1
|
Liao M, Shen K, Ma K, Chen Y, Li P, Gutfreund P, Hu X, Petkov JT, Lu JR. Unveiling the multifaceted mechanisms of action in nonionic and cationic biocide combinations against Gram-negative bacteria. J Colloid Interface Sci 2025; 696:137891. [PMID: 40381324 DOI: 10.1016/j.jcis.2025.137891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Quaternary ammonium compounds (QACs) combined with nonionic surfactants have been among the most effective disinfectants for over half a century, leveraging QACs' broad-spectrum antimicrobial activity that targets microbial membranes. However, the specific interactions between QACs and microbial membranes, as well as the role of nonionic surfactants in disinfection, remain unclear. This study investigates these mechanisms using two representative surfactants: the cationic didecyldimethyl ammonium chloride (DDAC) and the nonionic hexaethylene glycol monododecyl ether (C12E6). The antimicrobial activity of these agents, individually and sequentially, was assessed against Gram-negative bacteria through a series of in vitro assays, including outer membrane (OM) permeability, inner membrane (IM) depolarization, and live/dead bacterial imaging. Further insights into membrane interactions were obtained using model lipid bilayers in conjunction with antimicrobial efficacy matrices, FICI (fractional inhibition concentration index), fluorescent liposome leakage, small-angle neutron scattering (SANS), and neutron reflectivity (NR). Results indicate that C12E6 binds to the rough A lipopolysaccharide (RaLPS) head region in the OM, reassembling it into heterogeneous aggregates but with limited penetration to cause IM disruption. Conversely, DDAC induced structural disruptions in both OM and IM, resulting in low inhibitory concentrations and rapid bacterial killing. In mixtures, the C12E6 : DDAC ratio significantly influences antimicrobial efficacy, with higher C12E6 levels inhibiting DDAC's effective membrane interactions.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kun Ma
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Yao Chen
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Peixun Li
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | | | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou 730000 Gansu, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006 Shandong, China
| | - Jordan T Petkov
- Arxada, Hexagon Tower, Delaunays Road, Blackley, Manchester M9 8ZS, UK
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
2
|
Wen Q, He Y, Chi J, Wang L, Ren Y, Niu X, Yang Y, Chen K, Zhu Q, Lin J, Xiang Y, Xie J, Chen W, Yu Y, Wang B, Wang B, Zhang Y, Lu C, Wang K, Teng P, Zhou R. Naturally inspired chimeric quinolone derivatives to reverse bacterial drug resistance. Eur J Med Chem 2025; 289:117496. [PMID: 40088661 DOI: 10.1016/j.ejmech.2025.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Antimicrobial resistance poses an urgent threat to global health, underscoring the critical need for new antibacterial drugs. Ciprofloxacin, a third-generation quinolone antibiotic, is used to treat different types of bacterial infections; however, it often results in the rapid emergence of resistance in clinical settings. Inspired by low susceptibility to antimicrobial resistance of natural antimicrobial peptides, we herein propose a host defense peptide-mimicking strategy for designing chimeric quinolone derivatives which may reduce the likelihood of antibacterial resistance. This strategy involves the incorporation of deliberately designed amphiphilic moieties into ciprofloxacin to mimic the structural characteristics and resistance-evading properties of host defense peptides. A resulting chimeric compound IPMCL-28b, carrying a rigid linker and three cationic amino acids along with a lipophilic acyl n-decanoyl tail, exhibited potent activity against a panel of multidrug-resistant bacterial strains by endowing the ciprofloxacin derivatives with additional ability to disrupt bacterial cell membranes. Molecular dynamics simulations showed that IPMCL-28b demonstrates significantly stronger disruptive interactions with cell membranes than ciprofloxacin. This compound not only demonstrated high selectivity with low hemolysis side effect, but also significantly reduced the likelihood of resistance development compared with ciprofloxacin. Excitingly, IPMCL-28b demonstrated highly enhanced in vivo antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with a 99.99 % (4.4 log) reduction in skin bacterial load after a single dose. These findings highlight the potential of host defense peptides-mimicking amphiphilic ciprofloxacin derivatives to reverse antibiotic resistance and mitigate the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Qi Wen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Luyao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yixuan Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Xiaoke Niu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanqing Yang
- Zhejiang Key Laboratory of Cell and Molecular Intelligent Design and Development, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kang Chen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Qi Zhu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Juncheng Lin
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Wenteng Chen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Yongping Yu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| | - Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Ruhong Zhou
- Zhejiang Key Laboratory of Cell and Molecular Intelligent Design and Development, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; Department of Chemistry, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Dad N, Elsawy MA, Humphreys G, Pluen A, Lu JR, McBain AJ. A critical view of antimicrobial peptides: exploring their potential and the barriers to realization. J Appl Microbiol 2025; 136:lxaf087. [PMID: 40205522 DOI: 10.1093/jambio/lxaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/07/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
The global rise of multidrug-resistant infections highlights the urgent need for innovative therapeutic strategies beyond traditional antibiotics. Antimicrobial peptides (AMPs), naturally occurring in all forms of life and synthetically producible, have garnered significant attention for their broad-spectrum antimicrobial properties and diverse mechanisms of action, including membrane disruption, immune modulation, and biofilm formation inhibition and disruption. Despite great potential, the clinical deployment of AMPs faces significant challenges, including cytotoxicity, low chemical stability, high production costs, and stringent regulatory demands. Innovative strategies, such as AMP-antibiotic conjugation, offer potential solutions to some of these challenges by enhancing efficacy, reducing toxicity, and broadening antimicrobial activity. This review critically evaluates the promise and limitations of AMPs as therapeutic antibacterial agents. We also explore the potential of AMP-antibiotic conjugates, highlighting their potential synergistic effects and the obstacles to their clinical application. Antimicrobial self-assembling peptides are also discussed, with their ability to form nanostructures that may disrupt biofilms and inhibit bacterial communication, representing a promising but complex avenue. A critical evaluation of these emerging strategies, grounded in their practical applicability and translational challenges, is essential to drive meaningful progress in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Navid Dad
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Mohamed A Elsawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Gavin Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Schuster Building, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
4
|
Butuyuyu BJ, Liu J, Ding Q, Zhang J, Li D, Abdulkadir AZ, Lee CS, Cai L, Wong KMC, Kim JS, Zhang P. 808 nm Light-Triggered Cyanine-Decorated Iridium(III) Complexes for Antibacterial Photodynamic Therapy in Deep-Tissue. Inorg Chem 2025; 64:8135-8142. [PMID: 40215551 DOI: 10.1021/acs.inorgchem.5c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Acute bacterial skin and skin structure infections (ABSSSIs) pose significant global health challenges, exacerbated by rising antibiotic resistance. Antibacterial photodynamic therapy (APDT) has emerged as a promising strategy to combat these infections by utilizing a photosensitizer (PS) that generates reactive oxygen species (ROS) upon light activation. However, the limited tissue penetration of conventional organic PSs, which primarily absorb in the UV-vis spectra, has hindered their therapeutic potential for deeper infections. Herein, we introduce a novel iridium(III)-cyanine complex (Ir-cy) with strong near-infrared (NIR) absorption at 814 nm (up to 101 nm red-shifted from previous reports), specifically designed to enhance tissue penetration for APDT. Under 808 nm laser irradiation, Ir-cy demonstrated a substantial ROS generation capacity, achieving approximately 70% reduction in Staphylococcus aureus (S. aureus) colonies at a depth of 7.2 mm within a simulated tissue model. Comprehensive in vitro and in vivo evaluations further confirmed its potent antibacterial efficacy against S. aureus while maintaining excellent biocompatibility. These findings highlight the potential of Ir-cy as a highly effective NIR-active PS, paving the way for advanced therapeutic strategies targeting deep-tissue ABSSSIs through optimized APDT.
Collapse
Affiliation(s)
- Baraka Joseph Butuyuyu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiqiang Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon ,Hong Kong SAR, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jinxin Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Shenzhen 518101, China
| | - Dan Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Abdulkadir Zakari Abdulkadir
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon ,Hong Kong SAR, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Barbarossa A, Mallamaci R, Spinozzi E, Maggi F, Sgobba MN, Rosato A, Carocci A, Meleleo D. Investigating Bergamot Essential Oil (BEO) Properties: Cytoprotection in Neuronal Cells Exposed to Heavy Metals and Antibacterial Activities. Antioxidants (Basel) 2025; 14:400. [PMID: 40298618 PMCID: PMC12024135 DOI: 10.3390/antiox14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Bergamot [Citrus × limon (L.) Osbeck, syn. C. × bergamia (Risso) Risso & Poit.] is primarily cultivated in the Calabria region of Italy and exploited in the food and perfumery industry. The epicarp of its fruit is a rich source of essential oil (BEO) containing mainly monoterpenes, which are known for their diverse biological activities, including antimicrobial, anti-inflammatory, antiproliferative, and neuromodulatory effects. Emerging evidence suggests that oxidative stress plays a central role in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), where it contributes to neuronal dysfunction and cell death. Moreover, heavy metal exposure has been identified as a key environmental factor exacerbating oxidative stress and neurodegeneration in AD. This study aimed to explore whether BEO could mitigate heavy metal (Cd2+, Hg2+, and Pb2+)-induced neurotoxicity in SH-SY5Y cells, a model system for brain cells. MTT and calcein-AM assays were performed to examine the viability of the SH-SY5Y cells after exposure to each heavy metal itself, or in combination with BEO, whereas the LDH assay was carried out to determine the effects of BEO towards necrotic cell death induced by heavy metals. Furthermore, DCFH-DA was performed to determine whether BEO could protect SH-SY5Y from heavy metal-induced oxidative stress. This study also investigated the antibacterial properties of BEO on different Gram-positive and Gram-negative bacterial strains belonging to the ATCC collection. These results suggest that BEO may help counteract heavy metal-induced neuronal damage, particularly Cd2+ toxicity, potentially reducing one of the environmental risk factors associated with AD. Additionally, its antimicrobial properties reinforce its relevance in preventing infections that may contribute to neuroinflammation in AD.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.)
