1
|
Yang N, Zhang X, Liu A, Wang Y, Wei W. A Sensitive SERS Sensor for Simultaneous Detection of Two Potential Biomarkers of Alzheimer's Disease: AChE and MAO-B. Anal Chem 2025; 97:10893-10900. [PMID: 40367328 DOI: 10.1021/acs.analchem.5c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) are potential biomarkers for Alzheimer's disease (AD). However, few methods exist to detect both AChE and MAO-B simultaneously. In this study, we developed a SERS sensor for the simultaneous detection of AChE and MAO-B based on the one-pot reaction system, which provided more valuable information for early AD diagnosis. Au NPs modified with Raman reporter 4-aminothiophenol (AuPATP NPs) were attached to Cu-BTC via Schiff's base reaction (AuPATP NPs@Cu-BTC), resulting in great Raman intensity. Phenethylamine (PEA), a substrate of MAO-B, competed with AuPATP NPs for binding to Cu-BTC, reducing the intensity of the Raman signal. Additionally, two PATP molecules on free Au NPs coupled to DMAB due to the catalysis of Cu2+ in Cu-BTC, transforming AuPATP NPs into AuDMAB NPs and generating three new Raman peaks. TCh, the catalytic product of AChE, was chelated with Cu2+, so the coupling efficiency of PATP has been decreased, and the conversion of AuPATP NPs to AuDMAB NPs has been prevented. Based on the one-pot reaction system, both MAO-B and AChE can be detected by Raman signals from precipitated AuPATP NPs@Cu-BTC and supernatant AuDMAB NPs after centrifugation. The detection limits were 2.3 × 10-3 μg mL-1 for MAO-B and 1.6 × 10-3 U L-1 for AChE. We successfully detected MAO-B and AChE in serum with recoveries ranging from 100.0 to 113.7% for MAO-B and 93.6 to 120% for AChE. This manuscript presents a novel method for the simultaneous detection of MAO-B and AChE, showing great potential for early AD diagnosis.
Collapse
Affiliation(s)
- Niya Yang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaowan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Anran Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Wang
- Institute of Forensic Science and Technology of Nanjing Public Security Bureau, Nanjing 210001, PR China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Du B, Zou Q, Wang X, Wang H, Yang X, Wang Q, Wang K. Multi-targeted engineered hybrid exosomes as Aβ nanoscavengers and inflammatory modulators for multi-pathway intervention in Alzheimer's disease. Biomaterials 2025; 322:123403. [PMID: 40347851 DOI: 10.1016/j.biomaterials.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The pathogenesis of Alzheimer's disease (AD) was complex, including excessive deposition of β-amyloid (Aβ), microglia dysfunction, and neuroinflammation. Therefore, single-pathway treatment was not sufficient to ameliorate the multifaceted pathological changes associated with AD. Moreover, the low permeability of blood-brain barrier (BBB) and the lack of AD locus selectivity further limited the intervention efficacy of current AD drugs. In this study, a novel nanoparticle coating was designed by hybridizing the membrane from brain microvascular endothelial cell exosomes and macrophage exosomes, and combining polydopamine nanoparticles, resveratrol and Aβ-targeting aptamers to construct engineered exosomes (RPDA@Rb-A) with multiple targeting capabilities to intervene in Aβ clearance and regulate microglial dysfunction. Based on the homing effect of brain microvascular endothelial cell exosomes and the natural inflammation targeting ability of macrophage exosomes, RPDA@Rb-A can easily penetrate the blood brain barrier and accumulate in the brain inflammation site after capturing Aβ aggregates. RPDA@Rb-A can effectively intervene in AD through multi-pathway, including degraded toxic Aβ aggregates through local heating induced by near-infrared laser irradiation and alleviated neurotoxicity, promoted microglial clearance of Aβ by capturing Aβ, and modulated microglia-induced neuroinflammation by efficient delivery of small molecule drugs. In AD mouse model, the administration of RPDA@Rb-A resulted in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. The engineered exosomes based on membrane hybridization overcome the shortcomings of traditional drug carriers in poor penetration and insufficient targeting to the central nervous system, and provide a potential platform for multi pathways intervention in AD.
