1
|
Wang X, Cui J, Gong Q, Zheng L, Liu D, Nie G. A multiple signal amplification electrochemiluminescence sensor for Hg 2+ detection based on Ce 2Sn 2O 7/poly(5-formylindole) nanocomposites. Talanta 2025; 284:127227. [PMID: 39561617 DOI: 10.1016/j.talanta.2024.127227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
A novel electrochemiluminescence (ECL) sensor for the detection of Hg2+ is constructed based on the synthesized cerium stannate/poly(5-formylindole) (Ce2Sn2O7/P5FIn) composite and multiple DNA signal amplification techniques, including strand displacement amplification (SDA) reaction and hybridization chain reaction (HCR). On the one hand, the combination of Ce2Sn2O7 and P5FIn improves the electrochemical reaction rate between Ce2Sn2O7 and the co-reactant, and significantly enhances the ECL signal. On the other hand, compared to P5FIn, Ce2Sn2O7/P5FIn has a larger specific surface area to facilitate the effective fixation of hairpin DNA H1. The target Hg2+ is bound to the DNA strand (mDNA) rich in thymine bases (T) by T-Hg2+-T. Subsequently, with the assistance of polymerase (phi29 DNA) and restriction endonuclease (Nt.BbvCI), strand displacement amplification (SDA) reaction is triggered to generate a large number of simulated target (MT). Hairpin DNA H1 captures MT, which then further triggers a hybridization chain reaction (HCR) to produce long strand DNA (dsDNA) rich in cytosine. Finally, a large amount of Ag+ is introduced through C-Ag+-C, which is used as a co-reaction accelerator of Ce2Sn2O7-K2S2O8 system to significantly enhance the ECL signal strength. Under optimal conditions, the constructed ECL sensor can detect Hg2+ in a wide linear response range of 1.0 fM-100 nM, with a detection limit of 0.30 fM. The sensor also has high sensitivity and good applicability in the detection of seawater samples.
Collapse
Affiliation(s)
- Xianhong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiuying Cui
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qinghua Gong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
2
|
Wu D, Zhu J, Zheng Y, Fu L. Electrochemical Sensing Strategies for Synthetic Orange Dyes. Molecules 2024; 29:5026. [PMID: 39519667 PMCID: PMC11547196 DOI: 10.3390/molecules29215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries.
Collapse
Affiliation(s)
- Dihua Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China;
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
3
|
Meng L, Zhang Y, Wang J, Zhou B, Shi J, Zhang H. Metal organic framework-derived CuO/Cu 2O polyhedron-CdS quantum dots double Z-scheme heterostructure for cathodic photoelectrochemical detection of Hg 2+ in food and environment. Food Chem 2024; 450:139261. [PMID: 38657344 DOI: 10.1016/j.foodchem.2024.139261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron‑cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.
Collapse
Affiliation(s)
- Leixia Meng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jinlong Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Bingxin Zhou
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jianjun Shi
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, PR China.
| | - Huawei Zhang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
4
|
Chen F, Zhao M, Zhang B, Zhao M, Ma Y. Surface Plasmon Resonance-Enhanced CdS/FTO Heterojunction for Cu 2+ Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:3809. [PMID: 38931593 PMCID: PMC11207611 DOI: 10.3390/s24123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Copper ion (Cu2+) pollution poses a serious threat to marine ecology and fisheries. However, the complexity of seawater and its interference factors make the online detection of Cu2+ quite challenging. To address this issue, we introduce the concept of the photo-assisted adjustment barrier effect into electrochemical detection, using it as a driving force to generate electrochemical responses. The Schottky barrier demonstrates a remarkable regulatory influence on the electrochemical response under photoexcitation, facilitating the response through Cu2+ adsorption. We developed a 4-MBA-AuNPs/CdS/FTO composite that serves as a sensitive platform for Cu2+ detection, achieving a detection limit of 70 nM. Notably, the photo-assisted adjustment of the barrier effect effectively counters the interference posed by ions in seawater, ensuring accurate detection. Furthermore, the sensor exhibits a promising recovery rate (99.62-104.9%) in real seawater samples, highlighting its practical applications. This innovative approach utilizing the photo-assisted adjustment barrier effect offers a promising path for developing electrochemical sensors that can withstand interference.
