1
|
Zhang C, Shao Z, Yu F, Cao Y, Hou L. Highly-efficient low-cost polarization-sensitive organic photodetectors based on laminated self-assembly planar and bulk heterojunctions. NANOTECHNOLOGY 2024; 35:395603. [PMID: 38955131 DOI: 10.1088/1361-6528/ad5db8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
To overcome the severe problems arising from the insufficient light absorption of ultrathin self-assembly active layers and the high cost use of atomic force deposition (ALD)-grown low-leakage-current transport layers, we successfully developed a low-cost, simple and facile strategy of floating-film transfer and multilayer lamination (FFTML) for constructing highly-efficient ALD-free broadband polarization-sensitive organic photodetectors (OPDs) with the two commonly used structures of donor/acceptor planar heterojunction (PHJ) and donor:acceptor multilayer bulk heterojunction (BHJ). It was found that the PHJ-based polarization-sensitive OPD by FFTML possesses a low dark current due to the high carrier injection barrier, indicating it is more suitable to be applied in low polarized light detection scenarios. In contrast, the BHJ-based device by FFTML has a higher spectral responsivity in the whole wavelength due to more photo-excitons transferred to the donor:acceptor interface and dissociated into photoexcited carrirers. Furthermore, the film thickness, which is tuned by increasing lamination number of BHJ layers, has a big effect on the polarization-sensitive photodetection performance. The polarization-sensitive 4-BHJ OPD by FFTML finally achieved a high specific detectivity of 8.33 × 1010Jones, which was much higher than 2.72 × 1010Jones for the 2-BHJ device at 0 V. This work demonstrates that layer-by-layer lamination of self-assembly films can effectively improve the polarized-light detection performance, contributing significantly to the rapid development of the field.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhimin Shao
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, College of Physics and Optical Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Feng Yu
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, College of Physics and Optical Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yunhao Cao
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, College of Physics and Optical Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lintao Hou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, College of Physics and Optical Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
2
|
Ahn Y, Kang Y, Kye H, Kim MS, Lee WH, Kim BG. Exploring Pore Formation and Gas Sensing Kinetics Using Conjugated Polymer-Small Molecule Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31719-31728. [PMID: 38836704 DOI: 10.1021/acsami.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Controlling miscibility between mixture components helps induce spontaneous phase separation into distinct domain sizes, thereby resulting in porous conjugated polymer (CP) films with different pore sizes after selective removal of auxiliary components. The miscibility of the CP mixture can be tailored by blending auxiliary model components designed by reflecting the difference in solubility parameters with the CP. The pore size increases as the difference in solubility parameters between the matrix CP and auxiliary component increases. Electrical properties are not critically damaged even after forming pores in the CP; however, excessive pore formation enables pores to spread to the vicinity of the dielectric layer of CP-based field-effect transistors (FETs), leading to partial loss of the carrier-transporting active channel in the FET. The porous structure is advantageous for not only increasing detection sensitivity but also improving the detection speed when porous CP films are applied to FET-based gas sensors for NO2 detection. The quantitative analysis of the response-recovery trend of the FET sensor using the Langmuir isotherm suggests that the response speed can be improved by more than 2.5 times with a 50-fold increase in NO2 sensitivity compared with pristine CP, which has no pores.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeongkwon Kang
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyojin Kye
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Seon Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Wi Hyoung Lee