Collapse
Affiliation(s)
- Bin Du
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Qingqing Zou
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Xin Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Hongqiang Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Xiaohai Yang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| | - Qing Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
3
|
Zhou H, Yin X, Zhang G, Yang Z, Zhou R. Advancing Nanomaterial-Based Strategies for Alzheimer's Disease: A Perspective. JACS AU 2025; 5:1519-1537. [PMID: 40313833 PMCID: PMC12041962 DOI: 10.1021/jacsau.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common cause of dementia. By 2050, the number of AD cases is projected to exceed 131 million, placing significant strain on healthcare systems and economies worldwide. The pathogenesis of AD is multifactorial, involving hypotheses/mechanisms, such as amyloid-β (Aβ) plaques, tau protein hyperphosphorylation, cholinergic neuron damage, oxidative stress, and inflammation. Despite extensive research, the complexity of these potentially entangled mechanisms has hindered the development of treatments that can reverse disease progression. Nanotechnology, leveraging the unique physical, electrical, magnetic, and optical properties of nanomaterials, has emerged as a promising approach for AD treatment. In this Perspective, we first outlined the major current pathogenic hypotheses of AD and then reviewed recent advances in nanomaterials in addressing these hypotheses. We have also discussed the challenges in translating nanomaterials into clinical applications and proposed future directions, particularly the development of multifunctional and multitarget nanomaterials, to enhance their therapeutic efficacy and clinical applicability in AD treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xiuhua Yin
- Center
of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center
of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guanqiao Zhang
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Duță C, Dogaru CB, Muscurel C, Stoian I. Nanozymes: Innovative Therapeutics in the Battle Against Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3522. [PMID: 40332015 PMCID: PMC12026839 DOI: 10.3390/ijms26083522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), represent a significant challenge to global health due to their progressive nature and the absence of curative treatments. These disorders are characterized by oxidative stress, protein misfolding, and neuroinflammation, which collectively contribute to neuronal damage and death. Recent advancements in nanotechnology have introduced nanozymes-engineered nanomaterials that mimic enzyme-like activities-as promising therapeutic agents. This review explores the multifaceted roles of nanozymes in combating oxidative stress and inflammation in neurodegenerative conditions. By harnessing their potent antioxidant properties, nanozymes can effectively scavenge reactive oxygen species (ROS) and restore redox balance, thereby protecting neuronal function. Their ability to modify surface properties enhances targeted delivery and biocompatibility, making them suitable for various biomedical applications. In this review, we highlight recent findings on the design, functionality, and therapeutic potential of nanozymes, emphasizing their dual role in addressing oxidative stress and pathological features such as protein aggregation. This synthesis of current research underscores the innovative potential of nanozymes as a proactive therapeutic strategy to halt disease progression and improve patient outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.B.D.); (I.S.)
| | | |
Collapse
|
5
|
Dong N, Ali-Khiavi P, Ghavamikia N, Pakmehr S, Sotoudegan F, Hjazi A, Gargari MK, Gargari HK, Behnamrad P, Rajabi M, Elhami A, Saffarfar H, Nourizadeh M. Nanomedicine in the treatment of Alzheimer's disease: bypassing the blood-brain barrier with cutting-edge nanotechnology. Neurol Sci 2025; 46:1489-1507. [PMID: 39638950 DOI: 10.1007/s10072-024-07871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) remains a formidable challenge in the field of neurodegenerative disorders, necessitating innovative therapeutic strategies. Nanomedicine, leveraging nanomaterials, has emerged as a promising avenue for AD treatment, with a key emphasis on overcoming the blood-brain barrier (BBB) to enhance drug delivery efficiency. This review provides a comprehensive analysis of recent advancements in the application of nanomaterials for AD therapy, highlighting their unique properties and functions. The blood-brain barrier, a complex physiological barrier, poses a significant hurdle for traditional drug delivery to the brain. Nanomedicine addresses this challenge by utilizing various nanomaterials such as liposomes, polymeric nanoparticles, and metal nanoparticles. These nanocarriers enable improved drug bioavailability, sustained release, and targeted delivery to specific brain regions affected by AD pathology. The review discusses the diverse range of nanomaterials employed in AD treatment, exploring their capacity to encapsulate therapeutic agents, modulate drug release kinetics, and enhance drug stability. Additionally, the multifunctionality of nanomaterials allows for simultaneous imaging and therapy, facilitating early diagnosis and intervention. Key aspects covered include the interaction of nanomaterials with Aβ aggregates, the role of antioxidants in mitigating oxidative stress, and the potential of nanomedicine in alleviating neuroinflammation associated with AD. Furthermore, the safety, biocompatibility, and toxicity profiles of various nanomaterials are scrutinized to ensure their clinical applicability. In conclusion, this review underscores the pivotal role of nanomedicine and nanomaterials in revolutionizing AD treatment strategies. By specifically addressing BBB challenges, these innovative approaches offer new avenues for targeted drug delivery and improved therapeutic outcomes in the complex landscape of Alzheimer's disease.
