1
|
Chen Z, Hu Y, Mei H. Harmonizing the symphony of chimeric antigen receptor T cell immunotherapy with the elegance of biomaterials. Trends Biotechnol 2025; 43:333-347. [PMID: 39181760 DOI: 10.1016/j.tibtech.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) immunotherapy has become a heated field of cancer research, demonstrating revolutionary efficacy in refractory and relapsed hematologic malignancies. However, CAR-T therapy has still encountered tough challenges, including complicated and lengthy manufacturing procedures, mediocre targeted delivery, limited therapeutic effect against solid tumors and difficulties in real-time in vivo monitoring. To overcome these limitations, various versatile biomaterials have been used in the above aspects and have improved CAR-T therapy impressively. This review mainly summarizes the latest research progress of biomaterials promoting CAR-T therapy in manufacturing, enhancing targeted delivery and tumor infiltration, and dramatic in vivo tracking to provide new insights and inspiration for clinical treatment.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
2
|
Mei T, Ye T, Huang D, Xie Y, Xue Y, Zhou D, Wang W, Chen J. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Cell Oncol (Dordr) 2024; 47:2049-2071. [PMID: 39565509 DOI: 10.1007/s13402-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingkun Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430022, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Li J, Xie J, Wang Y, Li X, Yang L, Zhao M, Chen C. Development of Biomaterials to Modulate the Function of Macrophages in Wound Healing. Bioengineering (Basel) 2024; 11:1017. [PMID: 39451393 PMCID: PMC11504998 DOI: 10.3390/bioengineering11101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Wound healing is a complex and precisely regulated process that encompasses multiple stages, including inflammation, anti-inflammation, and tissue repair. It involves various cells and signaling molecules, with macrophages demonstrating a significant degree of plasticity and playing a crucial regulatory role at different stages. In recent years, the use of biomaterials, which include both natural and synthetic polymers or macromolecules, has proliferated for the purpose of enhancing wound healing. This review summarizes how these diverse biomaterials promote wound healing by modulating macrophage behavior and examines the broader implications of these modulations. Additionally, we discuss the limitations associated with the clinical application of immunomodulatory biomaterials and propose potential solutions. Finally, we look towards future developments in the design of immunomodulatory biomaterials intended to enhance wound healing.
Collapse
Affiliation(s)
- Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116041, China; (J.L.); (X.L.)
| | - Jiatong Xie
- The Second Clinical College, Dalian Medical University, Dalian 116044, China;
| | - Yaming Wang
- The First Affiliated Hospital, Dalian Medical University, Dalian 116014, China;
| | - Xixian Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116041, China; (J.L.); (X.L.)
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry, Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110022, China;
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116041, China; (J.L.); (X.L.)
| | - Chaoxian Chen
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Liu S, Guo H, Li D, Wang C. Immunologically effective biomaterials enhance immunotherapy of prostate cancer. J Mater Chem B 2024; 12:9821-9834. [PMID: 39239675 DOI: 10.1039/d3tb03044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Prostate cancer (PCa) is one of the most common malignant neoplasms affecting the male population. The onset of the disease is insidious and often associated with severe consequences, such as bone metastases at the time of initial diagnosis. Once it advances to metastatic castration-resistant PCa (mCRPC), conventional treatment methods become ineffective. As research on the mechanism of tumor therapy advances, immunotherapy has been evolving rapidly. However, PCa is a solid tumor type that primarily faces the challenges of poor immunogenicity and inhibitory tumor microenvironment (TME). Fortunately, the extensive use of biomaterials has led to continuous advancement in PCa immunotherapy. These innovative materials aim to address intractable issues, such as immune escape and immune desert, to inhibit tumor progression and metastasis. This detailed review focuses on the regulation of different aspects of tumor immunity by immunologically effective biomaterials, including modulating adaptive immunity, innate immunity, and the immune microenvironment, to enhance the efficacy of PCa immunotherapy. In addition, this review provides a perspective on the future prospects of immunotherapeutic nanoplatforms based on biomaterials in the treatment of PCa.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Hui Guo
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Chunxi Wang
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| |
Collapse
|
5
|
Deng J, Yao Z, Wang S, Zhang X, Zhan L, Wang T, Yu W, Zeng J, Wu J, Fu S, Wu S, Ouyang Y, Huang C. Uni-directional release of ibuprofen from an asymmetric fibrous membrane enables effective peritendinous anti-adhesion. J Control Release 2024; 372:251-264. [PMID: 38908755 DOI: 10.1016/j.jconrel.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Drug-loaded porous membranes have been deemed to be effective physicochemical barriers to separate postoperative adhesion-prone tissues in tendon healing. However, cell viability and subsequent tissue regeneration might be severely interfered with the unrestricted release and the locally excessive concentration of anti-inflammatory drugs. Herein, we report a double-layered membrane with sustained and uni-directional drug delivery features to prevent peritendinous adhesion without hampering the healing outcome. A vortex-assisted electrospinning system in combination with ibuprofen (IBU)-in-water emulsion was utilized to fabricate IBU-loaded poly-ʟ-lactic-acid (PLLA) fiber bundle membrane (PFB-IBU) as the anti-adhesion layer. The resultant highly porous structure, oleophilic and hydrophobic nature of PLLA fibers enabled in situ loading of IBU with a concentration gradient across the membrane thickness. Aligned collagen nanofibers were further deposited at the low IBU concentration side of the membrane for regulating cell growth and achieving uni-directional release of IBU. Drug release kinetics showed that the release amount of IBU from the high concentration side reached 79.32% at 14 d, while it was only 0.35% at the collagen side. Therefore, fibroblast proliferation at the high concentration side was successfully inhibited without affecting the oriented growth of tendon-derived stem cells at the other side. In vivo evaluation of the rat Achilles adhesion model confirmed the successful peritendinous anti-adhesion of our double-layered membrane, in that the macrophage recruitment, the inflammatory factor secretion and the deposition of pathological adhesion markers such as α-SMA and COL-III were all inhibited, which greatly improved the peritendinous fibrosis and restored the motor function of tendon.