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong-Gi Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Huang YC, Wang TY, Huang ZH, Santiago SRMS. Advancing Detectivity and Stability of Near-Infrared Organic Photodetectors via a Facile and Efficient Cathode Interlayer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27576-27586. [PMID: 38722948 DOI: 10.1021/acsami.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Near-infrared (NIR) organic photodetectors (OPDs) are pivotal in numerous technological applications due to their excellent responsivity within the NIR region. Polyethylenimine ethoxylated (PEIE) has conventionally been employed as an electron transport layer (hole-blocking layer) to suppress dark current (JD) and enhance charge transport. However, the limitations of PEIE in chemical stability, processing conditions, environmental impact, and absorption range have spurred the development of alternative materials. In this study, we introduced a novel solution: a hybrid of sol-gel zinc oxide (ZnO) and N,N'-bis(N,N-dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide (PDINO) as the electron transport layer for NIR-OPDs. Our fabricated OPD exhibited significantly improved responsivity, reduced internal traps, and enhanced charge transfer efficiency. The detectivity, spanning from 400 to 1100 nm, surpassed ∼5 × 1012 Jones, reaching ∼1.1 × 1012 Jones at 1000 nm, accompanied by an increased responsivity of 0.47 A/W. Also, the unpackaged OPD remarkedly demonstrated stable JD and external quantum efficiency (EQE) over 1000 h under dark storage conditions. This innovative approach not only addresses the drawbacks of conventional PEIE-based OPDs but also offers promising avenues for the development of high-performance OPDs in the future.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Yuan Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhi-Hao Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | | |
Collapse
|
4
|
Chen CY, Li JY, Kuo KY, Nguyen TX, Hsiao PH, Ting JM. Ultra-Broadband High-Entropy Oxide Absorber Layer for Enhanced Photodetector Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37906524 DOI: 10.1021/acsami.3c09879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A novel light-absorbing material of high-entropy oxide (HEO) has been synthesized using the hydrothermal method. The HEO has six metals, namely, Fe, Ni, Mn, Cr, Mg, and Cu. The obtained HEO light absorber is demonstrated to show unprecedented broadband absorption, ranging from 310 to 1400 nm. The photodetector having a structure of Ag/HEO/n-Si has been evaluated for its performance. Under the illumination of various light wavelengths, the photodetector exhibits a remarkably wide range of photoresponse from 365 to 1050 nm, giving wide-spectrum photocurrent densities in the order of 1 mA/cm2, a responsibility as high as 3.5 A/W (850 nm), and an external quantum efficiency (EQE) of more than 700% (850 nm), outperforming all of the reported oxide-based photodetectors. The superior device performance is attributed to the excellent light absorbance and EQE of the oxygen vacancy-containing HEO. Moreover, a number of tests, including the abrasion test, temperature endurance, acidic resistance, on-off switching cycling, and 3 dB bandwidth measurement, show the excellent reliability of the obtained HEO-based photodetector.
Collapse
Affiliation(s)
- Chia-Yun Chen
- Department of Materials Science and Engineering National Cheng Kung University, Tainan 70101, Taiwan
| | - Jyun-Yi Li
- Department of Materials Science and Engineering National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Yi Kuo
- Department of Materials Science and Engineering National Cheng Kung University, Tainan 70101, Taiwan
| | - Thi Xuyen Nguyen
- Department of Materials Science and Engineering National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Hsuan Hsiao
- Department of Materials Science and Engineering National Cheng Kung University, Tainan 70101, Taiwan
| | - Jyh-Ming Ting
- Department of Materials Science and Engineering National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
5
|
Ha JW, Lee AY, Eun HJ, Kim JH, Ahn H, Park S, Lee C, Seo DW, Heo J, Yoon SC, Ko SJ, Kim JH. High Detectivity Near Infrared Organic Photodetectors Using an Asymmetric Non-Fullerene Acceptor for Optimal Nanomorphology and Suppressed Dark Current. ACS NANO 2023; 17:18792-18804. [PMID: 37781927 DOI: 10.1021/acsnano.3c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Recently, the development of non-fullerene acceptors (NFAs) for near-infrared (NIR) organic photodetectors (OPDs) has attracted great interest due to their excellent NIR light absorption properties. Herein, we developed NFAs by substituting an electron-donating moiety (branched alkoxy thiophene (BAT)) asymmetrically (YOR1) and symmetrically (YOR2) for the Y6 framework. YOR1 exhibited nanoscale phase separation in a film blended with PTB7-Th. Moreover, substituting the BAT unit effectively extended the absorption wavelengths of YOR1 over 1000 nm by efficient intramolecular charge transfer and extension of the conjugation length. Consequently, YOR1-OPD exhibited significantly reduced dark current and improved responsivity by simultaneously satisfying optimal nanomorphology and significant suppression of charge recombination, resulting in 1.98 × 1013 and 3.38 × 1012 Jones specific detectivity at 950 and 1000 nm, respectively. Moreover, we successfully demonstrated the application of YOR1-OPD in highly sensitive photoplethysmography sensors using NIR light. This study suggests a strategic approach for boosting the overall performance of NIR OPDs targeting a 1000 nm light signal using an all-in-one (optimal morphology, suppressed dark current, and extended NIR absorption wavelength) NFA.