Collapse
Affiliation(s)
- Nana Dong
- College of Basic Medical Sciences, China Three Gorges University, 443000, Yichang, Hubei Province, China
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzaneh Sotoudegan
- Quality Control of Medicines and Supplements Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | | | - Parisa Behnamrad
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Nourizadeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Wen S, Ju Z, Wang Y, Zuo CT, Sun X, Zheng T. FRET Nanosensor Based on DNA Tetrahedron for Visualizing PLD3 Fluctuation in Mouse Models of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13461-13470. [PMID: 39973147 DOI: 10.1021/acsami.4c20506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Accumulating evidence supports an important role of phospholipase D3 (PLD3) in the pathogenesis of Alzheimer's disease (AD), while the actual expression level and distribution of PLD3 remains controversial in AD. Developing specific nanoprobes could be a promising strategy to understand PLD3 better, but there are limited approaches available in this field for a simple, reliable, and biocompatible biosensor. In this work, we report a PLD3-induced fluorescence resonance energy transfer (FRET) nanoprobe utilizing tetrahedral DNA nanostructures (TDNs) for visualizing the fluctuation of PLD3 at organ and subcellular levels in AD. Hydrolysis of PLD3 to a specific nucleotide strand on TDN will turn the FRET probe to an OFF state, which results in changes in fluorescent intensity. Immunofluorescent staining of brain sections proved the reliability of TDN nanoprobe to visualize PLD3 and the upregulation of PLD3 was observed in AD mice. Subsequent application of the nanoprobe uncovered PLD3 in the heart tissue of AD mice for the first time. Further investigations on the cellular level revealed a good colocalization of TDN nanoprobes with lysosomes in normal neurons, while their fluorescent signal overlaps better with mitochondria than lysosomes in AD neurons. Our finding provides not only insights into PLD3 but also an inspiring application of TDNs in the mechanism research of AD at multiple levels.
Collapse
Affiliation(s)
- Shuyan Wen
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Zizhao Ju
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Chuan-Tao Zuo
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
7
|
Shao X, Fan T, Yan C, Cao X, Wang C, Wang X, Guan P, Fan L, Hu X. Multifunctional selenium-doped carbon dots for modulating Alzheimer's disease related toxic ions, inhibiting amyloid aggregation and scavenging reactive oxygen species. Int J Biol Macromol 2025; 293:139333. [PMID: 39743062 DOI: 10.1016/j.ijbiomac.2024.139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
β-Amyloid (Aβ) protein deposition, oxidative stress, and metal ion imbalance are established pathological features of Alzheimer's disease (AD), highlighting the imperative to efficiently reduce Aβ aggregates formation, alleviate oxidative stress, and chelate metal ions. Existing research indicates the necessity of developing multifunctional nanomaterials to facilitate multi-target therapy. In this work, we designed and prepared multifunctional selenium-doped carbonized polymer dots (SeCDs), and examined the multifunctionality at inhibiting Aβ, cleaning reactive oxygen species (ROS), and modulating copper ions. SeCDs exhibit efficient clearance of active hydroxyl radicals and superoxide anion radicals. In addition, SeCDs can chelate Cu ions, therefore reducing the cytotoxicity linked to the Aβ-Cu complex. More importantly, SeCDs can effectively reduce the level of intracellular reactive oxygen species. This study demonstrates the potential of carbon dots as a multifunctional β-sheet disruptor, while multifunctional SeCDs offer promising avenues for further research in the multi-target treatment of Alzheimer's disease. Meanwhile, this strategy provides a new perspective on the development of zero-dimensional carbon materials in Alzheimer's therapy.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Tiange Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi 712082, China.