Collapse
Affiliation(s)
- Jixia Deng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhixiao Yao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Shikun Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xinyu Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lei Zhan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Tongyu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhua Yu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiamei Zeng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jinglei Wu
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry and Chemical Engineering and Biological Engineering, Donghua University, Shanghai 201620, China
| | - Shaoju Fu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China.
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Chen Huang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
7
|
Guo H, Hou Y, Wang C, Ding J. How to optimize the immune checkpoint blockade therapy for cancers? ONCOLOGIE 2024; 26:343-348. [DOI: 10.1515/oncologie-2024-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The realm of cancer therapy has been profoundly altered with the emergence of immune checkpoint blockade (ICB) therapy, providing improved survival prospects for many patients with some cancers. However, the challenge of achieving efficient or sustained therapeutic benefits underscores the critical imperative to optimize ICB strategies. This review elucidates the pivotal role of predictive biomarkers in optimizing precision ICB therapy, deciphering the intricate dynamics associated with the response heterogeneity. Furthermore, it critically examines the application of nanotechnology-driven drug delivery as a promising avenue to amplify ICB efficacy, facilitating controlled and targeted drug release. Recognizing the comprehensive and dynamic interplay among tumor cells, immune cells, and stromal cells has catalyzed the transformative advances in reverse translational research. This approach enables researchers to gain insights into the underlying mechanisms of ICB therapy, therapeutic responses, and resistance mechanisms. The convergence of predictive biomarkers, revolutionary nanotechnology, and reverse translational research emerges as an indispensable focal point, propelling the frontiers of precision oncology within the complex landscape of ICB therapy.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , China
- Department of Urinary , 117971 The First Hospital of Jilin University , Changchun , China
| | - Yuchuan Hou
- Department of Urinary , 117971 The First Hospital of Jilin University , Changchun , China
| | - Chunxi Wang
- Department of Urinary , 117971 The First Hospital of Jilin University , Changchun , China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , China
| |
Collapse
|
8
|
Luo Y, Yang Z, Zhao X, Li D, Li Q, Wei Y, Wan L, Tian M, Kang P. Immune regulation enhances osteogenesis and angiogenesis using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA) delivery for osteonecrosis. Mater Today Bio 2024; 25:100976. [PMID: 38322659 PMCID: PMC10846409 DOI: 10.1016/j.mtbio.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Osteonecrosis is a devastating orthopedic disease in clinic that generally occurs in the femoral head associating with corticosteroid use up to 49 % in patients. In particular, glucocorticoids induced osteonecrosis of the femoral head is closely related to the local immune response that characterized by abnormal macrophage activation and inflammatory cell infiltration at the necrotic site, forming a pro-inflammatory microenvironment dominated by M1 macrophages, and thus leads to failure of bone repair and regeneration. Here, we report a bone regeneration strategy that constructs an immune regulatory biomaterial platform using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA@Gel) delivery for osteonecrosis treatment. Li-nHA@Gel achieved a sustain and longterm release of Li ions, which might enhance M2 macrophage polarization through the activation of the JAK1/STAT6/STAT3 signaling pathway, and the following induced pro-repair immune microenvironment mediated the enhancement of the osteogenic and angiogenic differentiation. Moreover, both in vitro and in vivo studies indicated that Li-nHA@Gel enhanced M2 macrophage polarization, osteogenesis, and angiogenesis, and thus promoted the bone and blood vessel formation. Taken together, this novel bone immunomodulatory biomaterial platform that promotes bone regeneration by enhancing M2 macrophage polarization, osteogenesis, and angiogenesis could be a promising strategy for osteonecrosis treatment.
Collapse
Affiliation(s)
- Yue Luo
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 1 the South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Zhouyuan Yang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xin Zhao
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Donghai Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianhao Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yang Wei
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Luyao Wan
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Pengde Kang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
9
|
Thatte AS, Billingsley MM, Weissman D, Melamed JR, Mitchell MJ. Emerging strategies for nanomedicine in autoimmunity. Adv Drug Deliv Rev 2024; 207:115194. [PMID: 38342243 PMCID: PMC11015430 DOI: 10.1016/j.addr.2024.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Autoimmune disorders have risen to be among the most prevalent chronic diseases across the globe, affecting approximately 5-7% of the population. As autoimmune diseases steadily rise in prevalence, so do the number of potential therapeutic strategies to combat them. In recent years, fundamental research investigating autoimmune pathologies has led to the emergence of several cellular targets that provide new therapeutic opportunities. However, key challenges persist in terms of accessing and specifically combating the dysregulated, self-reactive cells while avoiding systemic immune suppression and other off-target effects. Fortunately, the continued advancement of nanomedicines may provide strategies to address these challenges and bring innovative autoimmunity therapies to the clinic. Through precise engineering and rational design, nanomedicines can possess a variety of physicochemical properties, surface modifications, and cargoes, allowing for specific targeting of therapeutics to pathological cell and organ types. These advances in nanomedicine have been demonstrated in cancer therapies and have the broad potential to advance applications in autoimmunity therapies as well. In this review, we focus on leveraging the power of nanomedicine for prevalent autoimmune disorders throughout the body. We expand on three key areas for the development of autoimmunity therapies - avoiding systemic immunosuppression, balancing interactions with the immune system, and elevating current platforms for delivering complex cargoes - and emphasize how nanomedicine-based strategies can overcome these barriers and enable the development of next-generation, clinically relevant autoimmunity therapies.