Collapse
Affiliation(s)
| | | | | | - Minggang Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Ye Ma
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| |
Collapse
|
5
|
Zhang L, Wang K, Zhou F, Bu Y, Yang X, Nie G. A label-free photoelectrochemical biosensor for silver ions based on Zn-Co doped C and CdS QD nanomaterials. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3202-3208. [PMID: 38742397 DOI: 10.1039/d4ay00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A sensitive photoelectrochemical (PEC) biosensor for silver ions (Ag+) was developed based on Zn-Co doped C and CdS quantum dot (CdS QD) nanomaterials. Hydrophobic modified sodium alginate (HMA), which could stabilize and improve the PEC performance of CdS QDs, was also used for the construction of PEC sensors. Especially, Zn-Co doped C, CdS QDs and HMA were sequentially modified onto an electrode surface via the drop-coating method, and a C base rich DNA strand was then immobilized onto the modified electrode. As the C base in DNA specifically recognized Ag+, it formed a C-Ag+-C complex in the presence of Ag+, which created a spatial steric hindrance, resulting in a reduced PEC response. The sensing platform is sensitive to Ag+ in the range of 10.0 fM to 0.10 μM, with a limit of detection of 3.99 fM. This work offers an ideal platform to determine trace heavy metal ions in environmental monitoring and bioanalysis.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Kun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Feng Zhou
- The Eighth People's Hospital of Qingdao, China
| | - Yuwei Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
6
|
Zhou X, Geng H, Shi P, Wang H, Zhang G, Cui Z, Lv S, Bi S. NIR-driven photoelectrochemical-fluorescent dual-mode biosensor based on bipedal DNA walker for ultrasensitive detection of microRNA. Biosens Bioelectron 2024; 247:115916. [PMID: 38104392 DOI: 10.1016/j.bios.2023.115916] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Optical biosensors have become powerful tools for bioanalysis, but most of them are limited by optic damage, autofluorescence, as well as poor penetration ability of ultraviolet (UV) and visible (Vis) light. Herein, a near-infrared light (NIR)-driven photoelectrochemical (PEC)-fluorescence (FL) dual-mode biosensor has been proposed for ultrasensitive detection of microRNA (miRNA) based on bipedal DNA walker with cascade amplification. Fueled by toehold-mediated strand displacement (TMSD), the bipedal DNA walker triggered by target miRNA-21 is formed through catalytic hairpin assembly (CHA), which can efficiently move along DNA tracks on CdS nanoparticles (CdS NPs)-modified fluorine doped tin oxide (FTO) electrode, resulting in the introduction of upconversion nanoparticles (UCNPs) on electrode surface. Under 980 nm laser irradiation, the UCNPs serve as the energy donor to emit UV/Vis light and excite CdS NPs to generate photocurrent for PEC detection, while the upconversion luminescence (UCL) at 803 nm is monitored for FL detection. This PEC-FL dual-mode biosensor has achieved the ultrasensitive and accurate analysis of miRNA-21 in human serum and different gynecological cancer cells. Overall, the proposed dual-mode biosensor can not only couple the inherent features of each single-mode biosensor but also provide mutual authentication of testing results, which opens up a new avenue for early diagnosis of miRNA-related diseases in clinic.