| | - Xiuyun Cao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, 169 Changle West Road, Xi'an 710032, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
8
|
Liu L, He H, Du B, He Y. Nanoscale drug formulations for the treatment of Alzheimer's disease progression. RSC Adv 2025; 15:4031-4078. [PMID: 39926227 PMCID: PMC11803502 DOI: 10.1039/d4ra08128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective disease-modifying treatments. The blood-brain barrier hinders drug delivery to the brain, limiting therapeutic efficacy. Nanoparticle-based systems have emerged as promising tools to overcome these challenges. This review highlights recent advances in nanoparticle technologies for AD treatment, including liposomes, polymeric, inorganic, and biomimetic nanoparticles. These nanoparticles improve drug delivery across the blood-brain barrier, improve stability and bioavailability, and enable targeted delivery to affected brain regions. Functionalization strategies further enhance their therapeutic potential. Multifunctional nanoparticles combining therapeutic and diagnostic properties offer theranostic approaches. While progress has been made, challenges related to safety, targeting precision, and clinical translation remain. Future perspectives emphasize the need for collaborative efforts to optimize nanoparticle design, conduct rigorous studies, and accelerate the development of effective nanotherapeutics. With continued innovation, nanoparticle-based delivery systems hold great promise for revolutionizing AD treatment.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Haini He
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Bin Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610000 China
| | - Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| |
Collapse
|
9
|
Wu T, Zhang X, Cai S, Zhang W, Yang R. Prussian blue nanocages as efficient radical scavengers and photothermal agents for reducing amyloid-beta induced neurotoxicity. Colloids Surf B Biointerfaces 2025; 246:114369. [PMID: 39536606 DOI: 10.1016/j.colsurfb.2024.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The unusual accumulation of amyloid-beta 1-42 (Aβ42) is an essential pathological feature of Alzheimer's disease (AD), and development of Aβ42 nanomodulators offers a potentially therapeutic approach to AD. Here, we report facile synthesis of the hollow mesocrystalline Prussian blue nanocages (HMPBs), which serve as versatile Aβ42 modulators. Due to the hollow nanostructures and large specific surface area, they can effectively inhibit Aβ42 aggregation by adsorption. They also exhibit robust near-infrared (NIR) photothermal effect for light-to-heat transition, which promotes the depolymerization of Aβ42 fibers. Besides, they display ROS quenching ability to scavenge hydroxyl radicals (•OH) caused by Aβ42 fibers, alleviate cellular oxidative stress, and improve cell survival. This work provides a new kind of Prussian blue nanomaterial for multimodal Aβ modulation.
Collapse
Affiliation(s)
- Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xining Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Iftikhar M, Zhang Q, Abbasi R, Sarwar S, Bukhari SZ, Rehman M, Hussain I, Emen FM, Khan I, An R, Dong J, Ihsan A, Younis MR. Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:547-559. [PMID: 39780386 DOI: 10.1021/acsami.4c17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs). By examining these morphologies, we isolated the effects of surface roughness, porosity, and inner cavity structures on the critical therapeutic parameters. Our findings reveal that PAuNCs exhibit superior drug loading capabilities due to their enhanced surface area and porosity, facilitating greater interaction with therapeutic agents. Whereas, dissolution kinetic modeling confirmed that porosity contributes to improve diffusion-controlled drug release. In vitro studies on HepG2 cancer cells demonstrated that PAuNCs markedly improved cellular uptake, resulting in a dramatic reduction in cell viability to 3% and a notable increase in apoptosis (60.45%). Under near-infrared (NIR) irradiation, PAuNCs effectively induced localized hyperthermia (46.7 °C) and significantly inhibited tumor growth in an in vivo HepG2 tumor mice model compared with alternative nanogold morphologies. This research underscores the critical role of surface roughness, porosity, morphology, and cavitation in optimizing drug delivery and enhancing therapeutic outcomes of photoactivatable gold nanocarriers for collaborative photochemotherapy.
Collapse
Affiliation(s)
- Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
| | - Qianting Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Shumaila Sarwar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
- College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Punjab 54792, Pakistan
| | - Fatih Mehmet Emen
- Department of Chemistry, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur 15100, Türkiye
| | - Irfanullah Khan
- Institute of Nuclear Medicine and Oncology (INMOL), Lahore, Punjab 54000, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Yang B, Zeng J, Zhao G, Ding C, Chen L, Huang Y. Cascade enzyme-mimicking with spatially separated gold-ceria for dual-mode detection of superoxide anions. Biosens Bioelectron 2025; 267:116847. [PMID: 39418867 DOI: 10.1016/j.bios.2024.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Metal-semiconductor nanozyme of dumbbell Au-CeO2 with spatially separated heterostructure has cascade superoxide dismutase (SOD)-like and peroxidase (POD)-like activities for superoxide anions detection. It was synthesized by selective growth of CeO2 at the ends of Au nanorod (Au NR). Taking advantage of the excellent local surface plasmon resonance (LSPR) effect of Au NR, the spatially separated Au-CeO2 has a higher photothermal effect than the continuously growing core-shell structure of Au@CeO2. Meanwhile, the hot electrons of Au NR could transfer to CeO2 under 808 nm laser irradiation, changing the ratio of Ce3+/Ce4+ redox couples over CeO2 and facilitating H2O2 decomposition thus enhancing POD-like activity. Based on the SOD-like activity of Au-CeO2, superoxide anion (O2·-) can be transformed into hydrogen peroxide (H2O2). Dual-mode including absorbance and temperature sensing detection of O2·-, with the detection range from nM to μM i.e., 0.1-150 μM and LOD of 0.033 μM (S/N = 3) was achieved through the cascade catalysis and photothermal effect. The as-proposed method was applicable to both cancer and normal cell samples with satisfactory accuracy and recovery.