Collapse
Affiliation(s)
- Ajay S Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jilian R Melamed
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Yang Y, Yang GW, Lu JJ, Chen HR, Guo YQ, Yang N, Zhu YZ, Liu XQ, Su TT, Liu YY, Yu L, Li YS, Hu LF, Li JB. Fabrication of levofloxacin-loaded porcine acellular dermal matrix hydrogel and functional assessment in urinary tract infection. J Nanobiotechnology 2024; 22:52. [PMID: 38321555 PMCID: PMC10848372 DOI: 10.1186/s12951-024-02322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Bacterial cystitis, a commonly occurring urinary tract infection (UTI), is renowned for its extensive prevalence and tendency to recur. Despite the extensive utilization of levofloxacin as a conventional therapeutic approach for bacterial cystitis, its effectiveness is impeded by adverse toxic effects, drug resistance concerns, and its influence on the gut microbiota. This study introduces Lev@PADM, a hydrogel with antibacterial properties that demonstrates efficacy in the treatment of bacterial cystitis. Lev@PADM is produced by combining levofloxacin with decellularized porcine acellular dermal matrix hydrogel and exhibits remarkable biocompatibility. Lev@PADM demonstrates excellent stability as a hydrogel at body temperature, enabling direct administration to the site of infection through intravesical injection. This localized delivery route circumvents the systemic circulation of levofloxacin, resulting in a swift and substantial elevation of the antimicrobial agent's concentration specifically at the site of infection. The in vivo experimental findings provide evidence that Lev@PADM effectively prolongs the duration of levofloxacin's action, impedes the retention and invasion of E.coli in the urinary tract, diminishes the infiltration of innate immune cells into infected tissues, and simultaneously preserves the composition of the intestinal microbiota. These results indicate that, in comparison to the exclusive administration of levofloxacin, Lev@PADM offers notable benefits in terms of preserving the integrity of the bladder epithelial barrier and suppressing the recurrence of urinary tract infections.
Collapse
Affiliation(s)
- Yi Yang
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Guang-Wei Yang
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jian-Juan Lu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Hao-Ran Chen
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ya-Qin Guo
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ning Yang
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yun-Zhu Zhu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Xiao-Qiang Liu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ting-Ting Su
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yan-Yan Liu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Yu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ya-Sheng Li
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Li-Fen Hu
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jia-Bin Li
- Department of Infectious Diseases and Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Infectious Diseases and, Institute of Bacterial Resistance, Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
12
|
Xu Y, Zhao M, Cao J, Fang T, Zhang J, Zhen Y, Wu F, Yu X, Liu Y, Li J, Wang D. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2023; 13:4417-4441. [PMID: 37969725 PMCID: PMC10638506 DOI: 10.1016/j.apsb.2023.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 11/17/2023] Open
Abstract
Rheumatoid arthritis is a chronic, systemic autoimmune disease predominantly based on joint lesions with an extremely high disability and deformity rate. Several drugs have been used for the treatment of rheumatoid arthritis, but their use is limited by suboptimal bioavailability, serious adverse effects, and nonnegligible first-pass effects. In contrast, transdermal drug delivery systems (TDDSs) can avoid these drawbacks and improve patient compliance, making them a promising option for the treatment of rheumatoid arthritis (RA). Of course, TDDSs also face unique challenges, as the physiological barrier of the skin makes drug delivery somewhat limited. To overcome this barrier and maximize drug delivery efficiency, TDDSs have evolved in terms of the principle of transdermal facilitation and transdermal facilitation technology, and different generations of TDDSs have been derived, which have significantly improved transdermal efficiency and even achieved individualized controlled drug delivery. In this review, we summarize the different generations of transdermal drug delivery systems, the corresponding transdermal strategies, and their applications in the treatment of RA.
Collapse
Affiliation(s)
| | | | - Jinxue Cao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangling Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
13
|
Liu H, Zhang Y, Li H, Gao X, Wang J, Cong X, Xin Y, Zhu Q, Chen B, Yang YG, Sun T. Co-delivery of vitamin D3 and Lkb1 siRNA by cationic lipid-assisted PEG-PLGA nanoparticles to effectively remodel the immune system in vivo. Biomater Sci 2023; 11:5931-5941. [PMID: 37470222 DOI: 10.1039/d3bm00767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The imbalance of the immune system can lead to the occurrence of autoimmune diseases. Controlling and regulating the proliferation and function of effector T (Teff) cells and regulatory T (Treg) cells becomes the key to treating these diseases. Dendritic cells (DCs), as dedicated antigen-presenting cells, play a key role in inducing the differentiation of naive CD4+ T cells. In this study, we designed a cationic lipid-assisted PEG-PLGA nanoparticle (NPs/VD3/siLkb1) to deliver 1,25-dihydroxyvitamin D3 (VD3) and small interfering RNA (siRNA) to DC cells in the draining lymph nodes. By modulating the phenotypic changes of DC cells, this approach expands Treg cells and reduces the occurrence of autoimmune diseases. Thus, this study provides a novel approach to alleviating the occurrence and development of autoimmune diseases while also minimizing the risk of unwanted complications.
Collapse
Affiliation(s)
- Haochuan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xue Gao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
14
|
Yang Q, Su S, Liu S, Yang S, Xu J, Zhong Y, Yang Y, Tian L, Tan Z, Wang J, Yu Z, Shi Z, Liang F. Exosomes-loaded electroconductive nerve dressing for nerve regeneration and pain relief against diabetic peripheral nerve injury. Bioact Mater 2023; 26:194-215. [PMID: 36923267 PMCID: PMC10008840 DOI: 10.1016/j.bioactmat.2023.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Over the years, electroconductive hydrogels (ECHs) have been extensively applied for stimulating nerve regeneration and restoring locomotor function after peripheral nerve injury (PNI) with diabetes, given their favorable mechanical and electrical properties identical to endogenous nerve tissue. Nevertheless, PNI causes the loss of locomotor function and inflammatory pain, especially in diabetic patients. It has been established that bone marrow stem cells-derived exosomes (BMSCs-Exos) have analgesic, anti-inflammatory and tissue regeneration properties. Herein, we designed an ECH loaded with BMSCs-Exos (ECH-Exos) electroconductive nerve dressing to treat diabetic PNI to achieve functional recovery and pain relief. Given its potent adhesive and self-healing properties, this laminar dressing is convenient for the treatment of damaged nerve fibers by automatically wrapping around them to form a size-matched tube-like structure, avoiding the cumbersome implantation process. Our in vitro studies showed that ECH-Exos could facilitate the attachment and migration of Schwann cells. Meanwhile, Exos in this system could modulate M2 macrophage polarization via the NF-κB pathway, thereby attenuating inflammatory pain in diabetic PNI. Additionally, ECH-Exos enhanced myelinated axonal regeneration via the MEK/ERK pathway in vitro and in vivo, consequently ameliorating muscle denervation atrophy and further promoting functional restoration. Our findings suggest that the ECH-Exos system has huge prospects for nerve regeneration, functional restoration and pain relief in patients with diabetic PNI.