Collapse
Affiliation(s)
- Xuemin Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; Department of Ultrasonic Medicine, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Hongyan Geng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Pengfei Shi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China; Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, PR China
| | - Huijie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Guofang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Shuzhen Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| | - Sai Bi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| |
Collapse
|
7
|
Nangare S, Patil P. Platinum-alginate-chitosan nanobioconjugate decorated carbon backbone layered biosensor for highly sensitive and selective detection of BACE-1. Int J Biol Macromol 2023; 250:126224. [PMID: 37558026 DOI: 10.1016/j.ijbiomac.2023.126224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/03/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Chitosan (CS) and sodium alginates (SA) have been revealed for the design of layer-by-layer (LbL) assembly to develop pharmaceutical dosage forms owing to their versatile characteristics. Recently, the preference for unique LbL assemblies in biosensor development has offered the modified performance for detection interest analyte. Beta (β)-site amyloid precursor protein-cleaving enzyme 1 (BACE-1) is a pivotal biomarker of Alzheimer's disease (AD) and demands high sensitivity and selective identification for the early-stage diagnosis. In this work, CS-SA‑platinum nanoparticles (Pt-NPs) LbL-based nanobioconjugate decorated carbon backbone-layered affinity surface plasmon resonance (Anti-BACE-1-LbL@Pt-NPs-GO-SPR) biosensor was designed for extremely sensitive and selective sensing of BACE-1. Primarily, LbL nanobioconjugate was synthesized by integrating cationic 'CS' and anionic 'SA' on the face of green-made Pt-NPs. Here, the amines of 'CS' offers a softer surface for anti-BACE-1 immobilization that leads to maintaining the bio-functionality of bioreceptors, provides the specific orientation for bioreceptors, etc. As well, the synthesized graphene oxide (GO, 2D carbon backbone) was preferred as non-plasmonic nanomaterials due to their plenty of merits in biosensors. Here, the designed biosensor provides a low detection limit (LOD) of 5.63 fg/mL and a wide linear range from 5 fg/mL to 150 ng/mL. Moreover, selectivity and real-time analyses in spiked samples exhibited their practical usefulness in complex specimens for BACE-1 detection. Hence, the decorating of antibody-immobilized CS-SA coated Pt-NPs nanobioconjugate on the face of GO has various benefits mainly extremely sensitive and superb specificity. Overall, CS and SA coated Pt-NPs bioconjugate decorated GO layered SPR biosensors can provide highly sensitive, selectivity, rapid, label-free, etc. detection of BACE-1 in clinical samples.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist: Dhule (MS), India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist: Dhule (MS), India.
| |
Collapse
|
8
|
Qin Y, Zhang J, Tan R, Wu Z, Liu M, Li J, Xu M, Gu W, Zhu C, Hu L. Small-Molecule Probe-Induced In Situ-Sensitized Photoelectrochemical Biosensor for Monitoring α-Glucosidase Activity. ACS Sens 2023; 8:3257-3263. [PMID: 37566793 DOI: 10.1021/acssensors.3c01269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Semiconductor-based photoelectrochemical (PEC) biosensors have garnered significant attention in the field of disease diagnosis and treatment. However, the recognition units of these biosensors are mainly limited to bioactive macromolecules, which hinder the photoelectric response due to their insulating characteristics. In this study, we develop an in situ-sensitized strategy that utilizes a small-molecule probe at the interface of the photoelectrode to accurately detect α-glucosidase (α-Glu) activity. Silane, a prototype small-molecule probe, was surface-modified on graphitic carbon nitride to generate Si nanoparticles upon reacting with hydroquinone, the enzymatic product of α-Glu. The in situ formed heterojunction enhances the light-harvesting property and photoexcited carrier separation efficiency. As a result, the in situ-sensitized PEC biosensor demonstrates excellent accuracy, a low detection limit, and outstanding anti-interference ability, showing good applicability in evaluating α-Glu activity and its inhibitors in human serum samples. This novel in situ sensitization approach using small-molecule probes opens up new avenues for developing simple and efficient PEC biosensing platforms by replacing conventional biorecognition elements.