Collapse
Affiliation(s)
- Bing Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Junyi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Guoxu Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Li Y, Zhang J, Ma B, Yu W, Xu M, Luan W, Yu Q, Zhang L, Rong R, Fu Y, Cao H. Nanotechnology used for siRNA delivery for the treatment of neurodegenerative diseases: Focusing on Alzheimer's disease and Parkinson's disease. Int J Pharm 2024; 666:124786. [PMID: 39378955 DOI: 10.1016/j.ijpharm.2024.124786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Neurodegenerative diseases (ND) are often accompanied by dementia, motor dysfunction, or disability. Caring for these patients imposes a significant psychological and financial burden on families. Until now, there are no effective methods for the treatment of NDs. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common. Recently, studies have revealed that the overexpression of certain genes may be linked to the occurrence of AD and PD. Small interfering RNAs (siRNAs) are a powerful tool for gene silencing because they can specifically bind to and cleave target mRNA. However, the intrinsic properties of naked siRNA and various physiological barriers limit the application of siRNA in the brain. Nanotechnology is a promising option for addressing these issues. Nanoparticles are not only able to protect siRNA from degradation but also have the advantage of crossing various physiological barriers to reach the brain target of siRNA. In this review, we aim to introduce diverse nanotechnology used for delivering siRNA to treat AD and PD. Finally, we will briefly discuss our perspectives on this promising field.
Collapse
Affiliation(s)
- Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jiahui Zhang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Boqin Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Meixia Xu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Weijing Luan
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qinglong Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Li Zhang
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yuanlei Fu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Haiqiang Cao
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
13
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
14
|
Zhang Q, Li C, Yin B, Yan J, Gu Y, Huang Y, Chen J, Lao X, Hao J, Yi C, Zhou Y, Cheung JCW, Wong SHD, Yang M. A biomimetic upconversion nanoreactors for near-infrared driven H 2 release to inhibit tauopathy in Alzheimer's disease therapy. Bioact Mater 2024; 42:165-177. [PMID: 39280581 PMCID: PMC11402069 DOI: 10.1016/j.bioactmat.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Abnormal hyperphosphorylation of tau protein is a principal pathological hallmark in the onset of neurodegenerative disorders, such as Alzheimer's disease (AD), which can be induced by an excess of reactive oxygen species (ROS). As an antioxidant, hydrogen gas (H2) has the potential to mitigate AD by scavenging highly harmful ROS such as •OH. However, conventional administration methods of H2 face significant challenges in controlling H2 release on demand and fail to achieve effective accumulation at lesion sites. Herein, we report artificial nanoreactors that mimic natural photosynthesis to realize near-infrared (NIR) light-driven photocatalytic H2 evolution in situ. The nanoreactors are constructed by biocompatible crosslinked vesicles (CVs) encapsulating ascorbic acid and two photosensitizers, chlorophyll a (Chla) and indoline dye (Ind). In addition, platinum nanoparticles (Pt NPs) serve as photocatalysts and upconversion nanoparticles (UCNP) act as light-harvesting antennas in the nanoreacting system, and both attach to the surface of CVs. Under NIR irradiation, the nanoreactors release H2 in situ to scavenge local excess ROS and attenuate tau hyperphosphorylation in the AD mice model. Such NIR-triggered nanoreactors provide a proof-of-concept design for the great potential of hydrogen therapy against AD.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
15
|
Bi X, Cao N, He J. Recent advances in nanoenzymes for Alzheimer's disease treatment. Colloids Surf B Biointerfaces 2024; 244:114139. [PMID: 39121571 DOI: 10.1016/j.colsurfb.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) remains one of the most challenging neurodegenerative disorders to treat, with oxidative stress playing a significant role in its pathology. Recent advancements in nanoenzymes technology offer a promising approach to mitigate this oxidative damage. Nanoenzymes, with their unique enzyme-mimicking activities, effectively scavenge reactive oxygen species and reduce oxidative stress, thereby providing neuroprotective effects. This review delves into the underlying mechanisms of AD, focusing on oxidative stress and its impact on disease progression. We explore the latest developments in nanoenzymes applications for AD treatment, highlighting their multifunctional capabilities and potential for targeted delivery to amyloid-beta plaques. Despite the exciting prospects, the clinical translation of nanoenzymes faces several challenges, including difficulties in brain targeting, consistent quality production, and ensuring safety and biocompatibility. We discuss these limitations in detail, emphasizing the need for rigorous evaluation and standardized protocols. This paper aims to provide a comprehensive overview of the current state of nanoenzymes research in AD, shedding light on both the opportunities and obstacles in the path towards effective clinical applications.