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (M.N.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.S.); (F.M.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.S.); (F.M.)
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (M.N.S.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.)
| | - Alessia Carocci
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.R.)
| | - Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
6
|
Liao M, Gong H, Ge T, Shen K, Campana M, McBain AJ, Wu C, Hu X, Lu JR. Probing antimicrobial synergy by novel lipopeptides paired with antibiotics. J Colloid Interface Sci 2025; 681:82-94. [PMID: 39591858 DOI: 10.1016/j.jcis.2024.11.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Antimicrobial resistance (AMR) is fast becoming a major global challenge in both hospital and community settings as many current antibiotics and treatment processes are under the threat of being rendered less effective or ineffective. Synergistic combination of an antibiotic and an aiding agent with a different set of properties provides an important but largely unexploited option to 'repurpose' existing biomaterial's space while addressing issues of potency, spectrum, toxicity and resistance in early stages of antimicrobial drug discovery. This work explores how to combine tetracycline/minocycline (TC/MC) with a broad-spectrum antimicrobial lipopeptide that has been designed to improve the efficiency of membrane targeting and intramembrane accumulation, thereby enhancing antimicrobial efficacy. Experimental measurements of fractional inhibition concentration index (FICI) were undertaken from binary antibiotic-lipopeptide combinations. Most FICI values were found to be lower than 0.5 against both Gram-positive and Gram-negative bacterial strains studied including 3 AMR strains, revealing strong synergetic effects via favorable membrane-lytic interactions. The antimicrobial actions of this type of binary combinations are featured by the fast time-killing and high TC/MC uptake, benefited from effective membrane-lytic disruptions by the lipopeptide. This study thus provides an important mechanistic understanding of the combined antibiotic-lipopeptide approach to improve the therapeutic potential of conventional antibiotics by illustrating how amphiphilic lipopeptide-antibiotic combinations interact with biological membranes, providing a promising alternative to combat AMR through rational design of lipopeptide as an aiding agent.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK.
| |
Collapse
|
7
|
Möller D, van der Walt M, Oosthuizen C, Serian M, Serem JC, Lorenz CD, Mason AJ, Bester MJ, Gaspar ARM. Improving the Activity and Selectivity of a Scorpion-Derived Peptide, A3a, against Acinetobacter baumannii through Rational Design. ACS OMEGA 2025; 10:4699-4710. [PMID: 39959037 PMCID: PMC11822712 DOI: 10.1021/acsomega.4c09593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/18/2025]
Abstract
The rise in antimicrobial resistance has led to an increased desire to understand how antimicrobial peptides (AMPs) can be better engineered to kill antibiotic-resistant bacteria. Previously, we showed that C-terminal amidation of a peptide, identified in scorpion Androctonus amoreuxi venom, increased its activity against both Gram-positive and -negative bacteria. Here, we incorporate all-atom molecular dynamics (MD) simulations in a rational design strategy to create analogues of A3a with greater therapeutic potential. We discover two novel AMPs which achieve greater potency against, and selectivity toward, Acinetobacter baumannii ATCC 19606 but via two distinct mechanisms and which are effective in Galleria mellonella models of A. baumannii burn wound infection. While CD spectroscopy indicates A3a adopts an α-helix conformation in the presence of models of the Gram-negative bacterial plasma membrane, MD simulations reveal it adopts a hairpin conformation during initial binding. Three different strategies, designed to stabilize this hairpin conformation, produce substantially different outcomes. Deletion of Ile6 and Ile10 restricts conformational flexibility, characteristic of A3a, during membrane binding, prevents adoption of the α-helix conformation in the steady state, and abrogates the antibacterial activity. In contrast, substitution of arginine 7 to lysine (A3a[R7K]) or isoleucine 14 to tryptophan (A3a[I14W]) does not consistently affect peptide conformations. Both of these new analogues are rapidly bactericidal toward A. baumannii ATCC 19606 but A3a[R7K] also causes rapid permeabilization and while the antibacterial potency and selectivity are increased for both peptides, this is greatest for A3a[I14W]. Integration of atomistic MD simulations into a multidisciplinary approach to understanding antimicrobial peptide mechanism of action is a valuable tool for interpreting the effects of rational design strategies.
Collapse
Affiliation(s)
- Dalton
S. Möller
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Mandelie van der Walt
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Carel Oosthuizen
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Miruna Serian
- Department
of Physics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London WC2R 2LS, U.K.
| | - June C. Serem
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Christian D. Lorenz
- Department
of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London WC2R 2LS, U.K.
| | - A. James Mason
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science,
Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, U.K.
| | - Megan J. Bester
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anabella R. M. Gaspar
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
8
|
Paracini N, Lakey JH, Clifton LA. Depth-Resolved Temperature-Dependent Penetration of Polymyxin B in Phospholipids/Lipopolysaccharide Asymmetric Bilayers. ACS OMEGA 2025; 10:2616-2627. [PMID: 39895715 PMCID: PMC11780448 DOI: 10.1021/acsomega.4c07648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/23/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
The lipid matrix of the outer membrane (OM) of Gram-negative bacteria consists of a highly asymmetric lipid bilayer containing phospholipids on the inner leaflet and lipopolysaccharides (LPS) in the outer layer. The latter ensures that harmful molecules do not permeate the bacterial cell, but polymyxin B (PmB), a last-resort antibiotic, is capable of interfering with the stability of the LPS layer and overcoming the OM barrier. We have previously shown that the efficacy of PmB in disrupting isotopically asymmetric OM models (2H-phospholipids and 1H-LPS) is regulated by the gel-to-fluid phase transition of the LPS layer. Here, we employ fully deuterated OM models (2H-phospholipids and 2H-LPS) to track the temperature-dependent penetration of PmB within the model membrane by using neutron reflectometry. We use a model-independent approach to quantify PmB penetration as a function of both concentration and temperature as well as a model-dependent analysis to localize PmB in the asymmetric bilayer. By leveraging the ability of neutrons to differentiate hydrogen from deuterium in structural biology we find that PmB hijacks LPS molecules and accumulates predominantly in the hydrophobic region of lipid A.
Collapse
Affiliation(s)
- Nicoló Paracini
- Institut
Laue-Langevin, Large Scale Structures Group, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Jeremy H. Lakey
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2
4HH, U.K.
| | - Luke A. Clifton
- ISIS
Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K.
| |
Collapse
|
9
|
Ghosh R, Pathan S, Jayakannan M. Structural Engineering of Cationic Block Copolymer Architectures for Selective Breaching of Prokaryotic and Eukaryotic Biological Species. ACS APPLIED BIO MATERIALS 2024; 7:7062-7075. [PMID: 39422071 DOI: 10.1021/acsabm.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Positively charged antimicrobial polymers are known to cause severe damage to biological systems, and thus synthetic strategies are urgently required to design next-generation nontoxic cationic macromolecular architectures for healthcare applications. Here, we report a structural-engineering strategy to build cationic linear and star-block copolymer nanoarchitectures having identical chemical composition, molar mass, nanoparticle size, and positive surface charge, yet they differ distinctly in their biological action in breaching prokaryotic species such as E. coli (Gram-negative bacteria) without affecting eukaryotic species like red-blood and mammalian cells. For this purpose, linear and star-block structures are built on a polycaprolactone biodegradable platform having an imidazolium positive handle. Under physiological conditions, the linear architecture exhibits toxicity indiscriminately to all biological species, whereas its star counterpart is remarkably selective in membrane breaching action toward bacteria while maintaining inertness toward eukaryotic species. Confocal microscopy analysis of HPTS fluorescent dye-loaded star-polymer nanoparticles substantiated their antimicrobial action in E. coli. Tissue-penetrable near-infrared fluorescent dye (IR-780) loaded NP aided the in vivo biodistribution analysis and ex vivo quantification of cationic species' accumulations in vital organs in mice. Azithromycin, a clinical water-insoluble macrolide, is delivered from the star platform to accomplish synergistic antimicrobial activity by the combination of bactericidal-bacteriostatic action of the polymer carrier and drug together in a single system.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
10
|
Rezende SB, Chan LY, Oshiro KGN, Buccini DF, Leal APF, Ribeiro CF, Souza CM, Brandão ALO, Gonçalves RM, Cândido ES, Macedo MLR, Craik DJ, Franco OL, Cardoso MH. Peptide PaDBS1R6 has potent antibacterial activity on clinical bacterial isolates and integrates an immunomodulatory peptide fragment within its sequence. Biochim Biophys Acta Gen Subj 2024; 1868:130693. [PMID: 39147109 DOI: 10.1016/j.bbagen.2024.130693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges. MAJOR CONCLUSIONS Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fr agmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties. GENERAL SIGNIFICANCE This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
Collapse
Affiliation(s)
- Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Camila F Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Carolina M Souza
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Amanda L O Brandão
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Regina M Gonçalves
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil.
| |
Collapse
|
11
|
Liao M, Gong H, Shen K, Wang Z, Li R, Campana M, Hu X, Lu JR. Unlocking roles of cationic and aromatic residues in peptide amphiphiles in treating drug-resistant gram-positive pathogens. J Colloid Interface Sci 2024; 672:209-223. [PMID: 38838629 DOI: 10.1016/j.jcis.2024.05.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Renzhi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
12
|
Gao W, Zhao J, Gui J, Wang Z, Chen J, Yue Z. Comprehensive Assessment of BERT-Based Methods for Predicting Antimicrobial Peptides. J Chem Inf Model 2024; 64:7772-7785. [PMID: 39316765 DOI: 10.1021/acs.jcim.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
In recent years, the prediction of antimicrobial peptides (AMPs) has gained prominence due to their high antibacterial activity and reduced susceptibility to drug resistance, making them potential antibiotic substitutes. To advance the field of AMP recognition, an increasing number of natural language processing methods are being applied. These methods exhibit diversity in terms of pretraining models, pretraining data sets, word vector embeddings, feature encoding methods, and downstream classification models. Here, we provide a comprehensive survey of current BERT-based methods for AMP prediction. An independent benchmark test data set is constructed to evaluate the predictive capabilities of the surveyed tools. Furthermore, we compared the predictive performance of these computational methods based on six different AMP public databases. LM_pred (BFD) outperformed all other surveyed tools due to abundant pretraining data set and the unique vector embedding approach. To avoid the impact of varying training data sets used by different methods on prediction performance, we performed the 5-fold cross-validation experiments using the same data set, involving retraining. Additionally, to explore the applicability and generalization ability of the models, we constructed a short peptide data set and an external data set to test the retrained models. Although these prediction methods based on BERT can achieve good prediction performance, there is still room for improvement in recognition accuracy. With the continuous enhancement of protein language model, we proposed an AMP prediction method based on the ESM-2 pretrained model called iAMP-bert. Experimental results demonstrate that iAMP-bert outperforms other approaches. iAMP-bert is freely accessible to the public at http://iamp.aielab.cc/.