Collapse
Affiliation(s)
- Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shenghui Su
- Department of Orthopaedics, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, 352100, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yixiu Zhong
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiqiang Yu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author. Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author.
| | - Fangguo Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author.
| |
Collapse
|
15
|
Feng F, Song X, Tan Z, Tu Y, Xiao L, Xie P, Ma Y, Sun X, Ma J, Rong L, He L. Cooperative assembly of a designer peptide and silk fibroin into hybrid nanofiber gels for neural regeneration after spinal cord injury. SCIENCE ADVANCES 2023; 9:eadg0234. [PMID: 37352345 PMCID: PMC10289662 DOI: 10.1126/sciadv.adg0234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Local reconstruction of a permissive environment with biomaterials is a promising strategy to treat spinal cord injury (SCI). We reported a hybrid hydrogel fabricated from a small functional self-assembling peptide (F-SAP) and large silk fibroin (SF). The diffusion of SF micelles into F-SAP solution was driven by the dynamic synergy between osmotic pressure and F-SAP/SF electrostatic interactions, resulting in the rearrangement of SF micelles and the formation of rod-like filaments with axes nearly perpendicular to F-SAP nanofibers. Spectroscopy analysis, including circular dichroism, Raman and fluorescence, indicated conformation changes of SF from random coil to β sheet, which contributed to enhanced mechanical properties of the resultant hybrid hydrogel. Furthermore, the F-SAP/SF hybrid hydrogel coupled with controlled release of NT-3 provided a permissive environment for neural regeneration by providing nanofibrous substrates for regenerating axons, inflammatory modulation and remyelination, consequently resulting in improved locomotion and electrophysiological properties. This hydrogel could be used as a long-term stent in vivo for the treatment of SCI.
Collapse
Affiliation(s)
- Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiyong Song
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Zan Tan
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yujie Tu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Longyou Xiao
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Pengfei Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yahao Ma
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiumin Sun
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Junwu Ma
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Liumin He
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
16
|
Biagiotti G, Toniolo G, Albino M, Severi M, Andreozzi P, Marelli M, Kokot H, Tria G, Guerri A, Sangregorio C, Rojo J, Berti D, Marradi M, Cicchi S, Urbančič I, van Kooyk Y, Chiodo F, Richichi B. Simple engineering of hybrid cellulose nanocrystal-gold nanoparticles results in a functional glyconanomaterial with biomolecular recognition properties. NANOSCALE HORIZONS 2023; 8:776-782. [PMID: 36951189 DOI: 10.1039/d3nh00063j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Gianluca Toniolo
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Martin Albino
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- ICCOM CNR via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Patrizia Andreozzi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", SCITEC-CNR, Via G. Fantoli 16/15, 20138, Milano, Italy
| | - Hana Kokot
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova c. 39, 1000, Ljubljana, Slovenia
| | - Giancarlo Tria
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | | | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville, 41092, Spain
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Italian Center for Colloid and Surface Science (CSGI), 50019 Sesto Fiorentino (Firenze), Italy
| | - Marco Marradi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Stefano Cicchi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova c. 39, 1000, Ljubljana, Slovenia
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Napoli, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| |
Collapse
|
17
|
Li D, Liu S, Ma Y, Liu S, Liu Y, Ding J. Biomaterials That Induce Immunogenic Cell Death. SMALL METHODS 2023; 7:e2300204. [PMID: 37116170 DOI: 10.1002/smtd.202300204] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Indexed: 05/17/2023]
Abstract
The immune system takes part in most physiological and pathological processes of the body, including the occurrence and development of cancer. Immunotherapy provides a promising modality for inhibition and even the cure of cancer. During immunotherapy, the immunogenic cell death (ICD) of tumor cells induced by chemotherapy, radiotherapy, phototherapy, bioactive materials, and so forth, triggers a series of cellular responses by causing the release of tumor-associated antigens and damage-associated molecular patterns, which ultimately activate innate and adaptive immune responses. Among them, the ICD-induced biomaterials attract increasing conditions as a benefit of biosafety and multifunctional modifications. This Review summarizes the research progress in biomaterials for inducing ICD via triggering endoplasmic reticulum oxidative stress, mitochondrial dysfunction, and cell membrane rupture and discusses the application prospects of ICD-inducing biomaterials in clinical practice for cancer immunotherapy.
