-anthracenecarboxaldehyde, also show 99.9% conversions, which are the highest reported until date in solventless conditions. The in silico simulations illustrate that larger aldehydes interact with Mn(II) OMSs on the surfaces, enabling a closer interaction and facilitating complete conversions. The catalyst shows high recyclability, exhibiting 99.9% conversions in the successive reaction cycles with negligible change in the structure. Our investigations illustrate that the catalyst 1' is economical, efficient, and robust and allows reactions in a solventless greener setup, and therefore the catalysis with 1' can be regarded as "green catalysis".
Collapse
Affiliation(s)
- Sarita Kumari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Anand Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Ankita Kumari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, Delhi 110067, India
| | - Somanath Mahapatra
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Devender Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Jyoti Sharma
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Preety Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, Delhi 110067, India
- Department of Materials Science and Engineering (DMSE), Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, Delhi 110067, India
| | - Anindita Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Prakash Kanoo
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
- Special Centre for Nano Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi 110067, India
| |
Collapse
|
7
|
Yang D, Gates BC. Characterization, Structure, and Reactivity of Hydroxyl Groups on Metal-Oxide Cluster Nodes of Metal-Organic Frameworks: Structural Diversity and Keys to Reactivity and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305611. [PMID: 37660323 DOI: 10.1002/adma.202305611] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Among the most stable metal-organic frameworks (MOFs) are those incorporating nodes that are metal oxide clusters with frames such as Zr6 O8 . This review is a summary of the structure, bonding, and reactivity of MOF node hydroxyl groups, emphasizing those bonded to nodes containing aluminum and zirconium ions. Hydroxyl groups are often present on these nodes, sometimes balancing the charges of the metal ions. They arise during MOF syntheses in aqueous media or in post-synthesis treatments. They are identified with infrared and 1 H nuclear magnetic resonance spectroscopies and characterized by their reactivities with polar compounds such as alcohols. Terminal OH, paired µ2 -OH, and aqua groups on nodes are catalytic sites in numerous reactions. Relatively unreactive hydroxyl groups (such as isolated µ2 -OH groups) may replace reactive groups and inhibit catalysis; some node hydroxyl groups (e.g., µ3 -OH) are mere spectators in catalysis. There are similarities between MOF node hydroxyl groups and those on the surfaces of bulk metal oxides, zeolites, and enzymes, but the comparisons are mostly inexact, and much remains to be understood about MOF node hydroxyl group chemistry. It is posited that understanding and controlling this chemistry will lead to tailored MOFs and improved adsorbents and catalysts.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Shu L, Peng Y, Song H, Zhu C, Yang W. Modular Customization and Regulation of Metal-Organic Frameworks for Efficient Membrane Separations. Angew Chem Int Ed Engl 2023; 62:e202315057. [PMID: 37843882 DOI: 10.1002/anie.202315057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
Metal-organic frameworks (MOFs) are considered ideal membrane candidates for energy-efficient separations. However, the MOF membrane amount to date is only a drop in the bucket compared to the material collections. The fabrication of an arbitrary MOF membrane exhibiting inherent separation capacity of the material remains a long-standing challenge. Herein, we report a MOF modular customization strategy by employing four MOFs with diverse structures and physicochemical properties and achieving innovative defect-free membranes for efficient separation validation. Each membrane fully displays the separation potential according to the MOF pore/channel microenvironment, and consequently, an intriguing H2 /CO2 separation performance sequence is achieved (separation factor of 1656-5.4, H2 permeance of 964-2745 gas permeation unit). Taking advantage of this strategy, separation performance can be manipulated by a non-destructive modification separately towards the MOF module. This work establishes a universal full-chain demonstration for membrane fabrication-separation validation-microstructure modification and opens an avenue for exclusive customization of membranes for important separations.