Collapse
Affiliation(s)
- Wanling Gao
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jun Zhao
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jianfeng Gui
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zehan Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jie Chen
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
13
|
Guo Z, Hou Y, Tian Y, Tian J, Hu J, Zhang Y. Antimicrobial Peptide Hydrogel with pH-Responsive and Controllable Drug Release Properties for the Efficient Treatment of Helicobacter pylori Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51981-51993. [PMID: 39292612 DOI: 10.1021/acsami.4c09185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Helicobacter pylori is the primary cause of gastric adenocarcinoma, which afflicts more than half of the world's population and seriously affects human health. However, achieving efficient treatment of H. pylori infection by effective drug delivery and bioavailability after oral administration remains a challenge due to the harsh microenvironment, short drug retention time, and physiological barriers in the stomach. Moreover, H. pylori has shown resistance to many clinical antibiotics. Antimicrobial peptides (AMPs) exhibit substantial therapeutic efficacy against H. pylori, while they are not likely to induce drug resistance, suggesting their potential utility for the treatment of diseases related to H. pylori. In this paper, we report the design and synthesis of an AMP (GE33) hydrogel with pH-responsive and controlled peptide release properties, in which the minimal inhibitory concentration of the AMP against H. pylori is as low as 1 μg/mL. GE33 self-assembles into a stable peptide hydrogel under neutral pH conditions but decomposes into monomers or oligomers under acidic conditions. Upon oral administration of the hydrogel, the acidic gastric environment would facilitate rapid release of active AMP molecules from the hydrogel and immediate targeting of H. pylori in the stomach wall. Additionally, the remaining peptide is protected in the hydrogel, extending its retention time in the stomach, so that persistent drug release is achieved. The controlled and sustained release manner of the active molecule GE33, which enhances drug bioavailability, along with its excellent bactericidal efficacy opens a great potential for treating H. pylori infection.
Collapse
Affiliation(s)
- Zhen Guo
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd., Pudong, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakun Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Cao Z, Shi Z, Tong M, Yang D, Liu L. Synergistic Antimicrobial Mechanism of the Ultrashort Antimicrobial Peptide R 3W 4V with a Tadpole-like Conformation. J Chem Inf Model 2024; 64:6838-6849. [PMID: 39186796 DOI: 10.1021/acs.jcim.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Antimicrobial peptides (AMPs) are promising candidates in combating multidrug-resistant microorganisms because of their unique mode of action. Among these peptides, ultrashort AMPs (USAMPs) possess sequences containing less than 10 amino acids and have some advantages over traditional AMPs. However, one of the main limitations of designing novel and highly active USAMPs is that their mechanism of action at the molecular level is not well-known. In this article, we report the antimicrobial mechanism of the USAMP verine (R3W4V) with high antibacterial activity against Escherichia coli. Here, by using well-tempered bias-exchange metadynamics simulations and long-time conventional molecular dynamics simulations, we evaluated whether verine exhibits the same antimicrobial mode of action as that of traditional AMPs. The single verine-membrane system exhibited a relatively flat surface with multiple shallow minima separated by very small energy barriers and adopted highly dynamic structural ensembles. Although the verine sequence is very short, it can still exist briefly in the center of the cell membrane in a transmembrane state. As the concentration of verine increased, the transmembrane conformation was relatively stabilized in the membrane center or proceeded toward the membrane bottom. The lipid bilayer membrane showed relatively large deformation, including the phospholipid head groups embedded inside the lipid hydrophobic center, accompanied by a flip-flop of some lipids. Simulation results indicated that verine has a specific mechanism of action different from that of traditional AMPs. Based on this antimicrobial mechanism of verine, we can design new high-potential USAMPs by enhancing the structural stability of the transmembrane state.
Collapse
Affiliation(s)
- Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhihong Shi
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Mingqiong Tong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Dongying Yang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
15
|
Liu M, Cheng JH, Zhao H, Yu C, Wu J. Targeting the outer membrane of gram-negative foodborne pathogens for food safety: compositions, functions, and disruption strategies. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39213149 DOI: 10.1080/10408398.2024.2397462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne pathogens are a major threat to both food safety and public health. The current trend toward fresh and less processed foods and the misuse of antibiotics in food production have made controlling these pathogens even more challenging. The outer membrane has been employed as a practical target to combat foodborne Gram-negative pathogens due to its accessibility and importance. In this review, the compositions of the outer membrane are extensively described firstly, to offer a thorough overview of this target. Current strategies for disrupting the outer membrane are also discussed, with emphasized on their mechanism of action. The disruption of the outer membrane structure, whether caused by severe damage of the lipid bilayer or by interference with the biosynthesis pathway, has been demonstrated to represent an effective antimicrobial strategy. Interference with the outer membrane-mediated functions of barrier, efflux and adhesion also contributes to the fight against Gram-negative pathogens. Their potential for control of foodborne pathogens in the production chain are also proposed. However, it is possible that multiple components in the food matrix may act as a protective barrier against microorganisms, and it is often the case that contamination is not caused by a single microorganism. Further investigation is needed to determine the effectiveness and safety of these methods in more complex systems, and it may be advisable to consider a multi-technology combined approach. Additionally, further studies on outer membranes are necessary to discover more promising mechanisms of action.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- ChemPartner PharmaTech Co., Ltd., Jiangmen, China
| | - Chongchong Yu
- Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China
| | - Jingzhu Wu
- Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
16
|
Yin W, Yao J, Leng X, Ma C, Chen X, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics 2024; 16:1098. [PMID: 39204443 PMCID: PMC11360180 DOI: 10.3390/pharmaceutics16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antibiotic resistance poses a serious threat to public health globally, reducing the effectiveness of conventional antibiotics in treating bacterial infections. ESKAPE pathogens are a group of highly transmissible bacteria that mainly contribute to the spread of antibiotic resistance and cause significant morbidity and mortality in humans. Phylloseptins, a class of antimicrobial peptides (AMPs) derived from Phyllomedusidae frogs, have been proven to have antimicrobial activity via membrane interaction. However, their relatively high cytotoxicity and low stability limit the clinical development of these AMPs. This project aims to study the antimicrobial activity and mechanisms of a phylloseptin-like peptide, phylloseptin-TO2 (PSTO2), following rational amino acid modification. Here, PSTO2 (FLSLIPHAISAVSALAKHL-NH2), identified from the skin secretion of Phyllomedusa tomopterna, was used as the template for modification to enhance antimicrobial activity. Adding positive charges to PSTO2 through substitution with L-lysines enhanced the interaction of the peptides with cell membranes and improved their antimicrobial efficacy. The analogues SRD7 and SR2D10, which incorporated D-lysines, demonstrated significant antimicrobial effects against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) while also showing reduced haemolytic activity and cytotoxicity, resulting in a higher therapeutic index. Additionally, SRD7, modified with D-lysines, exhibited notable anti-proliferative properties against human lung cancer cell lines, including H838 and H460. This study thus provides a potential development model for new antibacterial and anti-cancer drugs combating antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (W.Y.); (J.Y.); (X.L.); (C.M.); (Y.J.); (T.W.); (T.C.); (C.S.); (M.Z.); (L.W.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Shao C, Wang Y, Li G, Guan H, Zhu Y, Zhang L, Dong N, Shan A. Novel design of simplified β-hairpin antimicrobial peptide as a potential food preservative based on Trp-pocket backbone. Food Chem 2024; 448:139128. [PMID: 38574714 DOI: 10.1016/j.foodchem.2024.139128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Food contamination from microbial deterioration requires the development of potent antimicrobial peptides (AMPs). The deployment of approved AMPs as dietary preservatives is limited due to barriers such as instability, toxicity, and high synthetic costs. This exploration utilizes the primary structural elements of the Trp-pocket backbone to engineer a series of β-hairpin AMPs (XWRWRPGXKXXR-NH2, X representing I, V, F, and/or L). Peptides WpLF, with Phe as X and Leu arranged at the 11th position, demonstrated exceptional selectivity index (SI = 123.08) and sterilization effects both in vitro and in vivo. WpLF consistently exhibited stable bacteriostasis, regardless of physiological salts, serum, and extreme pH. Mechanistic analysis indicated that the peptide penetrates microbial cell membranes, inducing membrane disruption, thereby impeding drug resistance evolution. Conclusively, AMPs engineered by the Trp-pocket skeleton hold substantial potential as innovative biological preservatives in food preservation, providing valuable insights for sustainable and safe peptide-based food preservatives.