Collapse
Affiliation(s)
- Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Siqi Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yang Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Shixian Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| |
Collapse
|
18
|
Guo C, Diao N, Zhang D, Cao M, Wang W, Geng H, Kong M, Chen D. Achyranthes polysaccharide based dual-responsive nano-delivery system for treatment of rheumatoid arthritis. Int J Biol Macromol 2023; 234:123677. [PMID: 36796562 DOI: 10.1016/j.ijbiomac.2023.123677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Achyranthes plays the role of dredging the meridians and clearing the joints with a certain anti-inflammatory effect, peripheral analgesic activity and central analgesic activity. A novel self-assembled nanoparticles containing Celastrol (Cel) with matrix metalloproteinase (MMP)-sensitive chemotherapy-sonodynamic therapy was fabricated targeting macrophages at the inflammatory site of rheumatoid arthritis. Dextran sulfate (DS) with highly expressed SR-A receptor on the surface of macrophages is used to specifically target the site of inflammation; by introducing PVGLIG enzyme-sensitive polypeptides and ROS-responsive bonds, it can achieve the desired effect on MMP-2/9 and reactive oxygen species at the joint site. The preparation forms DS-PVGLIG-Cel&Abps-thioketal-Cur@Cel nanomicelles, referred to as D&A@Cel. The resulting micelles had an average size of 204.8 nm and the zeta potential -16.46 mV. The results show that activated macrophages can effectively capture Cel in in vivo experiments, indicating that Cel delivered by nanoparticles can significantly improve bioavailability.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ningning Diao
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Dandan Zhang
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Min Cao
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Wenxin Wang
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
19
|
Zhang QY, Tan J, Huang K, Nie R, Feng ZY, Zou CY, Li QJ, Chen J, Sheng N, Qin BQ, Gu ZP, Liu LM, Xie HQ. Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation. Carbohydr Polym 2023; 305:120546. [PMID: 36737196 DOI: 10.1016/j.carbpol.2023.120546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jie Tan
- Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jun Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Sheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Bo-Quan Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhi-Peng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li-Min Liu
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
20
|
Immunologically effective poly(D-lactic acid) nanoparticle enhances anticancer immune response. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Wei Q, Liu S, Huang X, Xin H, Ding J. Immunologically effective biomaterials-enhanced vaccines against infection of pathogenic microorganisms. BIOSAFETY AND HEALTH 2023; 5:45-61. [PMID: 40078604 PMCID: PMC11894984 DOI: 10.1016/j.bsheal.2022.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Infectious diseases are severe public health events that threaten global health. Prophylactic vaccines have been considered as the most effective strategy to train the immune system to recognize and clear pathogenic infections. However, the existing vaccines against infectious diseases have several limitations, such as difficulties in mass manufacturing and storage, weak immunogenicity, and low efficiency of available adjuvants. Biomaterials, especially functional polymers, are expected to break through these bottlenecks based on the advantages of biocompatibility, degradability, controlled synthesis, easy modification, precise targeting, and immune modulation, which are excellent carriers and adjuvants of vaccines. This review mainly summarizes the application of immunologically effective polymers-enhanced vaccines against viruses- and bacteria-related infectious diseases and predicted their potential improvements.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Shixian Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Xu Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
22
|
Shuaishuai W, Tongtong Z, Dapeng W, Mingran Z, Xukai W, Yue Y, Hengliang D, Guangzhi W, Minglei Z. Implantable biomedical materials for treatment of bone infection. Front Bioeng Biotechnol 2023; 11:1081446. [PMID: 36793442 PMCID: PMC9923113 DOI: 10.3389/fbioe.2023.1081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The treatment of bone infections has always been difficult. The emergence of drug-resistant bacteria has led to a steady decline in the effectiveness of antibiotics. It is also especially important to fight bacterial infections while repairing bone defects and cleaning up dead bacteria to prevent biofilm formation. The development of biomedical materials has provided us with a research direction to address this issue. We aimed to review the current literature, and have summarized multifunctional antimicrobial materials that have long-lasting antimicrobial capabilities that promote angiogenesis, bone production, or "killing and releasing." This review provides a comprehensive summary of the use of biomedical materials in the treatment of bone infections and a reference thereof, as well as encouragement to perform further research in this field.
Collapse
Affiliation(s)
- Wang Shuaishuai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhu Tongtong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Dapeng
- Department of Orthopedics, Siping Central Hospital, Siping, China
| | - Zhang Mingran
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Xukai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Yue
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dong Hengliang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wu Guangzhi
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| | - Zhang Minglei
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| |
Collapse
|
23
|
Chen E, Wang T, Tu Y, Sun Z, Ding Y, Gu Z, Xiao S. ROS-scavenging biomaterials for periodontitis. J Mater Chem B 2023; 11:482-499. [PMID: 36468674 DOI: 10.1039/d2tb02319a] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontitis is defined as a chronic inflammatory disease in which the continuous activation of oxidative stress surpasses the reactive oxygen species (ROS) scavenging capacity of the endogenous antioxidative defense system. Studies have demonstrated that ROS-scavenging biomaterials should be promising candidates for periodontitis therapy. To benefit the understanding and design of scavenging biomaterials for periodontitis, this review details the relationship between ROS and periodontitis, including direct and indirect damage, the application of ROS-scavenging biomaterials in periodontitis, including organic and inorganic ROS-scavenging biomaterials, and the various dosage forms of fabricated materials currently used for periodontal therapy. Finally, the current situation and further prospects of ROS-scavenging biomaterials in periodontal applications are summarized. Expecting that improved ROS-scavenging biomaterials could be better designed and developed for periodontal and even clinical application.