Collapse
Affiliation(s)
- Jong-Woon Ha
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ah Young Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyeong Ju Eun
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae-Hyun Kim
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Changjin Lee
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Deok Won Seo
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Junseok Heo
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Cheol Yoon
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Seo-Jin Ko
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
6
|
Park SY, Labanti C, Pacalaj RA, Lee TH, Dong Y, Chin YC, Luke J, Ryu G, Minami D, Yun S, Park JI, Fang F, Park KB, Durrant JR, Kim JS. The State-of-the-Art Solution-Processed Single Component Organic Photodetectors Achieved by Strong Quenching of Intermolecular Emissive State and High Quadrupole Moment in Non-Fullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306655. [PMID: 37670609 DOI: 10.1002/adma.202306655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Indexed: 09/07/2023]
Abstract
A bulk-heterojunction (BHJ) blend is commonly used as the photoactive layer in organic photodetectors (OPDs) to utilize the donor (D)/acceptor (A) interfacial energetic offset for exciton dissociation. However, this strategy often complicates optimization procedures, raising serious concerns over device processability, reproducibility, and stability. Herein, highly efficient OPDs fabricated with single-component organic semiconductors are demonstrated via solution-processing. The non-fullerene acceptors (NFAs) with strong intrinsic D/A character are used as the photoactive layer, where the emissive intermolecular charge transfer excitonic (CTE) states are formed within <1 ps, and efficient photocurrent generation is achieved via strong quenching of these CTE states by reverse bias. Y6 and IT-4F-based OPDs show excellent OPD performances, low dark current density (≈10-9 A cm-2 ), high responsivity (≥0.15 A W-1 ), high specific detectivity (>1012 Jones), and fast photo-response time (<10 µs), comparable to the state-of-the-art BHJ OPDs. Together with strong CTE state quenching by electric field, these excellent OPD performances are also attributed to the high quadrupole moments of NFA molecules, which can lead to large interfacial energetic offset for efficient CTE dissociation. This work opens a new way to realize efficient OPDs using single-component systems via solution-processing and provides important molecular design rules.
Collapse
Affiliation(s)
- Song Yi Park
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Chiara Labanti
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Richard A Pacalaj
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tack Ho Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, 46241, Busan, Republic of Korea
| | - Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Yi-Chun Chin
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Joel Luke
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Gihan Ryu
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Daiki Minami
- CSE team, Innovation Center, Samsung Electronics, Co. Ltd., 1 Samsungjeonja-ro, Hwasung-si, Gyeonggi-do, 18448, Republic of Korea
| | - Sungyoung Yun
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeong-Il Park
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Feifei Fang
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Kyung-Bae Park
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
- SPECIFIC IKC, Faculty of Science and Engineering, Swansea University, Swansea, SA2 7AX, UK
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Zhang Y, Yu Y, Liu X, Miao J, Han Y, Liu J, Wang L. An n-Type All-Fused-Ring Molecule with Photoresponse to 1000 nm for Highly Sensitive Near-Infrared Photodetector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211714. [PMID: 36842062 DOI: 10.1002/adma.202211714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/04/2023] [Indexed: 05/19/2023]
Abstract
Most of all-fused-ring π-conjugated molecules have wide or medium bandgap and show photo response in the visible range. In this work, an all-fused-ring n-type molecule, which exhibits an ultrasmall optical bandgap of 1.22 eV and strong near-infrared (NIR) absorption with an onset absorption wavelength of 1013 nm is reported. The molecule consists of 14 aromatic rings and has electron donor-acceptor characteristics. It exhibits excellent n-type properties with low-lying HOMO/LUMO energy levels of -5.48 eV/-3.95 eV and high electron mobility of 7.0 × 10-4 cm2 V-1 s-1 . Most importantly, its thin film exhibits a low trap density of 5.55 × 1016 cm-3 because of the fixed molecular conformation and consequently low conformation disorder. As a result, organic photodetector (OPD) based on the compound exhibits a remarkably low dark current density (Jd ) of 2.01 × 10-10 A cm-2 at 0 V. The device shows a shot-noise-limited specific detectivity (Dsh *) of exceeding 1013 Jones at 400-1000 nm wavelength region with a peak specific detectivity of 4.65 × 1013 Jones at 880 nm. This performance is among the best reported for self-powered NIR OPDs.