Collapse
Affiliation(s)
- Changxuan Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuanmengxue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Guoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongrui Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongjie Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
18
|
Liu X, Shi D, Cheng S, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Modification and Synergistic Studies of a Novel Frog Antimicrobial Peptide against Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2024; 13:574. [PMID: 39061256 PMCID: PMC11274128 DOI: 10.3390/antibiotics13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The overuse of traditional antibiotics has resulted in bacterial resistance and seriously compromised the therapeutic efficacy of traditional antibiotics, making the exploration of new antimicrobials particularly important. Several studies have shown that bioactive peptides have become an important source of new antimicrobial drugs due to their broad-spectrum antibacterial action and lack of susceptibility to resistance. In this study, a novel bioactive peptide Nigrosin-6VL was characterised from the skin secretion of the golden cross band frog, Odorrana andersonii, by using the 'shotgun' cloning strategy. Modifications on the Rana Box of Nigrosin-6VL revealed its critical role in antimicrobial functions. The peptide analogue, 2170-2R, designed to preserve the Rana Box structure while enhancing cationicity, exhibited improved therapeutic efficacy, particularly against Gram-negative bacteria, with a therapeutic value of 45.27. Synergistic studies demonstrated that 2170-2R inherits the synergistic antimicrobial activities of the parent peptides and effectively enhances the antimicrobial capacity of cefepime and gentamicin against both planktonic cells and biofilms. Specifically, 2170-2R can synergise effectively with cefepime and gentamicin against different strains of P. aeruginosa biofilms. Consequently, 2170-2R holds promise as a potent antimicrobial agent developed to combat infections induced by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xinze Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Shiya Cheng
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| |
Collapse
|
19
|
Aonofriesei F. Surfactants' Interplay with Biofilm Development in Staphylococcus and Candida. Pharmaceutics 2024; 16:657. [PMID: 38794319 PMCID: PMC11125353 DOI: 10.3390/pharmaceutics16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The capacity of micro-organisms to form biofilms is a pervasive trait in the microbial realm. For pathogens, biofilm formation serves as a virulence factor facilitating successful host colonization. Simultaneously, infections stemming from biofilm-forming micro-organisms pose significant treatment challenges due to their heightened resistance to antimicrobial agents. Hence, the quest for active compounds capable of impeding microbial biofilm development stands as a pivotal pursuit in biomedical research. This study presents findings concerning the impact of three surfactants, namely, polysorbate 20 (T20), polysorbate 80 (T80), and sodium dodecyl sulfate (SDS), on the initial stage of biofilm development in both Staphylococcus aureus and Candida dubliniensis. In contrast to previous investigations, we conducted a comparative assessment of the biofilm development capacity of these two taxonomically distant groups, predicated on their shared ability to reduce TTC. The common metabolic trait shared by S. aureus and C. dubliniensis in reducing TTC to formazan facilitated a simultaneous evaluation of biofilm development under the influence of surfactants across both groups. Our results revealed that surfactants could impede the development of biofilms in both species by disrupting the initial cell attachment step. The observed effect was contingent upon the concentration and type of compound, with a higher inhibition observed in culture media supplemented with SDS. At maximum concentrations (5%), T20 and T80 significantly curtailed the formation and viability of S. aureus and C. dubliniensis biofilms. Specifically, T20 inhibited biofilm development by 75.36% in S. aureus and 71.18% in C. dubliniensis, while T80 exhibited a slightly lower inhibitory effect, with values ranging between 66.68% (C. dubliniensis) and 65.54% (S. aureus) compared to the controls. Incorporating these two non-toxic surfactants into pharmaceutical formulations could potentially enhance the inhibitory efficacy of selected antimicrobial agents, particularly in external topical applications.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 1, University Street, 900470 Constanța, Romania
| |
Collapse
|
20
|
Anggraeni VS, Lee HC, Goh PS, Sutrisna PD, Chan EWC, Wong CW. Biodegradable ultrafiltration membrane enhanced with anti-biofouling agent from Anacardium occidentale extract. BIOFOULING 2024; 40:348-365. [PMID: 38836472 DOI: 10.1080/08927014.2024.2357309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.
Collapse
Affiliation(s)
- Vania Septa Anggraeni
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Hoong Chern Lee
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Pei Sean Goh
- Advanced Membranes Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering, University of Surabaya (UBAYA), Surabaya, Indonesia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Du K, Yang ZR, Qin H, Ma T, Tang J, Xia J, Zhou Z, Jiang H, Zhu J. Optimized Charge/Hydrophobicity Balance of Antimicrobial Peptides Against Polymicrobial Abdominal Infections. Macromol Biosci 2024; 24:e2300451. [PMID: 37997560 DOI: 10.1002/mabi.202300451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Antimicrobial peptides (AMPs) potentially serve as ideal antimicrobial agents for the treatment of polymicrobial abdominal infections due to their broad-spectrum antimicrobial activity and excellent biocompatibility. However, the balance of chain length, positive charges, and hydrophobicity on the antimicrobial activity of AMPs are still far from being optimal. Herein, a series of AMPs ([KX]n-NH2, X = Ile, Leu or Phe, n = 3, 4, 5, or 6) with varied charges and hydrophobicity for the treatment of polymicrobial abdominal infections are designed. Specifically, [KI]4-NH2 peptide exhibits the best in vitro antimicrobial activity against Gram-positive and -negative bacteria, as well as fungal strains. Based on the good cell biocompatibility, [KI]4-NH2 peptide is found to have negligible in vivo toxicity at the dosage of up to 28 mg kg-1. Furthermore, great in vivo therapeutic efficacy of [KI]4-NH2 peptide against S. typhimurium is demonstrated in the mice abdominal infection model. The design of short sequence of antimicrobial peptides with a charge/hydrophobicity balanced structures provides a simple and efficient strategy for potential clinical applications of antimicrobial peptide-based biomaterials in a variety of bacterial infection diseases.
Collapse
Affiliation(s)
- Kehan Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Huimin Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jiawei Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jianxin Xia
- Win Plus Biotechnology Co., Ltd., Wuhan, 430074, China
| | - Zengtai Zhou
- Win Plus Biotechnology Co., Ltd., Wuhan, 430074, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
22
|
Liao M, Gong H, Liu H, Shen K, Ge T, King S, Schweins R, McBain AJ, Hu X, Lu JR. Combination of a pH-responsive peptide amphiphile and a conventional antibiotic in treating Gram-negative bacteria. J Colloid Interface Sci 2024; 659:397-412. [PMID: 38183806 DOI: 10.1016/j.jcis.2023.12.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/16/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Clinical treatments ofgastric infections using antibiotics suffer from the undesired killing of commensal bacteria and emergence of antibiotic resistance. It is desirable to develop pH-responsive antimicrobial peptides (AMPs) that kill pathogenic bacteria such as H. pyloriand resistant E. coli under acidic environment with minimal impact to commensal bacteria whilst not causing antibiotic resistance. EXPERIMENTS Using a combined approach of cell assays, molecular dynamics (MD) simulations and membrane models facilitating biophysical and biochemical measurements including small angle neutron scattering (SANS), we have characterized the pH-responsive physiochemical properties and antimicrobial performance of two amphiphilic AMPs, GIIKDIIKDIIKDI-NH2 and GIIKKIIDDIIKKI-NH2 (denoted as 3D and 2D, respectively), that were designed by selective substitutions of cationic residues of Lys (K) in the extensively studied AMP G(IIKK)3I-NH2 with anionic residue Asp (D). FINDINGS Whilst 2D kept non-ordered coils across the entire pH range studied, 3D displayed a range of secondary structures when pH was shifted from basic to acidic, with distinct self-assembly into nanofibers in aqueous environment. Further experimental and modeling studies revealed that the AMPs interacted differently with the inner and outer membranes of Gram-negative bacteria in a pH-responsive manner and that the structural features characterized by membrane leakage and intramembrane nanoaggregates revealed from fluorescence spectroscopy and SANS were well linked to antimicrobial actions. Different antimicrobial efficacies of 2D and 3D were underlined by the interplay between their ability to bind to the outer membrane lipid LPS (lipopolysaccharide), outer membrane permeability change and inner membrane depolarization and leakage. Furthermore, AMP's binding with the inner membrane under acidic condition caused both the dissipation of membrane potential (Δψ) and the continuous dissipation of transmembrane ΔpH, with Δψ and ΔpH being the key components of the proton motive force. Combinations of antibiotic (Minocycline) with the pH-responsive AMP generated the synergistic effects against Gram-negative bacteria only under acidic condition. These features are crucial to target applications to gastric infections, anti-acne and wound healing.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Stephen King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | | | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
23
|
Zhang J, Wu Y, Li W, Xie H, Li J, Miao Y, Yang Z, Zhou Y, Wang X. Effects of a novel Bacillus subtilis GXYX crude lipopeptide against Salmonella enterica serovar Typhimurium infection in mice. Heliyon 2024; 10:e28219. [PMID: 38524560 PMCID: PMC10958701 DOI: 10.1016/j.heliyon.2024.e28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The increased rate of antibiotic resistance strongly limits the resolution of Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Therefore, new strategies to control bacterial infections are urgently needed. Bacillus subtilis (B. subtilis) and its metabolites are desirable antibacterial agents. Here, we aimed to evaluate the antibacterial activity of the novel B. subtilis strain GXYX (No: PRJNA940956) crude lipopeptide against S. Typhimurium. In vitro, GXYX crude lipopeptides affected S. Typhimurium biofilm formation and swimming and attenuated the adhesion and invasion abilities of S. Typhimurium toward BHK-21 cells; in addition, it inhibited the mRNA expression of the filA, filC, csgA, and csgB genes, which are related to the adhesion and invasion ability of S. Typhimurium. In vivo, pretreatment with GXYX crude lipopeptide via intragastric administration improved the survival rate by 30%, which was related to reductions in organ bacterial loads and clinical signs in mice. Intragastric administration of GXYX crude lipopeptide significantly downregulated the mRNA levels of TNF-α, IL-1β, IL-12 and IL-6 in response to S. Typhimurium-induced inflammation compared with intraperitoneal injection. Moreover, it significantly improved the intestinal barrier-related gene (ZO-1, claudin-1, occludin-1) mRNA levels in intestinal tissue damaged by S. Typhimurium infection. In conclusion, GXYX crude lipopeptides were effective at reducing S. Typhimurium colonization, laying a foundation for the further development of novel antibacterial agents.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
24
|
Gong H, Wang X, Hu X, Liao M, Yuan C, Lu JR, Gao L, Yan X. Effective Treatment of Helicobacter pylori Infection Using Supramolecular Antimicrobial Peptide Hydrogels. Biomacromolecules 2024; 25:1602-1611. [PMID: 38323536 DOI: 10.1021/acs.biomac.3c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Helicobacter pylori can cause various gastric conditions including stomach cancer in an acidic environment. Although early H. pylori infections can be treated by antibiotics, prolonged antibiotic administrations may lead to the development of antimicrobial resistance, compromising the effectiveness of the treatments. Antimicrobial peptides (AMPs) have been reported to possess unique advantages against antimicrobial-resistant bacteria due to their rapid physical membrane disruptions and anti-inflammation/immunoregulation properties. Herein, we have developed an AMP hydrogel, which can be orally administered for the treatment of H. pylori infection. The hydrogel has potent antimicrobial activity against H. pylori, achieving bacterial eradication within minutes of action. Compared with the AMP solution, the hydrogel formulation significantly reduced the cytotoxicity and enhanced proteolytic stability. In vivo experiments suggested that the hydrogel formed at pH 4 had superior therapeutic effects to those at pH 7 and 10 hydrogels, attributed to its rapid release and bactericidal action within the acidic stomach environment. Compared to conventional antibiotic treatments, the AMP hydrogel had the advantages of fast bacterial killing in the gastric juice and obviated proton pump inhibitors during the treatment. Although both the AMP hydrogel and antibiotics suppressed the expression of pro-inflammatory cytokines, the former uniquely promoted inflammation resolution. These results indicate that the AMP hydrogels with effectiveness and biosafety may be potential candidates for the clinical treatment of H. pylori infections.