Collapse
Affiliation(s)
- Xiaojun Bi
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Ning Cao
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jingteng He
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
16
|
Yu Z, Luo F. The Role of Reactive Oxygen Species in Alzheimer's Disease: From Mechanism to Biomaterials Therapy. Adv Healthc Mater 2024; 13:e2304373. [PMID: 38508583 DOI: 10.1002/adhm.202304373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Alzheimer's disease (AD) is a chronic, insidious, and progressive neurodegenerative disease that remains a clinical challenge for society. The fully approved drug lecanemab exhibits the prospect of therapy against the pathological processes, while debatable adverse events conflict with the drug concentration required for the anticipated therapeutic effects. Reactive oxygen species (ROS) are involved in the pathological progression of AD, as has been demonstrated in much research regarding oxidative stress (OS). The contradiction between anticipated dosage and adverse event may be resolved through targeted transport by biomaterials and get therapeutic effects through pathological progression via regulation of ROS. Besides, biomaterials fix delivery issues by promoting the penetration of drugs across the blood-brain barrier (BBB), protecting the drug from peripheral degradation, and elevating bioavailability. The goal is to comprehensively understand the mechanisms of ROS in the progression of AD disease and the potential of ROS-related biomaterials in the treatment of AD. This review focuses on OS and its connection with AD and novel biomaterials in recent years against AD via OS to inspire novel biomaterial development. Revisiting these biomaterials and mechanisms associated with OS in AD via thorough investigations presents a considerable potential and bright future for improving effective interventions for AD.
Collapse
Affiliation(s)
- Zhuohang Yu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
17
|
Chen W, Li J, Guo J, Li L, Wu H. Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes. Adv Colloid Interface Sci 2024; 332:103253. [PMID: 39067260 DOI: 10.1016/j.cis.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.
Collapse
Affiliation(s)
- Wenting Chen
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiahui Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
18
|
Chen L, Zhao M, Kang W, Yu L, Zhang C, Wu S, Song X, Zhao K, Liu P, Liu Q, Dai R, Zheng Z, Zhang R. Endogenous Melanin and Hydrogen-Based Specific Activated Theranostics Nanoagents: A Novel Multi-Treatment Paradigm for Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401046. [PMID: 38666450 PMCID: PMC11220692 DOI: 10.1002/advs.202401046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/20/2024] [Indexed: 07/04/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.
Collapse
Affiliation(s)
- Lin Chen
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Mingxin Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Weiwei Kang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Lujie Yu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Chongqing Zhang
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Shutong Wu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Xiaorui Song
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Keqi Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Pengmin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Qin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Rong Dai
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Ziliang Zheng
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Ruiping Zhang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| |
Collapse
|
19
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
20
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
21
|
Hasan I, Guo B, Zhang J, Chang C. Advances in Antioxidant Nanomedicines for Imaging and Therapy of Alzheimer's Disease. Antioxid Redox Signal 2024; 40:863-888. [PMID: 36070437 DOI: 10.1089/ars.2022.0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are crucial signaling molecules in the regulation of numerous physiological activities including the formation and function of the central nervous system (CNS). So far, many functional antioxidant nanomedicines with ROS scavenging capability to reduce oxidative stress in Alzheimer's disease (AD) have been developed for both imaging and therapy of AD. Recent Advances: This review focuses on the most recent advances in antioxidant nanomedicines such as ROS-scavenging nanoparticles (NPs), NPs with intrinsic antioxidant activity, and drug-loaded antioxidant NPs for AD theranostics. In addition to antioxidant nanomedicines, the emerging phototherapy treatment paradigms and the promising preclinic drug carriers, such as exosomes and liposomes, are also introduced. Critical Issues: In general, excessive generation of ROS can cause lipid peroxidation, oxidative DNA, as well as protein damage, aggravating pathogenic alterations, accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain. These negative factors further cause cell death, which is the beginning of AD. Future Directions: We anticipate that this review will help researchers in the area of preclinical research and clinical translation of antioxidant nanomedicines for AD imaging and therapy.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Gao Y, Zhai L, Chen J, Lin D, Zhang LK, Yang H, Yang R, Mi L, Guan YQ. Focused ultrasound-mediated cerium-based nanoreactor against Parkinson's disease via ROS regulation and microglia polarization. J Control Release 2024; 368:580-594. [PMID: 38467194 DOI: 10.1016/j.jconrel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Neuronal damage caused by oxidative stress and inflammatory microenvironment dominated by microglia are the main obstacles in the treatment of Parkinson's disease (PD). In this study, we developed an integrated nanoreactor Q@CeBG by encapsulating CeO2 nanozyme and quercetin (Que) into glutathione-modified bovine serum albumin, and then selected focused ultrasound (FUS) to temporarily open the blood-brain barrier (BBB) to enhance the accumulation level of Q@CeBG in the brain. Q@CeBG exhibited superior multi-ROS scavenging activity. Under the assistance of FUS, Q@CeBG nanoreactor can penetrate the BBB and act on neurons as well as microglia, reducing the neuron's oxidative stress level and polarizing microglia's phenotype from proinflammatory M1 to anti-inflammatory M2. In vitro and In vivo experiments demonstrated that Q@CeBG nanoreactor with good biocompatibility exhibit outstanding neuroprotection and immunomodulatory effects. In short, this dual synergetic nanoreactor will become a reliable platform against PD.