Collapse
Affiliation(s)
- Lun Shu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yuan Peng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hongling Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chenyu Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
9
|
Lee S, Lee G, Oh M. Induced Production of Atypical Naturally Nonpreferred Metal-Organic Frameworks and Their Detachment via Provoking Post-Mismatching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303580. [PMID: 37246265 DOI: 10.1002/smll.202303580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 05/30/2023]
Abstract
The structures of metal-organic frameworks (MOFs) are typically determined by the building blocks that compose them and the conditions under which they are formed. MOFs tend to adopt a thermodynamically and/or kinetically stable structure (naturally preferred form). Thus, constructing MOFs with naturally nonpreferred structures is a challenging task, as it requires avoiding the easier pathway toward a naturally preferred MOF. Herein, an approach to construct naturally nonpreferred dicarboxylate-linked MOFs employing reaction templates is reported. This strategy relies on the registry between the surface of the template and the cell lattice of a target MOF, which reduces the effort required to form naturally nonpreferred MOFs. Reactions of p-block trivalent metal ions (Ga3+ and In3+ ) with dicarboxylic acids typically produce preferred MIL-53 or MIL-68. However, the surface of UiO-67 (and UiO-66) template exhibits the well-defined hexagonal lattice, which induce the selective formation of a naturally nonpreferred MIL-88 structure. Inductively grown MIL-88s are purely isolated from the template via provoking a post-mismatch in their lattices and weakening the interfacial interaction between product and template. It is also discovered that an appropriate template for effective induced production of naturally nonpreferred MOFs shall be properly selected based on the cell lattice of a target MOF.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Xiao Y, Zhang M, Yang D, Zhang L, Zhuang S, Tang J, Zhang Z, Qiao X. Synergy of Paired Brønsted-Lewis Acid Sites on Defects of Zr-MIL-140A for Methanol Dehydration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37452745 DOI: 10.1021/acsami.3c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As a common defect-capping ligand in metal-organic frameworks (MOFs), the hydroxyl group normally exhibits Brønsted acidity or basicity, but the presence of inherent hydroxyl groups in the MOF structure makes it a great challenge to identify the exact role of defect-capping hydroxyl groups in catalysis. Herein, we used hydroxyl-free MIL-140A as the platform to generate terminal hydroxyl groups on defect sites via a continuous post-synthetic treatment. The structure and acidity of MIL-140A were properly characterized. The hydroxyl-contained MIL-140A-OH exhibited 4.6-fold higher activity than the pristine MIL-140A in methanol dehydration. Spectroscopic and computational investigations demonstrated that the reaction was initiated by the respective adsorption of two methanol molecules on the terminal-OH and the adjacent Zr vacancy. The dehydration of the adsorbed methanol molecules then occurred in the Brønsted-Lewis acid site co-participated associative pathway with the lowest energy barrier.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Minxin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lixiong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shangpu Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Hua Y, Ahmadi Y, Kim KH. Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130422. [PMID: 36434918 DOI: 10.1016/j.jhazmat.2022.130422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Aluminum is a relatively inexpensive and abundant metal for the mass production of metal-organic frameworks (MOFs). Aluminum-based MOFs (Al-MOFs) have drawn a good deal of research interest due to their unique properties for diverse applications (e.g., excellent chemical and structural stability). This review has been organized to highlight the current progress achieved in the synthesis/functionalization of Al-MOF materials with the special emphasis on their sensing application, especially toward metal ion pollutants in the liquid phase. To learn more about the utility of Al-MOF-based sensing systems, their performances have been evaluated for diverse metallic components in reference to many other types of sensing systems (in terms of the key quality assurance (QA) criteria such as limit of detection (LOD)). Finally, the challenges and outlook for Al-MOF-based sensing systems are discussed to help expand their real-world applications.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
12
|
Molecular Insight into the Structure of Heterometallic Metal-Organic Frameworks MIL-53-M (M = Al and Ga) and Their Intermolecular Interaction with Pyridine: A Periodic Density Functional Theory. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Severino MI, Al Mohtar A, Vieira Soares C, Freitas C, Sadovnik N, Nandi S, Mouchaham G, Pimenta V, Nouar F, Daturi M, Maurin G, Pinto ML, Serre C. MOFs with Open Metal(III) Sites for the Environmental Capture of Polar Volatile Organic Compounds. Angew Chem Int Ed Engl 2023; 62:e202211583. [PMID: 36468308 PMCID: PMC10108120 DOI: 10.1002/anie.202211583] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Metal-Organic Frameworks (MOFs) with open metal sites (OMS) interact strongly with a range of polar gases/vapors. However, under ambient conditions, their selective adsorption is generally impaired due to a high OMS affinity to water. This led previously to the privilege selection of hydrophobic MOFs for the selective capture/detection of volatile organic compounds (VOCs). Herein, we show that this paradigm is challenged by metal(III) polycarboxylates MOFs, bearing a high concentration of OMS, as MIL-100(Fe), enabling the selective capture of polar VOCs even in the presence of water. With experimental and computational tools, including single-component gravimetric and dynamic mixture adsorption measurements, in situ infrared (IR) spectroscopy and Density Functional Theory calculations we reveal that this adsorption mechanism involves a direct coordination of the VOC on the OMS, associated with an interaction energy that exceeds that of water. Hence, MOFs with OMS are demonstrated to be of interest for air purification purposes.