Collapse
Affiliation(s)
- Haoning Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaonan Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
He S, Deber CM. Interaction of designed cationic antimicrobial peptides with the outer membrane of gram-negative bacteria. Sci Rep 2024; 14:1894. [PMID: 38253659 PMCID: PMC10803810 DOI: 10.1038/s41598-024-51716-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The outer membrane (OM) is a hallmark feature of gram-negative bacteria that provides the species with heightened resistance against antibiotic threats while cationic antimicrobial peptides (CAPs) are natural antibiotics broadly recognized for their ability to disrupt bacterial membranes. It has been well-established that lipopolysaccharides present on the OM are among major targets of CAP activity against gram-negative species. Here we investigate how the relative distribution of charged residues along the primary peptide sequence, in conjunction with its overall hydrophobicity, affects such peptide-OM interactions in the natural CAP Ponericin W1. Using a designed peptide library derived from Ponericin W1, we determined that the consecutive placement of Lys residues at the peptide N- or C-terminus (ex. "PonN": KKKKKKWLGSALIGALLPSVVGLFQ) enhances peptide binding affinity to OM lipopolysaccharides compared to constructs where Lys residues are interspersed throughout the primary sequence (ex. "PonAmp": WLKKALKIGAKLLPSVVKLFKGSGQ). Antimicrobial activity against multidrug resistant strains of Pseudomonas aeruginosa was similarly found to be highest among Lys-clustered sequences. Our findings suggest that while native Ponericin W1 exerts its initial activity at the OM, Lys-clustering may be a promising means to enhance potency towards this interface, thereby augmenting peptide entry and activity at the IM, with apparent advantage against multidrug-resistant species.
Collapse
Affiliation(s)
- Shelley He
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
26
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
27
|
Li L, Li J, Yu X, Cao R, Hong M, Xu Z, Ren Lu J, Wang Y, Zhu H. Antimicrobial peptides fight against Pseudomonas aeruginosa at a sub-inhibitory concentration via anti-QS pathway. Bioorg Chem 2023; 141:106922. [PMID: 37865056 DOI: 10.1016/j.bioorg.2023.106922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
The broad-spectrum antimicrobial ability of de novo designed amphiphilic antimicrobial peptides (AMPs) G(IIKK)3I-NH2 (G3) and C8-G(IIKK)2I-NH2 (C8G2) have been demonstrated. Nonetheless, their potential as anti-quorum-sensing (anti-QS) agents, particularly against the opportunistic pathogen Pseudomonas aeruginosa at subinhibitory concentrations, has received limited attention. In this study, we proved that treating P. aeruginosa PAO1 with both AMPs at subinhibitory concentrations led to significant inhibition of QS-regulated virulence factors, including pyocyanin, elastase, proteases, and bacterial motility. Additionally, the AMPs exhibited remarkable capabilities in suppressing biofilm formation and their elimination rate of mature biofilm exceeded 95%. Moreover, both AMPs substantially downregulated the expression of QS-related genes. CD analysis revealed that both AMPs induced structural alterations in the important QS-related protein LasR in vitro. Molecular docking results indicated that both peptides bind to the hydrophobic groove of the LasR dimer. Notably, upon mutating key binding sites (D5, E11, and F87) to Ala, the binding efficiency of LasR to both peptides significantly decreased. We revealed the potential of antibacterial peptides G3 and C8G2 at their sub-MIC concentrations as QS inhibitors against P. aeruginosa and elucidated their action mechanism. These findings contribute to our understanding of the therapeutic potential of these peptides in combating P. aeruginosa infections by targeting the QS system.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaodan Yu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Hong
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
28
|
Li L, Wang Y, Huang Z, Xu Z, Cao R, Li J, Wu B, Lu JR, Zhu H. An additive-free multifunctional β-glucan-peptide hydrogel participates in the whole process of bacterial-infected wound healing. J Control Release 2023; 362:577-590. [PMID: 37683733 DOI: 10.1016/j.jconrel.2023.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Bacterial infections and excessive inflammation can impede the healing of wounds. Hydrogels have emerged as a promising approach for dressing bacterial-infected injuries. However, some antibacterial hydrogels are complex, costly, and even require assistance with other instruments such as light, making them unsuitable for routine outdoor injuries. Here, we developed an in-situ generating hydrogel via hybridizing oxidized β-D-glucan with antimicrobial peptide C8G2 through the Schiff base reaction. This hydrogel is easily accessible and actively contributes to the whole healing process of bacterial-infected wounds, demonstrating remarkable antibacterial activity and biological compatibility. The pH-sensitive reversible imine bond enables the hydrogel to self-heal and sustainably release the antibacterial peptide, thereby improving its bioavailability and reducing toxicity. Meanwhile, the immunoregulating β-D-glucan inhibits the release of inflammatory factors while promoting the release of anti-inflammatory factors. In methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin wound models, the hybrid hydrogel showed superior antibacterial and anti-inflammatory activity, enhanced the M2 macrophage polarization, expedited wound closure, and regenerated epidermis tissue. These features make this hydrogel an appealing wound dressing for treating multi-drug-resistant bacteria-infected wounds.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Zhengjun Huang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Biyi Wu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
29
|
Zhu Y, Xu Y, Yan J, Fang Y, Dong N, Shan A. "AMP plus": Immunostimulant-Inspired Design Based on Chemotactic Motif -( PhHA hPH) n. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43563-43579. [PMID: 37691475 DOI: 10.1021/acsami.3c09353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Ability to stimulate antimicrobial immunity has proven to be a useful therapeutic strategy in treating infections, especially in the face of increasing antibiotic resistance. Natural antimicrobial peptides (AMPs) exhibiting immunomodulatory functions normally encompass complex activities, which make it difficult to optimize their therapeutic benefits. Here, a chemotactic motif was harnessed as a template to design a series of AMPs with immunostimulatory activities plus bacteria-killing activities ("AMP plus"). An amphipathic peptide ((PhHAhPH)n) was employed to improve the antimicrobial impact and expand the therapeutic potential of the chemotactic motif that lacked obvious bacteria-killing properties. A total of 18 peptides were designed and evaluated for their structure-activity relationships. Among the designed, KWH2 (1) potently killed bacteria and exhibited a narrow antimicrobial spectrum against Gram-negative bacteria and (2) activated macrophages (i.e., inducing Ca2+ influx, cell migration, and reactive oxygen species production) as a macrophage chemoattractant. Membrane permeabilization is the major antimicrobial mechanism of KWH2. Furthermore, the mouse subcutaneous abscess model supported the dual immunomodulatory and antimicrobial potential of KWH2 in vivo. The above results confirmed the efficiency of KWH2 in treating bacterial infection and provided a viable approach to develop immunomodulatory antimicrobial materials with desired properties.