Collapse
Affiliation(s)
- Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingjian Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Jiang BH, Hsiao FC, Lin YR, Lin CH, Shen YA, Hsu YY, Lee PH, Su YW, Lu HR, Lin CW, Chan CK, Chen CP. Highly Efficient Ternary Near-Infrared Organic Photodetectors for Biometric Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10907-10917. [PMID: 36700551 DOI: 10.1021/acsami.2c20527] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Near-infrared (NIR) small-molecule acceptors that absorb at wavelengths of up to 1000 nm are attractive for applications in organic photodetectors (OPDs) and biometrics. In this study, we incorporated IEICO-4F as the third component for PffBT4T-2OD:PC71BM-based OPDs to provide an efficient NIR response while greatly suppressing the leakage current at reverse bias. By varying the blend ratio and thickness (250-600 nm), we obtained an NIR OPD displaying an ultralow dark-current density (JD = 2.62 nA cm-2), ultrahigh detectivity [D* = 7.2 × 1012 Jones (850 nm)], high sensitivity, and photoresponsivity covering the region from the ultraviolet to the NIR. We used tapping-mode atomic force microscopy, optical microscopy, grazing-incidence wide-angle X-ray scattering, and contact angle measurements to investigate the effect of IEICO-4F on the performance of the ternary OPDs. The low compatibility of PffBT4T-2OD and IEICO-4F, originating from weak intermolecular interactions, allowed us to manipulate the degree of phase separation between the donor and acceptor in the ternary blends, leading to an optimized blend morphology featuring efficient charge separation, transport, and collection. To demonstrate its applicability, we integrated our OPD with two light-emitting diodes and used the system for precisely calculated transmissive pulse oximetry.
Collapse
Affiliation(s)
- Bing-Huang Jiang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City243, Taiwan
| | - Fu-Chun Hsiao
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City243, Taiwan
| | - Yan-Ru Lin
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City243, Taiwan
| | | | - Yu An Shen
- Affiliated Senior High School of National Taiwan Normal University, Taipei106, Taiwan
| | - Yi-Yang Hsu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City243, Taiwan
| | - Po-Han Lee
- Affiliated Senior High School of National Taiwan Normal University, Taipei106, Taiwan
| | - Yu-Wei Su
- Department of Chemical Engineering, Feng Chia University, Taichung40724, Taiwan
| | - Huei-Ru Lu
- Department of Chemical Engineering, Feng Chia University, Taichung40724, Taiwan
| | - Chi-Wei Lin
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City243, Taiwan
| | - Choon Kit Chan
- Mechanical Engineering Department, Faculty of Engineering and Quantity Surveying, INTI International University, 71800Nilai, Negeri Sembilan, Malaysia
| | - Chih-Ping Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City243, Taiwan
| |
Collapse
|
9
|
Zhong Z, Liu X, Li L, Han Z, He Y, Xu X, Hai J, Zhu R, Yu J. An asymmetric A-D-π-A type non-fullerene acceptor enables high-detectivity near-infrared organic photodiodes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang X, Gao S, Han J, Liu Z, Qiao W, Wang ZY. High-Performance All-Polymer Photodetectors Enabled by New Random Terpolymer Acceptor with Fine-Tuned Molecular Weight. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26978-26987. [PMID: 35656812 DOI: 10.1021/acsami.2c04775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reducing the dark current density and enhancing the overall performance of the device is the focal point in research for organic photodetectors. Two novel random terpolymers (P3 and P4) with different molecular weights are synthesized and evaluated as acceptors in bulk heterojunction (BHJ) polymer photodetectors. Compared with known acceptor materials, such as N2200 (P1) and F-N2200 (P2), polymer P4 has a lower lowest unoccupied molecular orbital (LUMO) energy level, favorable morphology, and good miscibility with a donor material J71, which leads to proper phase separation of the blend film and better dissociation of excitons and transport of carriers. Therefore, a considerably low dark current density (Jd) of 1.9 × 10-10 A/cm2 and a high specific detectivity (D*) of 1.8 × 1013 cm Hz1/2/W (also "Jones") at 580 nm under a -0.1 V bias are realized for the P4-based photodetector. More importantly, the device also exhibits a fast response speed (τr/τf = 1.24/1.87 μs) and a wide linear dynamic range (LDR) of 109.2 dB. This work demonstrates that high-performance all-polymer photodetectors with ideal morphology can be realized by random polymer acceptors with a fine-tuned molecular weight.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shijia Gao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Han