Collapse
Affiliation(s)
- Yifei Gao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510623, China
| | - LinJing Mi
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
23
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management. J Nanobiotechnology 2024; 22:139. [PMID: 38555420 PMCID: PMC10981335 DOI: 10.1186/s12951-024-02406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathogenesis and effective clinical treatment strategies for this disease remain elusive. Interestingly, nanomedicines are under extensive investigation for AD management. Currently, existing redox molecules show highly bioactive property but suffer from instability and high production costs, limiting clinical application for neurological diseases. Compared with natural enzymes, artificial enzymes show high stability, long-lasting catalytic activity, and versatile enzyme-like properties. Further, the selectivity and performance of artificial enzymes can be modulated for neuroinflammation treatments through external stimuli. In this review, we focus on the latest developments of metal, metal oxide, carbon-based and polymer based nanozymes and their catalytic mechanisms. Recent developments in nanozymes for diagnosing and treating AD are emphasized, especially focusing on their potential to regulate pathogenic factors and target sites. Various applications of nanozymes with different stimuli-responsive features were discussed, particularly focusing on nanozymes for treating oxidative stress-related neurological diseases. Noninvasiveness and focused application to deep body regions makes ultrasound (US) an attractive trigger mechanism for nanomedicine. Since a complete cure for AD remains distant, this review outlines the potential of US responsive nanozymes to develop future therapeutic approaches for this chronic neurodegenerative disease and its emergence in AD management.
Collapse
Affiliation(s)
- Viswanathan Karthika
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ji Won Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Daehun Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
25
|
Mi J, Liu C, Chen H, Qian Y, Zhu J, Zhang Y, Liang Y, Wang L, Ta D. Light on Alzheimer's disease: from basic insights to preclinical studies. Front Aging Neurosci 2024; 16:1363458. [PMID: 38566826 PMCID: PMC10986738 DOI: 10.3389/fnagi.2024.1363458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), referring to a gradual deterioration in cognitive function, including memory loss and impaired thinking skills, has emerged as a substantial worldwide challenge with profound social and economic implications. As the prevalence of AD continues to rise and the population ages, there is an imperative demand for innovative imaging techniques to help improve our understanding of these complex conditions. Photoacoustic (PA) imaging forms a hybrid imaging modality by integrating the high-contrast of optical imaging and deep-penetration of ultrasound imaging. PA imaging enables the visualization and characterization of tissue structures and multifunctional information at high resolution and, has demonstrated promising preliminary results in the study and diagnosis of AD. This review endeavors to offer a thorough overview of the current applications and potential of PA imaging on AD diagnosis and treatment. Firstly, the structural, functional, molecular parameter changes associated with AD-related brain imaging captured by PA imaging will be summarized, shaping the diagnostic standpoint of this review. Then, the therapeutic methods aimed at AD is discussed further. Lastly, the potential solutions and clinical applications to expand the extent of PA imaging into deeper AD scenarios is proposed. While certain aspects might not be fully covered, this mini-review provides valuable insights into AD diagnosis and treatment through the utilization of innovative tissue photothermal effects. We hope that it will spark further exploration in this field, fostering improved and earlier theranostics for AD.