Collapse
Affiliation(s)
- Ying Qin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingyi Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rong Tan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhichao Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mingwang Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinli Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Miao Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
9
|
Zhang R, Zheng D, Chen J, Zhang C, Wang C. Design of NiS@Ni3S2/CdS heterostructure with intimate contact interface for sensitive photoelectrochemical detection of lincomycin. Food Chem 2023; 418:136028. [PMID: 37015148 DOI: 10.1016/j.foodchem.2023.136028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Owing to their internal electric field effect and abundant photo-induced carriers, photoactive heterostructured materials are considered a feasible approach to improve the sensitivity of a photoelectrochemical (PEC) sensor. Herein, a novel NiS@Ni3S2/CdS heterostructure composite is derived from Ni-loaded zeolitic imidazolate framework (Ni-ZIF). The PEC experiments showed the NiS@Ni3S2/CdS composite exhibits superior photocurrent response than NiS@Ni3S2 and CdS. This is attributed to the fact that the type II heterojunction of NiS@Ni3S2/CdS with a tightly connected interface reduces the transport distance of carriers and facilitates electron-hole separation. Next, using the NiS@Ni3S2/CdS modified electrode, an aptamer/glutaraldehyde/chitosan/NiS@Ni3S2/CdS/ITO PEC biosensor is developed, which exhibits excellent sensitivity for lincomycin (Lin) detection with a wide linear range (0.0001 ∼ 1.25 nM) and a low detection limit of 0.067 pM. The prepared sensor is further employed to monitor Lin in the actual milk. The results confirm that the prepared sensing electrode displays good selectivity, repeatability and stability.
Collapse
|
10
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
11
|
Valentini F, Sabuzi F, Forchetta M, Conte V, Galloni P. KuQuinones: a ten years tale of the new pentacyclic quinoid compound. RSC Adv 2023; 13:9065-9077. [PMID: 36950082 PMCID: PMC10025941 DOI: 10.1039/d3ra00539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Quinones are widespread in nature, as they participate, mainly as redox mediators, in several biochemical processes. Up to now, various synthetic quinones have been recommended in the literature as leading molecules in energy, biomedical and catalytic fields. In this brief review, we retraced our research activity in the last ten years, mainly dedicated to the study of a new class of peculiar pentacyclic conjugated quinoid compounds, synthesized in our group. In particular, their application as sensitive materials in photoelectrochemical devices and in biosensors, as photocatalysts in selective oxidation reactions, and their anticancer activity is here reviewed.
Collapse
Affiliation(s)
- Francesca Valentini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Mattia Forchetta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| |
Collapse
|
12
|
Lu Z, Chen M, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Yin H, Zhou X, Ye J, Shen Y, Rao H. Machine Learning System To Monitor Hg 2+ and Sulfide Using a Polychromatic Fluorescence-Colorimetric Paper Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9800-9812. [PMID: 36750421 DOI: 10.1021/acsami.2c16565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An optical monitoring device combining a smartphone with a polychromatic ratiometric fluorescence-colorimetric paper sensor was developed to detect Hg2+ and S2- in water and seafood. This monitoring included the detection of food deterioration and was made possible by processing the sensing data with a machine learning algorithm. The polychromatic fluorescence sensor was composed of blue fluorescent carbon quantum dots (CDs) (BU-CDs) and green and red fluorescent CdZnTe quantum dots (QDs) (named GN-QDs and RD-QDs, respectively). The experimental results and density functional theory (DFT) prove that the incorporation of Zn can improve the stability and quantum yield of CdZnTe QDs. According to the dynamic and static quenching mechanisms, GN-QDs and RD-QDs were quenched by Hg2+ and sulfide, respectively, but BU-CDs were not sensitive to them. The system colors change from green to red to blue as the concentration of the two detectors rises, and the limits of detection (LOD) were 0.002 and 1.488 μM, respectively. Meanwhile, the probe was combined with the hydrogel to construct a visual sensing intelligent test strip, which realized the monitoring of food freshness. In addition, a smartphone device assisted by multiple machine learning methods was used to text Hg2+ and sulfide in real samples. It can be concluded that the fabulous stability, sensitivity, and practicality exhibited by this sensing mechanism give it unlimited potential for assessing the contents of toxic and hazardous substances Hg2+ and sulfide.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Maoting Chen