Collapse
Affiliation(s)
- Maria Inês Severino
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, 75005, Paris, France
| | - Abeer Al Mohtar
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | | | - Cátia Freitas
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Nicolas Sadovnik
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000, Caen, France
| | - Shyamapada Nandi
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, 75005, Paris, France
| | - Georges Mouchaham
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, 75005, Paris, France
| | - Vanessa Pimenta
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, 75005, Paris, France
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, 75005, Paris, France
| | - Marco Daturi
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000, Caen, France
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Moisés L Pinto
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Christian Serre
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
14
|
Li M, Chen J, Hall JN, Bollini P. Active sites, kinetics, and inhibiting species in the catalytic dehydration of methanol over MIL-100(Cr). Catal Sci Technol 2023. [DOI: 10.1039/d2cy01877b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Structure–property relationships over highly-uniform, isolated MIL-100(Cr) nodes are investigated. Brønsted acid-mediated dehydration of methanol is used as a probe reaction to decipher acid site properties, and the data point to the prevalence of an associative mechanism.
Collapse
Affiliation(s)
- Mengying Li
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4222 Martin Luther King Boulevard, Houston, TX 77204, USA
| | - Jiakang Chen
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4222 Martin Luther King Boulevard, Houston, TX 77204, USA
| | - Jacklyn N. Hall
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4222 Martin Luther King Boulevard, Houston, TX 77204, USA
| | - Praveen Bollini
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4222 Martin Luther King Boulevard, Houston, TX 77204, USA
| |
Collapse
|
15
|
Yang D, Chheda S, Lyu Y, Li Z, Xiao Y, Siepmann JI, Gagliardi L, Gates BC. Mechanism of Methanol Dehydration Catalyzed by Al 8O 12 Nodes Assisted by Linker Amine Groups of the Metal–Organic Framework CAU-1. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Saumil Chheda
- Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Yinghui Lyu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Ziang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Yue Xiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - J. Ilja Siepmann
- Department of Chemical Engineering and Materials Science, Department of Chemistry, and Chemical Theory Center, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Xiao Y, Han L, Tang J, Tian L, Zhang Z, Zhang L, Yang D, Qiao X. Fabricating defect-rich metal-organic frameworks via mixed linker-induced crystal transformation. Chem Commun (Camb) 2022; 58:7265-7268. [PMID: 35674189 DOI: 10.1039/d2cc00923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defect-rich hcp UiO-66-NO2 was synthesized via mixed linker-induced crystal transformation from fcu UiO-66-NO2/NH2. The defect concentration and porosity of hcp UiO-66-NO2 can be fine-tuned by varying the BDC-NH2/BDC-NO2 ratio, which in turn endowed hcp UiO-66-NO2 with superior catalytic performance in the ring-opening reaction of epoxides with alcohols.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lu Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lixiong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
18
|
Babucci M, Conley ET, Hoffman AS, Bare SR, Gates BC. Iridium pair sites anchored to Zr6O8 nodes of the metal–organic framework UiO-66 catalyze ethylene hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Kazemzadeh N, Halladj R, Askari S, Kia R. Tuning parameters for the synthesis of MIL-53(Al): Mn doped MIL-53(Al) as a high potential catalyst for methanol dehydration. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2021-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently, many studies are dealing with developments of Metal-Organic Frameworks (MOFs), especially MIL-53(Al), which shows high thermal and mechanical stability. Among these, optimizing the synthesis condition of MIL-53(Al) to obtain appropriate characteristics has attracted much attention in academia and the industry. Here, the effect of synthesis time and ligand to metal molar ratio on the hydrothermal synthesis of MIL-53(Al) are pursued. The synthesized MIL-53(Al) samples are characterized by X-ray diffraction (XRD), the Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), thermal gravimetric analysis (TGA), and nitrogen adsorption-desorption technique (BET). The present study shows that MIL-53(Al) can be conventionally synthesized with a high yield within a shorter reaction time than the previous studies. Furthermore, the catalytic activity of the optimized MIL-53(Al) in the pure and Mn-doped form is studied in a methanol dehydration reaction. It is thus inferred that this popular MOF in the Mn/MIL-53(Al) form has a high activity and DME selectivity during methanol conversion. Our present results confirm the merits of employing the MIL-53(Al) as a catalyst in methanol to DME conversion, which can be an avenue for the practical application of acidic catalyst.
Collapse
Affiliation(s)
- Nasrin Kazemzadeh
- Department of Chemical Engineering , Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| | - Rouein Halladj
- Department of Chemical Engineering , Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| | - Sima Askari
- Department of Chemical Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Raza Kia
- Department of Chemical Engineering , Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| |
Collapse
|
20
|
Rollins DS, Geary J, Wong AH, Xiao DJ. Stabilizing large pores in a flexible metal–organic framework via chemical cross-linking. Chem Commun (Camb) 2022; 58:12361-12364. [DOI: 10.1039/d2cc04829a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical cross-linking stabilizes the open form of a flexible aluminum metal–organic framework with large 17 Å pores.
Collapse
Affiliation(s)
- Devin S. Rollins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jackson Geary
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Andy H. Wong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dianne J. Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
21
|
Pair sites on Al3O nodes of the metal-organic framework MIL-100: Cooperative roles of defect and structural vacancy sites in methanol dehydration catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Zhao Y, Zhao H, Liu D. Selective Adsorption and Separation of o-Xylene Using an Aluminum-Based Metal–Organic Framework. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingjie Zhao
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huifang Zhao
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Dahuan Liu
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
23
|
Jiang D, Huang C, Zhu J, Wang P, Liu Z, Fang D. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Gao W, Wei H, Wang CL, Liu JP, Zhang XM. Multifunctional Zn-Ln (Ln = Eu and Tb) heterometallic metal-organic frameworks with highly efficient I 2 capture, dye adsorption, luminescence sensing and white-light emission. Dalton Trans 2021; 50:11619-11630. [PMID: 34355718 DOI: 10.1039/d1dt01968f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new family of isostructural 3d-4f heterometallic metal-organic frameworks (HMOFs), [Zn3EuxTb2-x(TZI)4(DMA)5(H2O)3]·4DMA [x = 0 (1), 0.3 (2), 0.6 (3), 0.9 (4), 1 (5), 1.2 (6), 1.5 (7), 1.8 (8), 2 (9)], has been synthesized using the 5-(4-(tetrazol-5-yl) phenyl)isophthalic acid (H3TZI) ligand, LnIII ions and ZnII ions under solvothermal conditions. All HMOFs exhibit a (3,3,4,5,5)-connected 63·63(42·62·82)(4·65·8)(4·66·83) topology, which features three different types of motifs: one is a mononuclear ZnII ion and the other two motifs are binuclear [Zn(COO)3Ln] clusters. The adsorption experiments indicate that Zn3Tb2 (1) could efficiently remove almost all I2 from cyclohexane solution after 12 h and also showed better adsorption towards neutral red (NR) dye (adsorption: only the Zn3Tb2 (1) was taken as one representative). Simultaneously, the luminescence sensing showed that Zn3Tb2 (1) and Zn3Eu2 (9) have excellent response and sensitivity towards pollutants such as Fe3+ ions and 2,4,6-trinitrophenol (TNP) with