1
|
Yang C, Liu H, Ma J, Xu M. Multimodal Flexible Sensor for the Detection of Pressing-Bending-Twisting Mechanical Deformations. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2413-2424. [PMID: 39723727 DOI: 10.1021/acsami.4c13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Flexible sensors are increasingly significant in applications such as smart wearables and human-computer interactions. However, typical flexible sensors are spatially limited and can generally detect only one deformation mode. This study presents a novel multimodal flexible sensor that combines three sensing units: optoelectronics, ionic liquids, and conductive fabrics. It employs a sophisticated superposition and combination of the three sensing methods to achieve up to eight mechanical deformations, including pressing, bending, twisting, and combinations thereof, all within a very small sensor space. This sensor has excellent detection performance, high sensitivity (optoelectronics 4.312, ionic liquid 8.186, conductive fabric 2.438), a wide measurement range (pressing 0-75 kPa, bending 0-90°, and twisting 0-180°), and good consistency and repeatability. To address the signal coupling problem in multimode sensors, a deep learning method based on the Transformer is combined to provide precise decoupling of multimode signals and high-precision characterization of each mechanical deformation. Finally, the wrist joint experiments demonstrate the sensor's versatile uses in human-computer interaction.
Collapse
Affiliation(s)
- Chen Yang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hui Liu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jin Ma
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ming Xu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Fang H, Huang X, Guo W, Wu H. A Prestrained Strategy Enabled Highly Sensitive Strain Sensors for Muscle Strength Assessment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39568218 DOI: 10.1021/acsami.4c15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Achieving high sensitivity of stretchable electronics with a wide working range is essential and challenging. While fundamental strategies using topographic design or introducing microstructures (e.g., wrinkles or cracks) can effectively improve the sensitivity, the strain-response range is still rather limited. Here, we propose a tunable and ultrasensitive piezoresistive strain sensor by leveraging a controllable kirigami design and a prestrained strategy. On the one hand, the kirigami structure enhances the sensitivity and structural stability. On the other hand, the prestrained strategy widens the surface crack to generate highly sensitive and continuous linear responses. This strategy allows general stretchable materials to versatilely realize strain sensors with ultrahigh sensitivity (GF > 1000) and good linearity in the low strain range. As a result, the increased sensitivity and conformability to soft surfaces enable the prestrained strain sensor to identify different body motions and hand grips of varying loads. The high amplitude and recognizable signal waveforms provide essential information in muscle strength assessment. With its general applicability to diverse soft materials, this prestrained strategy overcomes the material and manufactural-level limitations for imparting high sensitivity to various strain sensors, presenting a great potential in the fields of medical monitoring and rehabilitation.
Collapse
Affiliation(s)
- Han Fang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Huang
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Guo
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- Flexible Electronics Research Center, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Shen HY, Li YT, Liu H, Lin J, Zhao LY, Li GP, Wu YW, Ren TL, Wang Y. Machine Learning-Assisted Gesture Sensor Made with Graphene/Carbon Nanotubes for Sign Language Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52911-52920. [PMID: 39297553 DOI: 10.1021/acsami.4c10872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Gesture sensors are essential to collect human movements for human-computer interfaces, but their application is normally hampered by the difficulties in achieving high sensitivity and an ultrawide response range simultaneously. In this article, inspired by the spider silk structure in nature, a novel gesture sensor with a core-shell structure is proposed. The sensor offers a high gauge factor of up to 340 and a wide response range of 60%. Moreover, the sensor combining with a deep learning technique creates a system for precise gesture recognition. The system demonstrated an impressive 99% accuracy in single gesture recognition tests. Meanwhile, by using the sliding window technology and large language model, a high performance of 97% accuracy is achieved in continuous sentence recognition. In summary, the proposed high-performance sensor significantly improves the sensitivity and response range of the gesture recognition sensor. Meanwhile, the neural network technology is combined to further improve the way of daily communication by sign language users.