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu 611130, P. R. China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen 518000, P. R. China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| |
Collapse
|
13
|
Bu Y, Wang K, Yang X, Nie G. Photoelectrochemical sensor for detection Hg2+ based on in situ generated MOFs-like structures. Anal Chim Acta 2022; 1233:340496. [DOI: 10.1016/j.aca.2022.340496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
|
14
|
Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review. Biosens Bioelectron 2022; 216:114634. [DOI: 10.1016/j.bios.2022.114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
|
15
|
Fu Y, Du C, Zhang Q, Xiao K, Zhang X, Chen J. Colorimetric and Photocurrent-Polarity-Switching Photoelectrochemical Dual-Mode Sensing Platform for Highly Selective Detection of Mercury Ions Based on the Split G-Quadruplex-Hemin Complex. Anal Chem 2022; 94:15040-15047. [PMID: 36259408 DOI: 10.1021/acs.analchem.2c03084] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mercury ion (Hg2+) is one of the most harmful heavy metal ions with the greatest impact on public health. Herein, based on the excellent catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and the strong photocurrent-polarity-switching ability to SnS2 photoanode of the split G-quadruplex-hemin complex, the magnetic NiCo2O4@SiO2-NH2 sphere-assisted colorimetric and photoelectrochemical (PEC) dual-mode sensing platform was developed for the Hg2+ assay. First, the amino-labelled single-stranded DNA1 (S1) was immobilized on NiCo2O4@SiO2-NH2 and then partly hybridized with another single-stranded DNA2 (S2). When Hg2+ was present, the thymine-Hg2+-thymine base pairs between S1 and S2 were formed, causing the formation of the split G-quadruplex in the presence of K+. After addition of hemin, the split G-quadruplex-hemin complex was obtained and effectually catalyzed the H2O2-mediated oxidation of TMB. Thus, the color and absorbance intensity of the TMB solution were changed, resulting in the visual and colorimetric detection of Hg2+. The linear response range is 10 pM to 10 nM, and the detection limit is 3.8 pM. Meanwhile, the above G-quadruplex-hemin complex effectively switched the photocurrent polarity of SnS2-modified indium tin oxide electrode, leading to the sensitive and selective PEC assay of Hg2+ with a linear response range of 5 pM to 500 nM and a detection limit of 2.3 pM. Moreover, the developed dual-mode sensing platform provided mutual authentication of detection results in different modes, effectively improving the assay accuracy and confidence, and may have a good potential application in highly sensitive, selective, and accurate determination of Hg2+ in environmental fields.
Collapse
Affiliation(s)
- Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
16
|
Zeng J, Liao L, Lin X, Liu G, Luo X, Luo M, Wu F. Red-Emissive Sulfur-Doped Carbon Dots for Selective and Sensitive Detection of Mercury (II) Ion and Glutathione. Int J Mol Sci 2022; 23:9213. [PMID: 36012486 PMCID: PMC9409242 DOI: 10.3390/ijms23169213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 01/15/2023] Open
Abstract
Carbon dots (CDs) show great potential in bioimaging and biosensing because of their good biocompatibility and excellent optical properties. However, CDs with intense red emissions for sensitive and selective detection are rarely reported. Herein, we prepared the red-emissive carbon dots (RCDs) through a facile hydrothermal method using tetra (4-carboxyphenyl) porphyrin (TCPP) and thiourea as starting materials. The obtained RCDs were characterized by TEM, XRD, and XPS. RCDs exhibited high water solubility and strong red emission (λem = 650 nm), with the fluorescence quantum yield as high as 26.7%, which was greatly higher than that of TCPP. Moreover, the as-prepared RCDs could be acted as a highly selective and sensitive probe for the detection of Hg2+ and glutathione (GSH) through the fluorometric titration method. The detection limits of Hg2+ and GSH were calculated to be 1.73 and 1.6 nM, respectively. The cellular experiments demonstrated the good biocompatibility of RCDs and their feasibility in bioimaging. Thus, this work provided a simple strategy to design and synthesize the highly red-emissive carbon dots, which showed promising application in biological and environmental assays.