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhipeng Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenqiang Qiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi Yuan Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
11
|
Yu YY, Peng YC, Chiu YC, Liu SJ, Chen CP. Realizing Broadband NIR Photodetection and Ultrahigh Responsivity with Ternary Blend Organic Photodetector. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1378. [PMID: 35458086 PMCID: PMC9027253 DOI: 10.3390/nano12081378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023]
Abstract
With the advancement of portable optoelectronics, organic semiconductors have been attracting attention for their use in the sensing of white and near-infrared light. Ideally, an organic photodiode (OPD) should simultaneously display high responsivity and a high response frequency. In this study we used a ternary blend strategy to prepare PM6: BTP-eC9: PCBM-based OPDs with a broad bandwidth (350-950 nm), ultrahigh responsivity, and a high response frequency. We monitored the dark currents of the OPDs prepared at various PC71BM blend ratios and evaluated their blend film morphologies using optical microscopy, atomic force microscopy, and grazing-incidence wide-angle X-ray scattering. Optimization of the morphology and energy level alignment of the blend films resulted in the OPD prepared with a PM6:BTP-eC9:PC71BM ternary blend weight ratio of 1:1.2:0.5 displaying an extremely low dark current (3.27 × 10-9 A cm-2) under reverse bias at -1 V, with an ultrahigh cut-off frequency (610 kHz, at 530 nm), high responsivity (0.59 A W-1, at -1.5 V), and high detectivity (1.10 × 1013 Jones, under a reverse bias of -1 V at 860 nm). Furthermore, the rise and fall times of this OPD were rapid (114 and 110 ns), respectively.
Collapse
Affiliation(s)
- Yang-Yen Yu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan;
| | - Yan-Cheng Peng
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan;
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Song-Jhe Liu
- Taiwan Thompson Painting Equipment Co., Ltd., New Taipei City 25169, Taiwan;
| | - Chih-Ping Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan;
| |
Collapse
|
12
|
Zhou X, Wu H, Lin B, Naveed HB, Xin J, Bi Z, Zhou K, Ma Y, Tang Z, Zhao C, Zheng Q, Ma Z, Ma W. Different Morphology Dependence for Efficient Indoor Organic Photovoltaics: The Role of the Leakage Current and Recombination Losses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44604-44614. [PMID: 34499484 DOI: 10.1021/acsami.1c09600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient indoor organic photovoltaics (OPVs) have attracted strong attention for their application in indoor electronic devices. However, the route to optimal photoactive film morphology toward high-performance indoor devices has remained obscure. The leakage current dominated by morphology exerts distinguishing influence on the performance under different illuminations. We have demonstrated that morphology reoptimization plays an important role in indoor OPVs, and their optimal structural features are different from what we laid out for outdoor devices. For indoor OPVs, in order to facilitate low leakage current, it is essential to enhance the crystallinity, phase separation, and domain purity, as well as keeping small surface roughness of the active layer. Furthermore, considering the reduced bimolecular recombination at low light intensity, we have shown that PM6:M36-based indoor devices can work effectively with a large ratio of the donor and acceptor. Our work correlating structure-performance relation and the route to optimal morphology outlines the control over device leakage current and recombination losses boosting the progress of efficient indoor OPVs.
Collapse
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbo Wu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Baojun Lin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hafiz Bilal Naveed
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingming Xin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunlong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qingdong Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|