Collapse
Affiliation(s)
- Hao-Yuan Shen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Tao Li
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Hang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jie Lin
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu-Yu Zhao
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guo-Peng Li
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi-Wen Wu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Xu K, Cai Z, Luo H, Lu Y, Ding C, Yang G, Wang L, Kuang C, Liu J, Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS NANO 2024; 18:26435-26476. [PMID: 39288275 DOI: 10.1021/acsnano.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zimo Cai
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huayu Luo
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenliang Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Geng Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
5
|
Zhang S, Yang C, Qi Z, Wang Y, Cheng E, Zhao L, Hu N. Laser patterned graphene pressure sensor with adjustable sensitivity in an ultrawide response range. NANOTECHNOLOGY 2024; 35:365503. [PMID: 38861977 DOI: 10.1088/1361-6528/ad5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Flexible pressure sensors have attracted wide attention because of their applications in wearable electronic, human-computer interface, and healthcare. However, it is still a challenge to design a pressure sensor with adjustable sensitivity in an ultrawide response range to satisfy the requirements of different application scenarios. Here, a laser patterned graphene pressure sensor (LPGPS) is proposed with adjustable sensitivity in an ultrawide response range based on the pre-stretched kirigami structure. Due to the out-of-plane deformation of the pre-stretched kirigami structure, the sensitivity can be easily tuned by simply modifying the pre-stretched level. As a result, it exhibits a maximum sensitivity of 0.243 kPa-1, an ultrawide range up to 1600 kPa, a low detection limit (6 Pa), a short response time (42 ms), and excellent stability with high pressure of 1200 kPa over 500 cycles. Benefiting from its high sensitivity and ultrawide response range, the proposed sensor can be applied to detect physiological and kinematic signals under different pressure intensities. Additionally, taking advantage of laser programmable patterning, it can be easily configured into an array to determine the pressure distribution. Therefore, LPGPS with adjustable sensitivity in an ultrawide response range has potential application in wearable electronic devices.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Chao Yang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Zhengpan Qi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Yao Wang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - E Cheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Libin Zhao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Tianjin 300401, People's Republic of China
| | - Ning Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Tianjin 300401, People's Republic of China
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300401, People's Republic of China
| |
Collapse
|
6
|
Xu K, Li Q, Lu Y, Luo H, Jian Y, Li D, Kong D, Wang R, Tan J, Cai Z, Yang G, Zhu B, Ye Q, Yang H, Li T. Laser Direct Writing of Flexible Thermal Flow Sensors. NANO LETTERS 2023; 23:10317-10325. [PMID: 37937967 DOI: 10.1021/acs.nanolett.3c02891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Thin film-based thermal flow sensors afford applications in healthcare and industries owing to their merits in preserving initial flow distributions. However, traditional thermal flow sensors are primarily applied to track flow intensities based on hot-wire or hot-film sensing mechanisms due to their relatively facile device configurations and fabrication strategies. Herein, a calorimetric thermal flow sensor is proposed based on laser direct writing to form laser-induced graphene as heaters and temperature sensors, resulting in monitoring both flow intensities and orientations. Via homogeneously surrounding spiral heaters with multiple temperature sensors, the device exhibits high sensitivity (∼162 K·s/m) at small flows with an extended flow detection range (∼25 m/s). Integrating the device with a data-acquisition board and a dual-mode graphical user interface enables wirelessly and dynamically monitoring respiration and the motion of robotic arms. This versatile flow sensor with facile manufacturing affords potentials in health inspection, remote monitoring, and studying hydrodynamics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi'ao Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huayu Luo
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihui Jian
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dingwei Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Depeng Kong
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruohan Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jibing Tan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zimo Cai
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Geng Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Qingqing Ye
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiefeng Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
| |
Collapse
|
7
|
Ji J, Zhao W, Wang Y, Li Q, Wang G. Templated Laser-Induced-Graphene-Based Tactile Sensors Enable Wearable Health Monitoring and Texture Recognition via Deep Neural Network. ACS NANO 2023; 17:20153-20166. [PMID: 37801407 DOI: 10.1021/acsnano.3c05838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Flexible tactile sensors show great potential for portable healthcare and environmental monitoring applications. However, challenges persist in scaling up the manufacturing of stable tactile sensors with real-time feedback. This work demonstrates a robust approach to fabricating templated laser-induced graphene (TLIG)-based tactile sensors via laser scribing, elastomer hot-pressing transfer, and 3D printing of the Ag electrode. With different mesh sandpapers as templates, TLIG sensors with adjustable sensing properties were achieved. The tactile sensor obtains excellent sensitivity (52260.2 kPa-1 at a range of 0-7 kPa), a broad detection range (up to 1000 kPa), a low limit of detection (65 Pa), a rapid response (response/recovery time of 12/46 ms), and excellent working stability (10000 cycles). Benefiting from TLIG's high performance and waterproofness, TLIG sensors can be used as health monitors and even in underwater scenarios. TLIG sensors can also be integrated into arrays acting as receptors of the soft robotic gripper. Furthermore, a deep neural network based on the convolutional neural network was employed for texture recognition via a soft TLIG tactile sensing array, achieving an overall classification rate of 94.51% on objects with varying surface roughness, thus offering high accuracy in real-time practical scenarios.