Collapse
Affiliation(s)
- Jinjin Zeng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430072, China
| | - Linhong Liao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiao Lin
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ming Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430072, China
| |
Collapse
|
17
|
Zhang L, Liu J, Gao M, Han L, Liu X, Xing X. Fluorescent Determination of Mercury(II) and Glutathione with Binding to Thymine–Guanine Base Pairs. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Liyuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Jinxiao Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Mengying Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Li Han
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Xueguo Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
18
|
Liu C, Li Y, Chen T, Meng S, Liu D, Dong D, You T. Electric Field-Induced Specific Preconcentration to Enhance DNA-Based Electrochemical Sensing of Hg 2+ via the Synergy of Enrichment and Self-Cleaning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7412-7419. [PMID: 35671382 DOI: 10.1021/acs.jafc.2c02416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient preconcentration is critical for sensitive and selective electrochemical detection of metal ions, but rapid specific enrichment with depressed absorption of interfering ions at the electrode is challenging. Here, we proposed an electric field-induced specific preconcentration to boost the analytical performance of DNA-based electrochemical sensors for Hg2+ detection. As for such preconcentration, a positive external electric field was first used to enrich Hg2+ at an electrode assembled with T-rich DNA, thus boosting T-Hg2+-T recognitions. The following applied inverse electric field strips the nonspecifically absorbed Hg2+ and other interfering ions, thus depressing matrix interferences via self-cleaning. Based on this principle, we designed a portable device to realize programmable control of electric fields; a T-Hg2+-T recognition-based electrochemical sensor was thus fabricated as a model platform to assess the feasibility of electric field-induced preconcentration. The experimental results revealed that such a strategy decreased the time of T-Hg2+-T-based recognition from 60 to 20 min and led to detection with better reproducibility by depressing the influence of free Hg2+ as well as interfering ions. This strategy offered Hg2+ detection limits of 0.01 pM─three-fold better than that without preconcentration─within 22 min. The proposed preconcentration strategy offers a new way to enhance the analytical performance of sensing at the solid-liquid interface.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daming Dong
- National Engineering Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
19
|
Li M, Wu Y, An S, Yan Z. Au NP-Decorated g-C 3N 4-Based Photoelectochemical Biosensor for Sensitive Mercury Ions Analysis. ACS OMEGA 2022; 7:19622-19630. [PMID: 35721978 PMCID: PMC9202297 DOI: 10.1021/acsomega.2c01335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Herein, an efficient and feasible photoelectrochemical (PEC) biosensor based on gold nanoparticle-decorated graphitic-like carbon nitride (Au NPs@g-C3N4) with excellent photoelectric performance was designed for the highly sensitive detection of mercury ions (Hg2+) . The proposed Au NPs@g-C3N4 was first modified on the surface of the electrode, which possessed a remarkable photocurrent conversion efficiency and could produce a strong initial photocurrent. Then, the thymine-rich DNA (S1) was immobilized on the surface of the modified electrode via Au-N bonds. Subsequently, 1-hexanethiol (HT) was added to the resultant electrode to block nonspecific binding sites. Finally, the target Hg2+ was incubated on the surface of the modified glassy carbon electrode (GCE). In the presence of target Hg2+, the thymine-Hg2+-thymine (T-Hg2+-T) structure formed due to the selective capture capability of thymine base pairs toward Hg2+, resulting in the significantly decrease of the photocurrent. Thereafter, the proposed PEC biosensor was successfully used for sensitive Hg2+ detection, as it possessed a wide linear range from 1 pM to 1000 nM with a low detection limit of 0.33 pM. Importantly, this study demonstrates a new method of detecting Hg2+ and provides a promising platform for the detection of other heavy metal ions of interest.