Collapse
Affiliation(s)
- Enni Chen
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Tu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - ZhiYuan Sun
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yi Ding
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
24
|
Zheng J, Yao Z, Xue L, Wang D, Tan Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front Immunol 2022; 13:1064245. [PMID: 36582244 PMCID: PMC9792770 DOI: 10.3389/fimmu.2022.1064245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis occurs when, under continuous stimulation by adverse factors such as glucocorticoids or alcohol, the death of local bone and marrow cells leads to abnormal osteoimmune function. This creates a chronic inflammatory microenvironment, which interferes with bone regeneration and repair. In a variety of bone tissue diseases, innate immune cells and adaptive immune cells interact with bone cells, and their effects on bone metabolic homeostasis have attracted more and more attention, thus developing into a new discipline - osteoimmunology. Immune cells are the most important regulator of inflammation, and osteoimmune disorder may be an important cause of osteonecrosis. Elucidating the chronic inflammatory microenvironment regulated by abnormal osteoimmune may help develop potential treatments for osteonecrosis. This review summarizes the inflammatory regulation of bone immunity in osteonecrosis, explains the pathophysiological mechanism of osteonecrosis from the perspective of osteoimmunology, and provides new ideas for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhi Yao
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| |
Collapse
|
25
|
Li K, Zhao D, Chen H, Zhang W, Zhao W, Zhang Z. Thermo-sensitive hydrogel-mediated locally sequential release of doxorubicin and palbociclib for chemo-immunotherapy of osteosarcoma. MATERIALS & DESIGN 2022; 224:111365. [DOI: 10.1016/j.matdes.2022.111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Yu X, Han N, Dong Z, Dang Y, Zhang Q, Hu W, Wang C, Du S, Lu Y. Combined Chemo-Immuno-Photothermal Therapy for Effective Cancer Treatment via an All-in-One and One-for-All Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42988-43009. [PMID: 36109853 DOI: 10.1021/acsami.2c12969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor metastasis and recurrence are recognized to be the main causes of failure in cancer treatment. To address these issues, an "all in one" and "one for all" nanoplatform was established for combined "chemo-immuno-photothermal" therapy with the expectation to improve the antitumor efficacy. Herein, Docetaxel (DTX, a chemo-agent) and cynomorium songaricum polysaccharide (CSP, an immunomodulator) were loaded into zein nanoparticles coated by a green tea polyphenols/iron coordination complex (GTP/FeIII, a photothermal agent). From the result, the obtained nanoplatform denoted as DTX-loaded Zein/CSP-GTP/FeIII NPs was spherical in morphology with an average particle size of 274 nm, and achieved pH-responsive drug release. Moreover, the nanoplatform exhibited excellent photothermal effect both in vitro and in vivo. It was also observed that the nanoparticles could be effectively up take by tumor cells and inhibited their migration. From the results of the in vivo experiment, this nanoplatform could completely eliminate the primary tumors, prevent tumor relapses on LLC (Lewis lung cancer) tumor models, and significantly inhibit metastasis on 4T1 (murine breast cancer) tumor models. The underlying mechanism was also explored. It was discovered that this nanoplatform could induce a strong ICD effect and promote the release of damage-associated molecular patterns (DAMPs) including CRT, ATP, and HMGB1 by the dying tumor cells. And the CSP could assist the DAMPs in inducing the maturation of dendritic cells (DCs) and facilitate the intratumoral infiltration of T lymphocytes to clear up the residual or disseminated tumor cells. In summary, this study demonstrated that the DTX-loaded Zein/CSP-GTP/FeIII is a promising nanoplatform to completely inhibit tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Xianglong Yu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ning Han
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ziyi Dong
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yunni Dang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Qing Zhang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Wenjun Hu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Changhai Wang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Shouying Du
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yang Lu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| |
Collapse
|
27
|
Wang T, Zhang J, Zhang H, Bai W, Dong J, Yang Z, Yang P, Gu Z, Li Y, Chen X, Xu Y. Antioxidative myricetin-enriched nanoparticles towards acute liver injury. J Mater Chem B 2022; 10:7875-7883. [PMID: 36093595 DOI: 10.1039/d2tb01505f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury (ALI) could severely destroy the liver function and cause inevitable damage to human health. Studies have demonstrated that excessive reactive oxygen species (ROS) and accompanying inflammatory factors play vital roles in the ALI disease. Herein, we fabricated a kind of nature-inspired myricetin-enriched nanomaterial via Michael addition and Schiff base reaction, which possessed uniform morphology, tunable component ratios, great stabilities, promising free radical scavenging abilities, biocompatibility and protective effects towards cells under oxidative stress. Additionally, the therapeutic effects were demonstrated using an ALI model by down-regulating ROS and inflammatory levels and restoring the liver function. This study could provide a strategy to construct robust and antioxidative nanomaterials using naturally occurring molecules against intractable diseases.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinhong Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Cheng Z, Li Y, Zhao D, Zhao W, Wu M, Zhang W, Cui Y, Zhang P, Zhang Z. Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy. Front Bioeng Biotechnol 2022; 10:994655. [PMID: 36147526 PMCID: PMC9485877 DOI: 10.3389/fbioe.2022.994655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In the past few decades, the combination of proteins and small-molecule drugs has made tremendous progress in cancer treatment, but it is still not satisfactory. Because there are great differences in molecular weight, water solubility, stability, pharmacokinetics, biodistribution, and the ways of release and action between macromolecular proteins and small-molecule drugs. To improve the efficacy and safety of tumor treatment, people are committed to developing protein and drug co-delivery systems. Currently, intracellular co-delivery systems have been developed that integrate proteins and small-molecule drugs into one nanocarrier via various loading strategies. These systems significantly improve the blood stability, half-life, and biodistribution of proteins and small-molecule drugs, thus increasing their concentration in tumors. Furthermore, proteins and small-molecule drugs within these systems can be specifically targeted to tumor cells, and are released to perform functions after entering tumor cells simultaneously, resulting in improved effectiveness and safety of tumor treatment. This review summarizes the latest progress in protein and small-molecule drug intracellular co-delivery systems, with emphasis on the composition of nanocarriers, as well as on the loading methods of proteins and small-molecule drugs that play a role in cells into the systems, which have not been summarized by others so far.
Collapse
Affiliation(s)
- Zhihong Cheng
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yongshuang Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
|
30
|
Zhang J, Xie H, Wang T, Zhang H, Yang Z, Yang P, Li Y, Ma X, Gu Z. Epicatechin-assembled nanoparticles against renal ischemia/reperfusion injury. J Mater Chem B 2022; 10:6965-6973. [PMID: 36000287 DOI: 10.1039/d2tb01301k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired and biosafety antioxidant nanoparticle assemblies from natural occurring molecules have been regarded as a class of effective therapeutic nanomaterials for addressing current inflammatory diseases such as acute kidney injury. In this study, a series of epicatechin-assembled nanoparticles have been developed via one-pot enzymatic polymerization of epicatechin. The prepared poly (epicatechin) (PEC) nanoparticles (NPs) showed excellent antioxidant capacity to scavenge multiple toxic free radicals, thus being able to effectively protect cells under oxidative stress conditions in vitro. Furthermore, in the renal ischemia/reperfusion model, blood renal function testing and renal tissue staining revealed a prominent therapeutic effect of PEC NPs. All these findings suggested that this class of bioinspired antioxidant nanoparticles provided a new therapeutic strategy for human ischemia/reperfusion-related diseases.