Collapse
Affiliation(s)
- Jiawen Ji
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Wei Zhao
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Yuliang Wang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
| | - Qiushi Li
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
| | - Gong Wang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Lipovka A, Fatkullin M, Shchadenko S, Petrov I, Chernova A, Plotnikov E, Menzelintsev V, Li S, Qiu L, Cheng C, Rodriguez RD, Sheremet E. Textile Electronics with Laser-Induced Graphene/Polymer Hybrid Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38946-38955. [PMID: 37466067 DOI: 10.1021/acsami.3c06968] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The concept of wearables is rapidly evolving from flexible polymer-based devices to textile electronics. The reason for this shift is the ability of textiles to ensure close contact with the skin, resulting in comfortable, lightweight, and compact "always with you" sensors. We are contributing to this polymer-textile transition by introducing a novel and simple way of laser intermixing of graphene with synthetic fabrics to create wearable sensing platforms. Our hybrid materials exhibit high electrical conductivity (87.6 ± 36.2 Ω/sq) due to the laser reduction of graphene oxide and simultaneous laser-induced graphene formation on the surface of textiles. Furthermore, the composite created between graphene and nylon ensures the durability of our materials against sonication and washing with detergents. Both of these factors are essential for real-life applications, but what is especially useful is that our free-form composites could be used as-fabricated without encapsulation, which is typically required for conventional laser-scribed materials. We demonstrate the exceptional versatility of our new hybrid textiles by successfully recording muscle activity, heartbeat, and voice. We also show a gesture sensor and an electrothermal heater embedded within a single commercial glove. Additionally, the use of these textiles could be extended to personal protection equipment and smart clothes. We achieve this by implementing self-sterilization with light and laser-induced functionalization with silver nanoparticles, which results in multifunctional antibacterial textiles. Moreover, incorporating silver into such fabrics enables their use as surface-enhanced Raman spectroscopy sensors, allowing for the direct analysis of drugs and sweat components on the clothing itself. Our research offers valuable insights into simple and scalable processes of textile-based electronics, opening up new possibilities for paradigms like the Internet of Medical Things.
Collapse
Affiliation(s)
- Anna Lipovka
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | - Maxim Fatkullin
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | - Anna Chernova
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | | | | | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | | |
Collapse
|
9
|
Beduk D, Beduk T, de Oliveira Filho JI, Ait Lahcen A, Aldemir E, Guler Celik E, Salama KN, Timur S. Smart Multiplex Point-of-Care Platform for Simultaneous Drug Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37247-37258. [PMID: 37499237 PMCID: PMC10416146 DOI: 10.1021/acsami.3c06461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Recently, illicit drug use has become more widespread and is linked to problems with crime and public health. These drugs disrupt consciousness, affecting perceptions and feelings. Combining stimulants and depressants to suppress the effect of drugs has become the most common reason for drug overdose deaths. On-site platforms for illicit-drug detection have gained an important role in dealing, without any excess equipment, long process, and training, with drug abuse and drug trafficking. Consequently, the development of rapid, sensitive, noninvasive, and reliable multiplex drug-detecting platforms has become a major necessity. In this study, a multiplex laser-scribed graphene (LSG) sensing platform with one counter, one reference, and three working electrodes was developed for rapid and sensitive electrochemical detection of amphetamine (AMP), cocaine (COC), and benzodiazepine (BZD) simultaneously in saliva samples. The multidetection sensing system was combined with a custom-made potentiostat to achieve a complete point-of-care (POC) platform. Smartphone integration was achieved by a customized application to operate, display, and send data. To the best of our knowledge, this is the first multiplex LSG-based electrochemical platform designed for illicit-drug detection with a custom-made potentiostat device to build a complete POC platform. Each working electrode was optimized with standard solutions of AMP, COC, and BZD in the concentration range of 1.0 pg/mL-500 ng/mL. The detection limit of each illicit drug was calculated as 4.3 ng/mL for AMP, 9.7 ng/mL for BZD, and 9.0 ng/mL for COC. Healthy and MET (methamphetamine) patient saliva samples were used for the clinical study. The multiplex LSG sensor was able to detect target analytes in real saliva samples successfully. This multiplex detection device serves the role of a practical and affordable alternative to conventional drug-detection methods by combining multiple drug detections in one portable platform.