Collapse
Affiliation(s)
- Mengjie Li
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Ying Wu
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Siyu An
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Zhitao Yan
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|
20
|
Zhao X, Ye Y, Yue X, Ye X, Wang Q, Li R. A fluorescent chemosensor for Hg(II) optical recognition: Mesoporous MCM-41 functionalized with a covalently linked Eu(III) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Liu M, Yang J, Wang J, Liu Z, Hu C. Light-Addressable Paper-Based Photoelectrochemical Analytical Device with Tunable Detection Throughput for On-Site Biosensing. Anal Chem 2022; 94:583-587. [DOI: 10.1021/acs.analchem.1c04907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jia Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Dai S, Huang H, Liu S, Deng W, Tan Y, Xie Q. Au nanoclusters-decorated WO 3 nanorods for ultrasensitive photoelectrochemical sensing of Hg 2+. Analyst 2022; 147:5747-5753. [DOI: 10.1039/d2an01324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ultrasensitive photoelectrochemical sensing of Hg2+ is achieved using Au nanocluster-decorated WO3 nanorods as photoactive materials.
Collapse
Affiliation(s)
- Si Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shihan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
23
|
Li MJ, An SY, Wu Y. Photoelectrochemical monitoring of miRNA based on Au NPs@g-C 3N 4 coupled with exonuclease-involved target cycle amplification. Anal Chim Acta 2021; 1187:339156. [PMID: 34753579 DOI: 10.1016/j.aca.2021.339156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Herein, a sensitive photoelectrochemical (PEC) biosensing platform was designed for quantitative monitoring of microRNA-141 (miRNA-141) based on Au nanoparticles@graphitic-like carbon nitride (Au NPs@g-C3N4) as the signal generator accompanying with T7 exonuclease (T7 Exo)-involved target cycle amplification process. Initially, the prepared Au NPs@g-C3N4 as the signal generator was coated on the electrode surface, which could produce a strong PEC signal due to the unique optical and electronic properties of g-C3N4 and the surface plasmonic resonance (SPR) enhanced effect of Au NPs. Meanwhile, the modified Au NPs@g-C3N4 was also considered as the fixed platform for immobilization of S1-S2 through Au-N bond. Thereafter, the T7 Exo-involved target cycle amplification process would be initiated in existence of miRNA-141 and T7 Exo, leading to abundant single chain S1 exposed on electrode surface. Ultimately, the S3-SiO2 composite was introduced through DNA hybridization, thereby producing high steric hindrance to block external electrons supply and light harvesting, which would further cause a significantly quenched PEC signal. Experimental results revealed that the PEC signal was gradually inhibited with the raising miRNA-141 concentration in the range from 1 fM to 1 nM with a detection limit of 0.3 fM. The PEC biosensor we proposed here provides a valuable scheme in miRNA assay for early disease diagnosis and biological research.