Collapse
Affiliation(s)
- Yunhui Zhu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yinghan Xu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Jianming Yan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| |
Collapse
|
30
|
Hu X, Xu Y, Liu S, Gudda FO, Ling W, Qin C, Gao Y. Graphene Quantum Dots Nonmonotonically Influence the Horizontal Transfer of Extracellular Antibiotic Resistance Genes via Bacterial Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301177. [PMID: 37144438 DOI: 10.1002/smll.202301177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Graphene quantum dots (GQDs) coexist with antibiotic resistance genes (ARGs) in the environment. Whether GQDs influence ARG spread needs investigation, since the resulting development of multidrug-resistant pathogens would threaten human health. This study investigates the effect of GQDs on the horizontal transfer of extracellular ARGs (i.e., transformation, a pivotal way that ARGs spread) mediated by plasmids into competent Escherichia coli cells. GQDs enhance ARG transfer at lower concentrations, which are close to their environmental residual concentrations. However, with further increases in concentration (closer to working concentrations needed for wastewater remediation), the effects of enhancement weaken or even become inhibitory. At lower concentrations, GQDs promote the gene expression related to pore-forming outer membrane proteins and the generation of intracellular reactive oxygen species, thus inducing pore formation and enhancing membrane permeability. GQDs may also act as carriers to transport ARGs into cells. These factors result in enhanced ARG transfer. At higher concentrations, GQD aggregation occurs, and aggregates attach to the cell surface, reducing the effective contact area of recipients for external plasmids. GQDs also form large agglomerates with plasmids and thus hindering ARG entrance. This study could promote the understanding of the GQD-caused ecological risks and benefit their safe application.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
31
|
Yang S, Xing Y, Gao J, Jin R, Lin R, Weng W, Xie Y, Aweya JJ. Lacticaseibacillus paracasei fermentation broth identified peptide, Y2Fr, and its antibacterial activity on Vibrio parahaemolyticus. Microb Pathog 2023; 182:106260. [PMID: 37467812 DOI: 10.1016/j.micpath.2023.106260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Although Vibrio parahaemolyticus infections cause severe diseases of large yellow croaker (Larimichthys crocea), using antibiotics and other chemical agents to treat these infections could result in antimicrobial resistance, environmental pollution, and other associated problems. This study identified seven peptides from Lacticaseibacillus paracasei fermentation broth using ultra-high-performance liquid chromatography-mass spectrometry and screened antimicrobial peptide Y2Fr (VEIKNGLLKLNGKPLLIR) through its net charge, hydrophobicity and predicted secondary structure. Antibacterial activity analysis revealed that Y2Fr had a minimum inhibitory concentration (MIC) of 125 μg/mL, minimum bactericidal concentration (MBC) of 250 μg/mL against V. parahaemolyticus and a time-kill of 3 h. In a bacterial membrane environment, the secondary structure of peptide Y2Fr changed from a random coil to a β-sheet to enhance its membrane permeability and binding to bacteria DNA to exert its antibacterial effect. Further molecular docking analysis revealed that peptide Y2Fr could bind to the membrane protein KKI11460.1 and DNA polymerase A0A0L8TVA4 of V. parahaemolyticus through hydrogen bonds. Meanwhile, treatment of Y2Fr with mammalian red blood cells and plasma revealed that it was noncytotoxic, nonhemolytic, and stable under physiological conditions. Thus, peptide Y2Fr has great potential use in treating and preventing infections caused by V. parahaemolyticus or similar bacteria in aquatic animals.
Collapse
Affiliation(s)
- Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Yufan Xing
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jialong Gao
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Yuanhong Xie
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
32
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
33
|
Soleimani S, Jannesari A, Etezad SM. Prevention of marine biofouling in the aquaculture industry by a coating based on polydimethylsiloxane-chitosan and sodium polyacrylate. Int J Biol Macromol 2023:125508. [PMID: 37356687 DOI: 10.1016/j.ijbiomac.2023.125508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In this study, a series of novel hydrophobic/hydrophilic hybrid (HHH) coatings with the feature of preventing the fouling phenomenon was fabricated based on polydimethylsiloxane (PDMS), as matrix and two hydrophilic polymers: chitosan and sodium polyacrylate, as dispersed phases. Antibacterial activity, pseudo-barnacle adhesion strength, surface free energy, water contact angle, and water absorption were performed for all samples. Evaluating field immersion of the samples was performed in the natural seawater. The results showed that the dispersed phase containing PDMS coatings showed simultaneously both of antibacterial activity and foul release behavior. Among the samples, the PCs4 coating containing 4 wt% Cs indicated the lowest pseudo barnacle adhesion strength (0.04 MPa), the lowest surface free energy (18.94 mN/m), the highest water contact angle (116.05°), and the percentage of fouling organisms 9.8 % after 30 days immersion. The HHH coatings can be considered as novel eco-friendly antifouling/foul release coatings for aquaculture applications.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Seyed Masoud Etezad
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
34
|
Clifton LA, Wacklin-Knecht HP, Ådén J, Mushtaq AU, Sparrman T, Gröbner G. Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis. SCIENCE ADVANCES 2023; 9:eadg7940. [PMID: 37267355 PMCID: PMC10413641 DOI: 10.1126/sciadv.adg7940] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of which were critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death.
Collapse
Affiliation(s)
- Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, UK
| | - Hanna P. Wacklin-Knecht
- European Spallation Source ERIC, ESS, P.O. Box 176, SE-22100 Lund, Sweden
- Department of Chemistry, Division of Physical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Ameeq Ul Mushtaq
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Gerhard Gröbner
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| |
Collapse
|
35
|
Gong H, Hu X, Zhang L, Fa K, Liao M, Liu H, Fragneto G, Campana M, Lu JR. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J Colloid Interface Sci 2023; 637:182-192. [PMID: 36701864 DOI: 10.1016/j.jcis.2023.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
HYPOTHESIS It is widely regarded that antimicrobial peptides (AMPs) kill bacteria by physically disrupting microbial membranes and causing cytoplasmic leakage, but it remains unclear how AMPs disrupt the outer membrane (OM) of Gram-negative bacteria (GNB) and then compromise the inner membrane. We hypothesise that different AMPs impose different structural disruptions, with direct implications to their antimicrobial efficacies. EXPERIMENTS The antimicrobial activities of three typical AMPs, including the designed short AMP, G3, and two natural AMPs, melittin and LL37, against E. coli and their haemolytic activities were studied. Lipopolysaccharide (LPS) and anionic di-palmitoyl phosphatidyl glycerol (DPPG) monolayer models were constructed to mimic the outer membrane and inner membrane leaflets of Gram-negative bacteria. The binding and penetration of AMPs to the model lipid monolayers were systematically studied by neutron reflection via multiple H/D contrast variations. FINDING G3 has relatively high antimicrobial activity, low cytotoxicity, and high proteolytic stability, whilst melittin has significant haemolysis and LL37 has weaker antimicrobial activity. G3 could rapidly lyse LPS and DPPG monolayers within 10-20 min. In contrast, melittin was highly active against the LPS membrane, but the dynamic process lasted up to 80 min, with excessive stacking in the OM. LL37 caused rather weak destruction to LPS and DPPG monolayers, leading to massive adsorption on the membrane surface without penetrating the lipid tail region. These findings demonstrate that the rationally designed AMP G3 was well optimised to impose most effective destruction to bacterial membranes, consistent with its highest bactericidal activity. These different interfacial structural features associated with AMP binding shed light on the future development of active and biocompatible AMPs for infection and wound treatments.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | | | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
36
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
37
|
Sun J, Ma X, Li R, Lin M, Shu L, Chen X. Antimicrobial Nanostructured Assemblies with Extremely Low Toxicity and Potent Activity to Eradicate Staphylococcus Aureus Biofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204039. [PMID: 36412076 DOI: 10.1002/smll.202204039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Self-assembled cationic polymeric nanostructures have been receiving increasing attention for efficient antibacterial agents. In this work, a new type of antibacterial agents is developed by preparing pH-dependent nanostructured assemblies from cationic copolypeptoid poly(N-allylglycine)-b-poly(N-octylglycine) (PNAG-b-PNOG) modified with cysteamine hydrochloride ((PNAG-g-NH2 )-b-PNOG) driven by crystallization and hydrophobicity of the PNOG blocks. Due to the presence of confined domains arising from crystalline PNOG, persistent spheres and fiber-like assemblies are obtained from the same polymer upon a heating-cooling cycle. This allows for direct comparison of antimicrobial efficiency of nanostructured assemblies with various morphologies that are otherwise similar. Both nanostructured assemblies exhibit extremely low toxicity to human red blood cells, irrespective of the presence of the hydrophobic block. Enhanced antimicrobial performance of the fiber-like micelles compared to the spheres, which result in high selectivity of the fibers, is shown. Notably, the fiber-like micelles show great efficacy in inhibition of the Staphylococcus aureus (S. aureus) biofilm formations and eradication of the mature biofilms, superior to vancomycin. The micelles also show potent in vivo antimicrobial efficacy in a S. aureus infection mouse skin model. With a systematic study, it is demonstrated that both micelles kill the bacteria through a membrane disruption mechanism. These results imply great potential of polypeptoid assemblies as promising excellent candidates for antibacterial treatment and open up new possibilities for the preparation of a new generation of nanostructured antimicrobials.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xutao Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Rongye Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lilei Shu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
38
|
Optical Tracking of Surfactant-Tuned Bacterial Adhesion: a Single-Cell Imaging Study. Appl Environ Microbiol 2022; 88:e0162622. [PMID: 36374031 PMCID: PMC9746325 DOI: 10.1128/aem.01626-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Probing the interfacial dynamics of single bacterial cells in complex environments is crucial for understanding the microbial biofilm formation process and developing antifouling materials, but it remains a challenge. Here, we studied single bacterial interfacial behaviors modulated by surfactants via a plasmonic imaging technique. We quantified the adhesion strength of single bacterial cells by plasmonic measurement of potential energy profiles and dissected the mechanism of surfactant-tuned single bacterial adhesion. The presence of surfactant tuned single bacterial adhesion by increasing the thickness of extracellular polymeric substances (EPS) and reducing the degree of EPS cross-linking. The adhesion kinetics and equilibrium state of bacteria attached to the surface confirmed the decrease in adhesion strength tuned by surfactants. The information obtained is valuable for understanding the interaction mechanism between a single bacterial cell and surface, developing new biofilm control strategies, and designing anticontamination materials. IMPORTANCE Studying the interfacial dynamic of single bacteria in complex environments is crucial for understanding the microbial biofilm formation process and developing antifouling materials. However, quantifying the interactions between microorganisms and surfaces in the presence of pollution at the single-cell level remains a great challenge. This paper presents the analysis of single bacterial interfacial behaviors modulated by surfactants and quantification of the adhesion strength via a plasmonic imaging technique. Our study provided insights into the mechanism of initial bacterial adhesion, facilitating our understanding of the adhesion process at the microscopic scale, and is of great value for controlling membrane fouling biofilm formation.