Collapse
Affiliation(s)
- Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xuelei Ma
- Department of biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
31
|
Rhodes ADY, Duran-Mota JA, Oliva N. Current progress in bionanomaterials to modulate the epigenome. Biomater Sci 2022; 10:5081-5091. [PMID: 35880652 DOI: 10.1039/d2bm01027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in genomics during the 1990s have made it possible to study and identify genetic and epigenetic responses of cells and tissues to various drugs and environmental factors. This has accelerated the number of targets available to treat a range of diseases from cancer to wound healing disorders. Equally interesting is the understanding of how bio- and nanomaterials alter gene expression through epigenetic mechanisms, and whether they have the potential to elicit a positive therapeutic response without requiring additional biomolecule delivery. In fact, from a cell's perspective, a biomaterial is nothing more than an environmental factor, and so it has the power to epigenetically modulate gene expression of cells in contact with it. Understanding these epigenetic interactions between biomaterials and cells will open new avenues in the development of technologies that can not only provide biological signals (i.e. drugs, growth factors) necessary for therapy and regeneration, but also intimately interact with cells to promote the expression of genes of interest. This review article aims to summarise the current state-of-the-art and progress on the development of bio- and nanomaterials to modulate the epigenome.
Collapse
Affiliation(s)
- Anna D Y Rhodes
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| | - Jose Antonio Duran-Mota
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK. .,Materials Engineering Group (GEMAT), IQS Barcelona, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
32
|
Activation of Cellular Players in Adaptive Immunity via Exogenous Delivery of Tumor Cell Lysates. Pharmaceutics 2022; 14:pharmaceutics14071358. [PMID: 35890254 PMCID: PMC9316852 DOI: 10.3390/pharmaceutics14071358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cell lysates (TCLs) are a good immunogenic source of tumor-associated antigens. Since whole necrotic TCLs can enhance the maturation and antigen-presenting ability of dendritic cells (DCs), multiple strategies for the exogenous delivery of TCLs have been investigated as novel cancer immunotherapeutic solutions. The TCL-mediated induction of DC maturation and the subsequent immunological response could be improved by utilizing various material-based carriers. Enhanced antitumor immunity and cancer vaccination efficacy could be eventually achieved through the in vivo administration of TCLs. Therefore, (1) important engineering methodologies to prepare antigen-containing TCLs, (2) current therapeutic approaches using TCL-mediated DC activation, and (3) the significant sequential mechanism of DC-based signaling and stimulation in adaptive immunity are summarized in this review. More importantly, the recently reported developments in biomaterial-based exogenous TCL delivery platforms and co-delivery strategies with adjuvants for effective cancer vaccination and antitumor effects are emphasized.
Collapse
|
33
|
Liu Y, Xu L, Zhang Q, Kang Y, Liu L, Liu Z, Wang Y, Jiang X, Shan Y, Luo R, Cui X, Yang Y, Yang X, Liu X, Li Z. Localized Myocardial Anti-Inflammatory Effects of Temperature-Sensitive Budesonide Nanoparticles during Radiofrequency Catheter Ablation. RESEARCH 2022; 2022:9816234. [PMID: 35707046 PMCID: PMC9178488 DOI: 10.34133/2022/9816234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023]
Abstract
Radiofrequency (RF) catheter ablation has emerged as an effective alternative for the treatment of atrial fibrillation (AF), but ablation lesions will result in swelling and hematoma of local surrounding tissue, triggering inflammatory cell infiltration and increased release of inflammatory cytokines. Some studies have shown that the inflammatory response may be related to the early occurrence of AF. The most direct way to inhibit perioperative inflammation is to use anti-inflammatory drugs such as glucocorticoids. Here, we prepared polylactic-co-glycolic acid (PLGA) nanoparticles loaded with budesonide (BUD) and delivered them through irrigation of saline during the onset of ablation. Local high temperature promoted local rupture of PLGA nanoparticles, releasing BUD, and produced a timely and effective local myocardial anti-inflammatory effect, resulting in the reduction of acute hematoma and inflammatory cell infiltration and the enhancement of ablation effect. Nanoparticles would also infiltrate into the local myocardium and gradually release BUD ingredients to produce a continuous anti-inflammatory effect in the next few days. This resulted in a decrease in the level of inflammatory cytokine IL-6 and an increase of anti-inflammatory cytokine IL-10. This study explored an extraordinary drug delivery strategy to reduce ablation-related inflammation, which may prevent early recurrence of AF.
Collapse
Affiliation(s)
- Ye Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lingling Xu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Lifeng Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zheng Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuxing Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xuejiao Jiang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruizeng Luo
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cui
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoqing Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Lee S, Park J, Kim S, Ok J, Yoo JI, Kim YS, Ahn Y, Kim TI, Ko HC, Lee JY. High-Performance Implantable Bioelectrodes with Immunocompatible Topography for Modulation of Macrophage Responses. ACS NANO 2022; 16:7471-7485. [PMID: 35438981 DOI: 10.1021/acsnano.1c10506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implantable bioelectrodes enable precise recording or stimulation of electrical signals with living tissues in close contact. However, their performance is frequently compromised owing to inflammatory tissue reactions, which macrophages either induce or resolve by polarizing to an inflammatory (M1) or noninflammatory (M2) phenotype, respectively. Thus, we aimed to fabricate biocompatible and functional implantable conductive polymer bioelectrodes with optimal topography for the modulation of macrophage responses. To this end, we produced heparin-doped polypyrrole (PPy/Hep) electrodes of different surface roughness, with Ra values from 5.5 to 17.6 nm, by varying the charge densities during electrochemical synthesis. In vitro culture revealed that macrophages on rough PPy/Hep electrodes preferentially polarized to noninflammatory phenotypes. In particular, PPy/Hep-900 (Ra = 14 nm) was optimal with respect to electrochemical properties and the suppression of inflammatory M1 polarization. In vivo implantation indicated that PPy/Hep-900 significantly reduced macrophage recruitment, suppressed inflammatory polarization, and mitigated fibrotic tissue formation. In addition, the implanted PPy/Hep-900 electrodes could successfully record electrocardiographic signals for up to 10 days without substantial decreases in sensitivity, while other electrodes substantially lost their signal sensitivity during implantation. Altogether, we demonstrate that modulating the surface features of PPy/Hep can benefit the design and applications of high-performance and high-biocompatibility bioelectrodes.