Collapse
Affiliation(s)
- Meng-Jie Li
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China.
| | - Si-Yu An
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China
| | - Ying Wu
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China
| |
Collapse
|
24
|
Zeng Z, Tang J, Zhang M, Pu S, Tang D. Ultrasensitive zero-background photoelectrochemical biosensor for analysis of organophosphorus pesticide based on in situ formation of DNA-templated Ag 2S photoactive materials. Anal Bioanal Chem 2021; 413:6279-6288. [PMID: 34373932 DOI: 10.1007/s00216-021-03582-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023]
Abstract
Herein, a novel signal-on photoelectrochemical (PEC) biosensor with nearly zero background noise (ZBN) was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction (HCR) signal amplification. The capture probe (S1) on the gold nanoparticle-modified electrode can hybridize with the aptamer molecule to generate a simple PEC biosensor. In the presence of a target molecule, the aptamer molecule is released on the double-stranded DNA (dsDNA)-modified PEC biosensor. Meanwhile, the capture probe remains on the electrode and can open the DNA hairpins (H1, H2) which are rich in cytosine, to trigger the HCR reaction. The rich "C" strands are uncovered after formation of a long dsDNA polymer strand, which can assemble multiple silver ions (Ag+) by means of by C-Ag+-C chelation. Then, a large number of Ag2S can be generated by challenging with S2- solution, producing a satisfactory photocurrent signal. The photoactive material is formed in situ, which eliminates the laborious operation. Moreover, the signal can be highly amplified with nearly zero background noise and HCR signal amplification. Under optimal conditions, the ZBN aptasensor exhibited high sensitivity and selectivity, with a low detection limit of 2 pg mL-1 for malathion. Importantly, the sensing platform can also be applied to determine the presence of malathion in real samples. In this assay, a novel signal-on photoelectrochemical biosensor with nearly zero background noise was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction signal amplification.
Collapse
Affiliation(s)
- Zhiyao Zeng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, Jiangxi, People's Republic of China
| | - Juan Tang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, Jiangxi, People's Republic of China. .,Jiangxi Key Laboratory of Organic Chemistry, Nanchang, 330013, Jiangxi, People's Republic of China.
| | - Ming Zhang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, Jiangxi, People's Republic of China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Nanchang, 330013, Jiangxi, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
25
|
Pérez-Cadenas M, Asedegbega-Nieto E, Carter J, Anderson JA, Rodríguez-Ramos I, Guerrero-Ruiz A. Study of the Interaction of an Iron Phthalocyanine Complex over Surface Modified Carbon Nanotubes. MATERIALS 2021; 14:ma14154067. [PMID: 34361260 PMCID: PMC8347569 DOI: 10.3390/ma14154067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNT) were prepared by a modified chemical vapor deposition (CVD) method. The synthesized carbon materials were treated with acidic and basic solutions in order to introduce certain surface functional groups, mainly containing oxygen (OCNT) or amine (ACNT) species. These modified CNTs (OCNT and ACNT) as well as the originally prepared CNT were reacted with a non-ionic Fe complex, Iron (II) Phthalocyanine, and three composites were obtained. The amount of metal complex introduced in each case and the interaction between the complex and the CNT materials were studied with the aid of various characterization techniques such as TGA, XRD, and XPS. The results obtained in these experiments all indicated that the interaction between the complex and the CNT was greatly affected by the functionalization of the latter.
Collapse
Affiliation(s)
- María Pérez-Cadenas
- Departamento Química Inorgánica y Técnica, Facultad de Ciencias UNED, Paseo Senda del Rey No. 9, 28040 Madrid, Spain; (E.A.-N.); (A.G.-R.)
- Correspondence:
| | - Esther Asedegbega-Nieto
- Departamento Química Inorgánica y Técnica, Facultad de Ciencias UNED, Paseo Senda del Rey No. 9, 28040 Madrid, Spain; (E.A.-N.); (A.G.-R.)
| | - Jonathan Carter
- Surface Chemistry and Catalysis Group, Department Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (J.C.); (J.A.A.)
| | - James A. Anderson
- Surface Chemistry and Catalysis Group, Department Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (J.C.); (J.A.A.)
| | | | - Antonio Guerrero-Ruiz
- Departamento Química Inorgánica y Técnica, Facultad de Ciencias UNED, Paseo Senda del Rey No. 9, 28040 Madrid, Spain; (E.A.-N.); (A.G.-R.)
| |
Collapse
|