Collapse
|
39
|
Expanding the Toolbox for Bicelle-Forming Surfactant–Lipid Mixtures. Molecules 2022; 27:molecules27217628. [PMID: 36364455 PMCID: PMC9658636 DOI: 10.3390/molecules27217628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Bicelles are disk-shaped models of cellular membranes used to study lipid–protein interactions, as well as for structural and functional studies on transmembrane proteins. One challenge for the incorporation of transmembrane proteins in bicelles is the limited range of detergent and lipid combinations available for the successful reconstitution of proteins in model membranes. This is important, as the function and stability of transmembrane proteins are very closely linked to the detergents used for their purification and to the lipids that the proteins are embedded in. Here, we expand the toolkit of lipid and detergent combinations that allow the formation of stable bicelles. We use a combination of dynamic light scattering, small-angle X-ray scattering and cryogenic electron microscopy to perform a systematic sample characterization, thus providing a set of conditions under which bicelles can be successfully formed.
Collapse
|
40
|
Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens. Pharmaceutics 2022; 14:pharmaceutics14102025. [PMID: 36297458 PMCID: PMC9610943 DOI: 10.3390/pharmaceutics14102025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
The global prevalence of antimicrobial resistance calls for the development of novel antimicrobial agents, particularly for these orally available drugs. Structural modifications of the natural antimicrobial peptides (AMPs) provide a straightforward approach to develop potent antimicrobial agents with high specificity and low toxicity. In this study, we truncated 11-amino-acids at the C-terminus of Pleurocidin, an AMP produced by Pleuronectes americanus, and obtained four peptide analogues termed GK-1, GK-2, GK-3 and GK-4. Minimum inhibitory concentration (MIC) tests showed that GK-1 obtained by direct truncation of Pleurocidin has no antibacterial activity, while GK-2, GK-3 and GK-4 show considerable antibacterial activity with Pleurocidin. Notably, GK-4 displays rapid bacteriostatic activity, great stability and low hemolysis, as well as enhanced hydrolytic resistance to pepsin treatment. Mechanistic studies showed that GK-4 induces membrane damage by interacting with bacterial membrane-specific components, dissipates bacterial membrane potential and promotes the generation of ROS. SEM and CD analysis further confirmed the ability of GK-4 to resist pepsin hydrolysis, which may be attributed to its stable helicity structure. Collectively, our findings reveal that GK-4 is a potential orally available candidate to treat infections caused by multidrug-resistant pathogens.
Collapse
|
41
|
Li S, Ren R, Lyu L, Song J, Wang Y, Lin TW, Brun AL, Hsu HY, Shen HH. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. MEMBRANES 2022; 12:membranes12100906. [PMID: 36295664 PMCID: PMC9609327 DOI: 10.3390/membranes12100906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Anton Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
42
|
Maleš M, Zoranić L. Simulation Study of the Effect of Antimicrobial Peptide Associations on the Mechanism of Action with Bacterial and Eukaryotic Membranes. MEMBRANES 2022; 12:891. [PMID: 36135911 PMCID: PMC9502835 DOI: 10.3390/membranes12090891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial peptides (AMPs) can be directed to specific membranes based on differences in lipid composition. In this study, we performed atomistic and coarse-grained simulations of different numbers of the designed AMP adepantin-1 with a eukaryotic membrane, cytoplasmic Gram-positive and Gram-negative membranes, and an outer Gram-negative membrane. At the core of adepantin-1's behavior is its amphipathic α-helical structure, which was implemented in its design. The amphipathic structure promotes rapid self-association of peptide in water or upon binding to bacterial membranes. Aggregates initially make contact with the membrane via positively charged residues, but with insertion, the hydrophobic residues are exposed to the membrane's hydrophobic core. This adaptation alters the aggregate's stability, causing the peptides to diffuse in the polar region of the membrane, mostly remaining as a single peptide or pairing up to form an antiparallel dimer. Thus, the aggregate's proposed role is to aid in positioning the peptide into a favorable conformation for insertion. Simulations revealed the molecular basics of adepantin-1 binding to various membranes, and highlighted peptide aggregation as an important factor. These findings contribute to the development of novel anti-infective agents to combat the rapidly growing problem of bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Matko Maleš
- Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Larisa Zoranić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| |
Collapse
|
43
|
Ma Z, Zhang D, Cheng Z, Niu Y, Kong L, Lu Z, Bie X. Designed symmetrical β-hairpin peptides for treating multidrug-resistant salmonella typhimurium infections. Eur J Med Chem 2022; 243:114769. [PMID: 36137364 DOI: 10.1016/j.ejmech.2022.114769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The rapid emergence and prevalence of multidrug-resistant salmonellosis lack effective therapies, which causes epidemic health problems and stimulates the development of antimicrobials with novel modes of action. In this research, 10 short symmetrical β-hairpin peptides are synthesized by combining the β-turn of Leucocin-A with recurring hydrophobic and cationic amino acid sequences. Those designed peptides exhibited potent antibacterial activities against drug-susceptible and drug-resistant Salmonella. One of the 10 peptides, WK2 ((WK)2CTKSGC(KW)2), displayed best cell selectivity towards Salmonella cells over macrophages and erythrocytes in a co-culture model. Fluorescent measurements and microscopic observations reflected that WK2 exerted its antimicrobial activity through a membrane-lytic mechanism. Moreover, the β-hairpin peptides can bind to endotoxin (LPS) and suppress the production of LPS-induced proinflammatory cytokines in RAW264.7 cells, indicating as a potent anti-inflammatory activity. The preliminary in vivo studies can also demonstrate that WK2 decreased loads of Salmonella in the liver and spleen, mitigated Salmonella-caused inflammation and maintained the integrity of intestinal mucosal surfaces. Ultimately, the results highlight that WK2 is a promising therapeutic agent to prevent multidrug-resistant S. Typhimurium infections in humans and animals.
Collapse
Affiliation(s)
- Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dong Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyi Cheng
- Faculty of Cell and Molecular Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yandong Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Liangyu Kong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
44
|
The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Acta Biomater 2022; 153:557-572. [PMID: 36115654 DOI: 10.1016/j.actbio.2022.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022]
Abstract
Antimicrobial peptides (AMPs) are considered to be powerful weapons in the fight against traditional antibiotic resistance due to their unique membrane-disruptive mechanism. The combination of traditional and classical hydrophobic tryptophan (W) residues and hydrophilic charged arginine (R) residues is considered as the first choice for the minimalist design of AMPs due to its potent performance in antibacterial activity. However, some W- and R-rich AMPs that are not rationally designed and contain excessive repeats of W and R residues may cause severe cytotoxicity and hemolysis. To address this issue, we designed the (WRX)n (where X = hydrophilic uncharged amino residues; n = number of repeat units) series engineered peptides with high cell selectivity by introducing hydrophilic uncharged threonine (T), serine (S), glutamine (Q) or asparagine (N) residues into the minimalist design of W- and R-rich AMPs. The results showed that the introduction of these hydrophilic uncharged amino residues, especially T residues, significantly improved the cell selectivity of the W- and R-rich engineered peptides. Among (WRX)n series engineered peptides, T6 presents a mixture structure of β-turn and α-helix. It has broad spectrum and potent antibacterial activity (no activity against probiotics), good biocompatibility, high selectivity index, strong tolerance (physiological salts, serum acid, alkali, and heat conditions), rapid and efficient time-kill kinetics, and no tendency of resistance. Studies on antibacterial mechanism show that T6 exert antibacterial activity mainly by disrupting bacterial cell membrane and inducing the accumulation of reactive oxygen species in bacterial cells. Furthermore, T6 exhibited potent antibacterial and anti-inflammatory capabilities in vivo in a mouse peritonitis-sepsis model infected with Escherichia coli. In conclusion, our study confirms an effective strategy for the minimalist design of highly cell selective W- and R-rich AMPs by introducing hydrophilic uncharged T residues, which may trigger widespread attention to hydrophilic uncharged amino acid residues, including T residues, and provide new insights into the design of peptide-based antibacterial biomaterials. STATEMENT OF SIGNIFICANCE: We have introduced hydrophilic uncharged T, S, Q or N residues into the minimalist design of W- and R-rich engineered peptides and found that the introduction of these hydrophilic uncharged amino residues, especially the T residues, can significantly improve the cell selectivity of W- and R-rich engineered peptides. The target compound T6 showed potent antibacterial activity, high cell selectivity, strong tolerance, good in vivo efficacy and killed bacteria through multiple mechanisms mainly membrane-disruptive. These findings may spark widespread interest in hydrophilic uncharged amino acid residues, and provide new insights into the design of peptide-based antimicrobial biomaterials.