Collapse
Affiliation(s)
- Duygu Beduk
- Central
Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Tutku Beduk
- Silicon
Austria Labs (SAL) GmbH, Europastraße 12, 9500 Villach, Austria
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - José Ilton de Oliveira Filho
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Department
of Radiology, Weill Cornell Medicine, Dalio
Institute for Cardiovascular Imaging, New York, New York 10021, United States
| | - Ebru Aldemir
- Department
of Psychiatry, Faculty of Medicine, Izmir
Tinaztepe University, 35400 Buca, Izmir, Turkey
| | - Emine Guler Celik
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Suna Timur
- Central
Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
10
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
11
|
Wang Z, Wu Y, Zhu B, Chen Q, Zhang Y, Xu Z, Sun D, Lin L, Wu D. Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4713-4723. [PMID: 36623166 DOI: 10.1021/acsami.2c18814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable electrodes are desirable in flexible electronics for the transmission and acquisition of electrical signals, but their fabrication process remains challenging. Herein, we report an approach based on patterned liquid metals (LMs) as stretchable electrodes using a super-hydrophilic laser-induced graphene (SHL-LIG) process with electroless plating copper on a polyimide (PI) film. The LMs/SHL-LIG structures are then transferred from the PI film to an Ecoflex substrate as stretchable electrodes with an ultralow sheet resistance of 3.54 mΩ per square and excellent stretchability up to 480% in elongation. Furthermore, these electrodes show outstanding performances of only 8% electrical resistance changes under a tensile strain of 300%, and strong immunity to temperature and pressure changes. As demonstration examples, these electrodes are integrated with a stretchable strain sensing system and a smart magnetic soft robot toward practical applications.
Collapse
Affiliation(s)
- Zhongbao Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yigen Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Bin Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Qixiang Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yang Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Daoheng Sun
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California94720, United States
| | - Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| |
Collapse
|
12
|
Fan D, Liu Y, Wang Y, Wang Q, Guo H, Cai Y, Song R, Wang X, Wang W. 3D printing of bone and cartilage with polymer materials. Front Pharmacol 2022; 13:1044726. [PMID: 36561347 PMCID: PMC9763290 DOI: 10.3389/fphar.2022.1044726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Damage and degeneration to bone and articular cartilage are the leading causes of musculoskeletal disability. Commonly used clinical and surgical methods include autologous/allogeneic bone and cartilage transplantation, vascularized bone transplantation, autologous chondrocyte implantation, mosaicplasty, and joint replacement. 3D bio printing technology to construct implants by layer-by-layer printing of biological materials, living cells, and other biologically active substances in vitro, which is expected to replace the repair mentioned above methods. Researchers use cells and biomedical materials as discrete materials. 3D bio printing has largely solved the problem of insufficient organ donors with the ability to prepare different organs and tissue structures. This paper mainly discusses the application of polymer materials, bio printing cell selection, and its application in bone and cartilage repair.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yifan Wang
- Department of Additive Manufacturing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hao Guo
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yiming Cai
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ruipeng Song
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Weidong Wang, ; Xing Wang,
| | - Weidong Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China,*Correspondence: Weidong Wang, ; Xing Wang,
| |
Collapse
|
13
|
Chen P, Wang H, Su J, Tian Y, Wen S, Su B, Yang C, Chen B, Zhou K, Yan C, Shi Y. Recent Advances on High-Performance Polyaryletherketone Materials for Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200750. [PMID: 35385149 DOI: 10.1002/adma.202200750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Polyaryletherketone (PAEK) is emerging as an important high-performance polymer material in additive manufacturing (AM) benefiting from its excellent mechanical properties, good biocompatibility, and high-temperature stability. The distinct advantages of AM facilitate the rapid development of PAEK products with complex customized structures and functionalities, thereby enhancing their applications in various fields. Herein, the recent advances on AM of high-performance PAEKs are comprehensively reviewed, concerning the materials properties, AM processes, mechanical properties, and potential applications of additively manufactured PAEKs. To begin, an introduction to fundamentals of AM and PAEKs, as well as the advantages of AM of PAEKs is provided. Discussions are then presented on the material properties, AM processes, processing-matter coupling mechanism, thermal conductivity, crystallization characteristics, and microstructures of AM-processed PAEKs. Thereafter, the mechanical properties and anisotropy of additively manufactured PAEKs are discussed in depth. Their representative applications in biomedical, aerospace, electronics, and other fields are systematically presented. Finally, current challenges and possible solutions are discussed for the future development of high-performance AM polymers.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haoze Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shifeng Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binling Chen
- College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, EX4 4QF, UK
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
14
|
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. NANOMATERIALS 2022; 12:nano12142336. [PMID: 35889560 PMCID: PMC9317010 DOI: 10.3390/nano12142336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.
Collapse
|
15
|
Chen KY, Xu YT, Zhao Y, Li JK, Wang XP, Qu LT. Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|