Collapse
Affiliation(s)
- Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Semin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Il Yoo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heung Cho Ko
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
35
|
Yeh JJ, Lai M, Lin CL, Lu KH, Kao CH. Effects of statins on the risks of ischemic stroke and heart disease in human immunodeficiency virus infection, influenza and severe acute respiratory syndrome-associated coronavirus: respiratory virus infection with steroid use. Postgrad Med 2022; 134:589-597. [PMID: 35590450 DOI: 10.1080/00325481.2022.2080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We sought to fill the research gap on the effects of statins on the risks of ischemic stroke and heart disease among individuals with human immunodeficiency virus infection, influenza, and severe acute respiratory syndrome associated-coronavirus (HIS) disorders. METHODS We enrolled a HIS cohort treated with statins (n = 4921) and a HIS cohort not treated with statins (n = 4921). The cumulative incidence of ischemic stroke and heart disease was analyzed using a time-dependent Cox proportional regression analysis. We analyzed the adjusted hazard ratio (aHR) and 95% confidence interval (CI) of ischemic stroke and heart disease for statins users relative to nonusers based on sex, age, comorbidities and medications. RESULTS The aHR (95% CI) was 0.38 (0.22-0.65) for ischemic stroke. The aHR (95% CI) of heart disease was 0.50 (0.46-0.55). The aHRs (95% CI) of statin users with low, medium, and high adherence (statin use covering <33%, 33%-66%, and >66%, respectively, of the study period) for the risks of ischemic stroke were 0.50 (0.27-0.92), 0.31 (0.10-1.01), and 0.16 (0.04-0.68) and for heart disease were 0.56 (0.51-0.61), 0.40 (0.33-0.48), and 0.44 (0.38-0.51), respectively, compared with statin nonusers. CONCLUSION Statin use was associated with lower aHRs for ischemic stroke and heart disease in those with HIS disorders with comorbidities.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Geriatric Medicine, and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Meichu Lai
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Hua Lu
- Department of Family Medicine, Geriatric Medicine, and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
36
|
Cui Z, Feng Y, Liu F, Jiang L, Yue J. 3D Bioprinting of Living Materials for Structure-Dependent Production of Hyaluronic Acid. ACS Macro Lett 2022; 11:452-459. [PMID: 35575323 DOI: 10.1021/acsmacrolett.2c00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
3D bioprinting of living materials represents an interesting paradigm toward the efficacy enhancement for the biosynthesis of various functional compounds in microorganisms. Previous studies have shown the success of 3D-printed bioactive systems in the production of small molecular compounds. However, the feasibility of such a strategy in producing macromolecules and how the geometry of the 3D scaffold influences the productivity are still unknown. In this study, we printed a series of 3D gelatin-based hydrogels immobilized with fermentation bacteria that can secrete hyaluronic acid (HA), a very useful natural polysaccharide in the fields of biomedicine and tissue engineering. The 3D-printed bioreactor was capable of producing HA, and an elevated yield was obtained with the system bearing a grid structure compared to that either with a solid structure or in a scaffold-free fermentation condition. As for the grid structure, bioreactors with a 90° strut angel and a median interfilament distance displayed the highest HA yield. Our findings highlighted the significant role of 3D printing in the spatial control of microorganism-laden hydrogel structures for the enhancement of biosynthesis efficiency.
Collapse
Affiliation(s)
- Zhenhua Cui
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| | - Yanwen Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| | - Fei Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| | - Lelun Jiang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| |
Collapse
|
37
|
Kheilnezhad B, Hadjizadeh A. Ibuprofen-Loaded Electrospun PCL/PEG Nanofibrous Membranes for Preventing Postoperative Abdominal Adhesion. ACS APPLIED BIO MATERIALS 2022; 5:1766-1778. [PMID: 35389215 DOI: 10.1021/acsabm.2c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrospun nanofibrous membranes are a widely used physical barrier for reducing postoperative adhesion. However, these physical barriers could not prevent adhesion formation completely. Because a high-intensity inflammation occurs in the surgical area, the presence of relevant drugs to control such an inflammation is desperately needed. In this study, we fabricated an electrospun composite ibuprofen-loaded poly(ethylene glycol) (PEG)/polycaprolactone (PCL) nanofibrous membrane (NFM) to prevent abdominal adhesions. This membrane aimed to act as a barrier between the abdominal wall and surrounding tissues, without interrupting mass transfer and normal wound healing. Among various fabricated composite NFMs, PCL/25PEG-6% NFMs showed the lowest fiber diameter (448.8 ± 124.4 nm), the smallest pore size (<2 μm), and moderate ultimate stress and strain. The PCL/25PEG-6% NFMs had the lowest water contact angle (≈75°) and the highest drug profile release (≈80%) within 14 days. Furthermore, in vitro toxicity examination of PCL/25PEG-6% toward fibroblast cells demonstrated a cell viability of ≈82% after 3 days, proving its prolonged antiadhesion ability. In addition, the low number of adherent cells with a rounded shape and low cell proliferation on these NFMs indicated their special antiadhesive effects. Collectively, these results indicated that the PCL/25PEG-6% membrane might be a suitable barrier to prevent abdominal adhesion.
Collapse
Affiliation(s)
- Bahareh Kheilnezhad
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| |
Collapse
|
38
|
Li L, Zhu C, Zhu Q, Chen Z, Gao X. Design, Synthesis and Bioactivity Evaluation of Guaiazulene Derivatives with Antioxidant and Anti-inflammatory Activities. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Tang Y, Wu Z, Guo R, Huang J, Rong X, Zhu B, Wang L, Ma L, Cheng C, Qiu L. Ultrasound-augmented anti-inflammatory exosomes for targeted therapy in rheumatoid arthritis. J Mater Chem B 2022; 10:7862-7874. [DOI: 10.1039/d2tb01219g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rheumatoid arthritis (RA), one of the systemic autoimmune diseases, features dysregulated inflammation that can eventually lead to multi-joint destruction and deformity. Although current clinical RA treatment agents including non-steroidal anti-inflammatory...
Collapse
|