high selectivity and a fairly low limit of detection through luminescence quenching effect. Moreover, seven trimetallic-doped HMOFs 2-8 analogues of Zn3Ln2 (single) HMOFs were designed and prepared, showing different changes of luminescent color. More interestingly, Zn3Eu1.5Tb0.5 (7) with white-light emission was fabricated by doping relative concentrations of Eu3+ and Tb3+ ions. To the best of our knowledge, Zn3Eu1.5Tb0.5 (7) represents a novel kind of heterometallic Zn3Ln2 HMOFs with white-light emission. It could be deduced that the excellent characteristics, namely strong typical luminescence emission of ZnII and LnIII ions, microporous channels, active open metal sites (tetra-coordinated ZnII-metal sites), and uncoordinated carboxylate O atoms and uncoordinated tetrazolate N atoms, made the above HMOFs an ideal platform for adsorption, luminescence sensing, and white-light emission. More significantly, these HMOFs are the first reported Zn-Ln heterometallic materials with the H3TZI ligand.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Normal University, Anhui 235000, China.
| | | | | | | | | |
Collapse
|
25
|
Yang D, Gates BC. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks. Acc Chem Res 2021; 54:1982-1991. [PMID: 33843190 DOI: 10.1021/acs.accounts.1c00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ConspectusMetal-organic frameworks (MOFs) are a huge, rapidly growing class of crystalline, porous materials that consist of inorganic nodes linked by organic struts. Offering the advantages of thermal stability combined with high densities of accessible reactive sites, some MOFs are good candidate materials for applications in catalysis and separations. Such MOFs include those with nodes that are metal oxide clusters (e.g., Zr6O8, Hf6O8, and Zr12O22) and long rods (e.g., [Al(OH)]n). These nanostructured metal oxides are often compared with bulk metal oxides, but they are in essence different because their structures are not the same and because the MOFs have a high degree of uniformity, offering the prospect of a deep understanding of reactivity that is barely attainable for most bulk metal oxides because of their surface heterogeneity. This prospect is being realized as it has become evident that adventitious components on MOF node surfaces, besides the linkers, are crucial. These ligands arise from modulators, solvents, or products of solvent decomposition in MOF synthesis solutions, and because they are minor components that are often irregularly placed on defects, they may not show up in X-ray diffraction (XRD) crystal structures. Hydroxyl groups on the nodes (like those on bulk metal oxides) are regarded as native functional groups arising from solvent water, but they may barely be present initially, with common ligands instead being formate and acetate formed from modulators formic acid and acetic acid. (Formate also arises from the decomposition of dimethylformamide (DMF) solvent.) Replacement and control of the node ligands is facilitated by postsynthesis reactions (e.g., with alcohols or aqueous HCl/H2SO4 solutions) or as a result of high-temperature decomposition. In catalysis, adventitious node ligands can be (a) reaction inhibitors that block active sites on the nodes (e.g., formate blocking Zr, Hf, or Al Lewis acid sites); (b) reaction intermediates (e.g., ethoxy in ethanol dehydration); or (c) active sites themselves (e.g., terminal OH groups in tert-butyl alcohol (TBA) dehydration). Surprisingly, in view of the catalytic importance of such ligands on bulk metal oxides, their subtle chemistry on MOF nodes is only recently being determined. We describe (1) methods for identifying and quantifying node ligands (especially by IR spectroscopy and by 1H NMR spectroscopy of MOFs digested in NaOH/D2O solutions); (2) node ligand surface chemistry expressed as reaction networks; (3) catalysis, with mechanisms and energetics determined by density functional theory (DFT) and spectroscopy; and (4) MOF unzipping by reactions of linker carboxylate ligands with reactants such as alcohols that break node-linker bonds, a cause of catalyst deactivation and also an indicator of node-linker bond strength and MOF stability.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|