Collapse
|
45
|
Lv S, Wang J, You R, Liu S, Ding Y, Hadianamrei R, Tomeh MA, Pan F, Cai Z, Zhao X. Highly selective performance of rationally designed antimicrobial peptides based on ponericin-W1. Biomater Sci 2022; 10:4848-4865. [PMID: 35861280 DOI: 10.1039/d2bm00744d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) or host-defence peptides act by penetrating and disrupting the bacterial membranes and are therefore less prone to antimicrobial resistance (AMR) compared to conventional antibiotics. However, there are still many challenges in the clinical application of the naturally occurring AMPs which necessitates further studies to establish the relationship between the chemical structure of AMPs and their antimicrobial activity and selectivity. Herein, we report a study on the relationship between the chemical structure and the biological activity of a series of rationally designed AMPs derived from Ponericin-W1, a naturally occurring AMP from ants. The peptides were designed by modification of the hydrophobic and hydrophilic regions of the lead peptide sequence in a systematic way. Their antibacterial and hemolytic activities were determined in vitro. The antibacterial activity of a representative peptide, At5 was also tested in a mouse model of skin wound infection. Furthermore, the relationship between the physicochemical properties of the peptides and their antibacterial activity was investigated. Replacing the cationic amino acids in the hydrophobic region of the peptides with hydrophobic amino acids enhanced their antibacterial activity and increasing the number of cationic amino acids in the hydrophilic region reduced their toxicity to human red blood cells and thus improved their selectivity for bacteria. Four of the designed peptides, coded as At3, At5, At8, and At10, displayed considerable antibacterial activity and high selectivity for bacteria. At5 also accelerated the wound healing in mice indicating high in vivo efficiency of this peptide. The peptides were more effective against Gram-negative bacteria and no AMR was developed against them in the bacteria even after 25 generations. The results from this study can provide a better understanding of the structural features required for strong antibacterial activity and selectivity, and serve as a guide for the future rational design of AMPs.
Collapse
Affiliation(s)
- Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Jingfang Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Suyu Liu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Yujie Ding
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Fang Pan
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
46
|
Ma B, Hu G, Guo S, Zeng Q, Chen Y, Hwan Oh D, Jin Y, Fu X. Use of Peptide-Modified Nanoparticles as a Bacterial Cell Targeting Agent for Enhanced Antibacterial Activity and Other Biomedical Applications. Food Res Int 2022; 161:111638. [DOI: 10.1016/j.foodres.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
|
47
|
Dewangan RP, Verma DP, Verma NK, Gupta A, Pant G, Mitra K, Habib S, Ghosh JK. Spermine-Conjugated Short Proline-Rich Lipopeptides as Broad-Spectrum Intracellular Targeting Antibacterial Agents. J Med Chem 2022; 65:5433-5448. [PMID: 35297625 DOI: 10.1021/acs.jmedchem.1c01809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Toward the design of new proline-rich peptidomimetics, a short peptide segment, present in several proline-rich antimicrobial peptides (AMPs), was selected. Fatty acids of varying lengths and spermine were conjugated at the N- and C-terminals of the peptide, respectively. Spermine-conjugated lipopeptides, C10-PR-Spn and C12-PR-Spn, exhibited minimum inhibitory concentrations within 1.5-6.2 μM against the tested pathogens including resistant bacteria and insignificant hemolytic activity against human red blood cells up to 100 μM concentrations and demonstrated resistance against trypsin digestion. C10-PR-Spn and C12-PR-Spn showed synergistic antimicrobial activity against multidrug-resistant methicillin-resistant Staphylococcus aureus with several tested antibiotics. These lipopeptides did not permeabilize bacterial membrane-mimetic lipid vesicles or damage the Escherichia coli membrane like the nonmembrane-lytic AMP, buforin-II. The results suggested that C10-PR-Spn and C12-PR-Spn could interact with the 70S ribosome of E. coli and inhibit its protein synthesis. C10-PR-Spn and C12-PR-Spn demonstrated superior clearance of bacteria from the spleen, liver, and kidneys of mice, infected with S. aureus ATCC 25923 compared to levofloxacin.
Collapse
Affiliation(s)
- Rikeshwer Prasad Dewangan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Ankit Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
48
|
Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022; 141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Bio-inspired nanostructures have demonstrated highly efficient mechano-bactericidal performances with no risk of bacterial resistance; however, they are prone to become contaminated with the killed bacterial debris. Herein, a biocompatible mechano-bactericidal nanopatterned surface with salt-responsive bacterial releasing behavior is developed by grafting salt-responsive polyzwitterionic (polyDVBAPS) brushes on a bio-inspired nanopattern surface. Benefiting from the salt-triggered configuration change of the grafted polymer brushes, this dual-functional surface shows high mechano-bactericidal efficiency in water (low ionic strength condition), while the dead bacterial residuals can be easily lifted by the extended polymer chains and removed from the surface in 1 M NaCl solution (high ionic strength conditions). Notably, this functionalized nanopatterned surface shows selective biocidal activity between bacterial cells sand eukaryotic cells. The biocompatibility with red blood cells (RBCs) and mammalian cells was tested in vitro. The histocompatibility and prevention of perioperative contamination activity were verified by in vivo evaluation in a rat subcutaneous implant model. This nanopatterned surface with bacterial killing and releasing activities may open new avenues for designing bio-inspired mechano-bactericidal platforms with long-term efficacy, thus presenting a facile alternative in combating perioperative-related bacterial infection. STATEMENT OF SIGNIFICANCE: Bioinspired nanostructured surfaces with noticeable mechano-bactericidal activity showed great potential in moderating drug-resistance. However, the nanopatterned surfaces are prone to be contaminated by the killed bacterial debris and compromised the bactericidal performance. In this study, we provide a dual-functional antibacterial conception with both mechano-bactericidal and bacterial releasing performances not requiring external chemical bactericidal agents. Additionally, this functionalized antibacterial surface also shows selective biocidal activity between bacteria and eukaryotic cells, and the excellent biocompatibility was tested in vitro and in vivo. The new concept for the functionalized mechano-bactericidal surface here illustrated presents a facile antibiotic-free alternative in combating perioperative related bacterial infection in practical application.
Collapse
|
49
|
Paracini N, Schneck E, Imberty A, Micciulla S. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Adv Colloid Interface Sci 2022; 301:102603. [PMID: 35093846 DOI: 10.1016/j.cis.2022.102603] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPSs) are a constitutive element of the cell envelope of Gram-negative bacteria, representing the main lipid in the external leaflet of their outer membrane (OM) lipid bilayer. These unique surface-exposed glycolipids play a central role in the interactions of Gram-negative organisms with their surrounding environment and represent a key element for protection against antimicrobials and the development of antibiotic resistance. The biophysical investigation of a wide range of different types of in vitro model membranes containing reconstituted LPS has revealed functional and structural properties of these peculiar membrane lipids, providing molecular-level details of their interaction with antimicrobial compounds. LPS assemblies reconstituted at interfaces represent a versatile tool to study the properties of the Gram-negative OM by exploiting several surface-sensitive techniques, in particular X-ray and neutron scattering, which can probe the structure of thin films with sub-nanometer resolution. This review provides an overview of different approaches employed to investigate structural and biophysical properties of LPS, focusing on studies on Langmuir monolayers of LPS at the air/liquid interface and a range of supported LPS-containing model membranes reconstituted at solid/liquid interfaces.
Collapse
Affiliation(s)
| | - Emanuel Schneck
- Physics Departent, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
50
|
Gomes A, Bessa LJ, Fernandes I, Ferraz R, Monteiro C, L. Martins MC, Mateus N, Gameiro P, Teixeira C, Gomes P. Disclosure of a Promising Lead to Tackle Complicated Skin and Skin Structure Infections: Antimicrobial and Antibiofilm Actions of Peptide PP4-3.1. Pharmaceutics 2021; 13:1962. [PMID: 34834377 PMCID: PMC8619843 DOI: 10.3390/pharmaceutics13111962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022] Open
Abstract
Efficient antibiotics are being exhausted, which compromises the treatment of infections, including complicated skin and skin structure infections (cSSTI) often associated with multidrug resistant (MDR) bacteria, methicillin-resistant S. aureus (MRSA) being the most prevalent. Antimicrobial peptides (AMP) are being increasingly regarded as the new hope for the post-antibiotic era. Thus, future management of cSSTI may include use of peptides that, on the one hand, behave as AMP and, on the other, are able to promote fast and correct skin rebuilding. As such, we combined the well-known cosmeceutical pentapeptide-4 (PP4), devoid of antimicrobial action but possessing collagenesis-boosting properties, with the AMP 3.1, to afford the chimeric peptide PP4-3.1. We further produced its N-methyl imidazole derivative, MeIm-PP4-3.1. Both peptide-based constructs were evaluated in vitro against Gram-negative bacteria, Gram-positive bacteria, and Candida spp. fungi. Additionally, the antibiofilm activity, the toxicity to human keratinocytes, and the activity against S. aureus in simulated wound fluid (SWF) were assessed. The chimeric peptide PP4-3.1 stood out for its potent activity against Gram-positive and Gram-negative bacteria, including against MDR clinical isolates (0.8 ≤ MIC ≤ 5.7 µM), both in planktonic form and in biofilm matrix. The peptide was also active against three clinically relevant species of Candida fungi, with an overall performance superior to that of fluconazole. Altogether, data reveal that PP4-3.1 is as a promising lead for the future development of new topical treatments for severe skin infections.
Collapse
Affiliation(s)
- Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
| | - Lucinda J. Bessa
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz-Cooperativa de Ensino Superior, CRL, P-2829-511 Almada, Portugal
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
- Ciências Químicas e das Biomoléculas–CISA, Escola Superior de Saúde, Politécnico do Porto, P-4200-072 Porto, Portugal
| | - Cláudia Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4200-135 Porto, Portugal; (C.M.); (M.C.L.M.)
- INEB-Instituto de Engenharia Biomédica, P-4200-135 Porto, Portugal
| | - M. Cristina L. Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4200-135 Porto, Portugal; (C.M.); (M.C.L.M.)
- INEB-Instituto de Engenharia Biomédica, P-4200-135 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, P-4050-313 Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (I.F.); (R.F.); (N.M.); (P.G.); (C.T.)
| |
Collapse
|