Collapse
Affiliation(s)
- Jie Mi
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Chao Liu
- Yiwu Research Institute, Fudan University, Yiwu, China
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Honglei Chen
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yan Qian
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Medical Ultrasound Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Dean Ta
- Yiwu Research Institute, Fudan University, Yiwu, China
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Bai Y, Li Y, Li Y, Tian L. Advanced Biological Applications of Cerium Oxide Nanozymes in Disease Related to Oxidative Damage. ACS OMEGA 2024; 9:8601-8614. [PMID: 38434816 PMCID: PMC10905716 DOI: 10.1021/acsomega.3c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/12/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Due to their excellent catalytic activities, cerium oxide nanoparticles have promise as biological nanoenzymes. A redox reaction occurs between Ce3+ ions and Ce4+ ions during which they undergo conversion by acquiring or losing electrons as well as forming oxygen vacancies (or defects) in the lattice structure, which can act as antioxidant enzymes and simulate various enzyme activities. A number of cerium oxide nanoparticles have been engineered with multienzyme activities, including catalase, superoxide oxidase, peroxidase, and oxidase mimetic properties. Cerium oxide nanoparticles have nitric oxide radical clearing and radical scavenging properties and have been widely used in a number of fields of biology, including biomedicine, disease diagnosis, and treatment. This review provides a comprehensive introduction to the catalytic mechanisms and multiple enzyme activities of cerium oxide nanoparticles, along with their potential applications in the treatment of diseases of the brain, bones, nerves, and blood vessels.
Collapse
Affiliation(s)
- Yandong Bai
- Tianjin
Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Yongmei Li
- NHC
Key Laboratory of Hormones and Development, Tianjin Key Laboratory
of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical
University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| | - Yuemei Li
- Xiamen
Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital
of Xiamen University, School of Medicine, Xiamen University, Xiamen 361012, China
| | - Lijie Tian
- NHC
Key Laboratory of Hormones and Development, Tianjin Key Laboratory
of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical
University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| |
Collapse
|
27
|
Tan H, Huang Y, Dong S, Bai Z, Chen C, Wu X, Chao M, Yan H, Wang S, Geng D, Gao F. A Chiral Nanocomplex for Multitarget Therapy to Alleviate Neuropathology and Rescue Alzheimer's Cognitive Deficits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303530. [PMID: 37635125 DOI: 10.1002/smll.202303530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative condition characterized by inflammation, beta-amyloid (Aβ) plaques, and neurodegeneration, which currently lack effective treatments. Chiral nanomaterials have emerged as a promising option for treating neurodegenerative disorders due to their high biocompatibility, strong sustained release ability, and specific enantiomer selectivity. The development of a stimulus-responsive chiral nanomaterial, UiO-66-NH2 @l-MoS2 QDs@PA-Ni (MSP-U), for the treatment of AD is reported. MSP-U is found to stimulate neural stem cell (NSCs) differentiation, promote in situ hydrogen (H2 ) production, and clear Aβ plaques. l-MoS2 QDs modified with l-Cysteine (l-Cys) effectively enhance the differentiation of NSCs into neurons through circularly polarized near-infrared radiation. Doped-phytic acid nickel (PA-Ni) improves the activity of l-MoS2 QDs in scavenging reactive oxygen species at the lesion site via photocatalytic H2 production. Loading l-MoS2 QDs with UiO-66 type metal oxide suppresses electron-hole recombination effect, thereby achieving rapid charge separation and improving transport of photogenerated electrons, leading to significantly improved H2 production efficiency. The photothermal effect of MSP-U also clears the generated Aβ plaques. In vivo evaluations show that MSP-U improves spatial cognition and memory, suggesting a promising potential candidate for the treatment of AD using chiral nanomaterials.
Collapse
Affiliation(s)
- Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Department of Psychiatry, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Cheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Xiunan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Shaoshen Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Department of Psychiatry, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Department of Psychiatry, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| |
Collapse
|
28
|
Hu Y, Guo H, Cheng S, Sun J, Du J, Liu X, Xiong Y, Chen L, Liu C, Wu C, Tian H. Functionalized Cerium Dioxide Nanoparticles with Antioxidative Neuroprotection for Alzheimer's Disease. Int J Nanomedicine 2023; 18:6797-6812. [PMID: 38026525 PMCID: PMC10658952 DOI: 10.2147/ijn.s434873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Oxidative stress induced reactive oxygen species (ROS) and aggregation of amyloid β (Aβ) in the nervous system are significant contributors to Alzheimer's disease (AD). Cerium dioxide and manganese oxide are known as to be effective and recyclable ROS scavengers with high efficiency in neuroprotection. Methods A hollow-structured manganese-doped cerium dioxide nanoparticle (LMC) was synthesized for loading Resveratrol (LMC-RES). The LMC-RES were characterized by TEM, DLS, Zeta potential, and X-ray energy spectrum analysis. We also tested the biocompatibility of LMC-RES and the ability of LMC-RES to cross the blood-brain barrier (BBB). The antioxidant effects of LMC-RES were detected by SH-SY5Y cells. Small animal live imaging was used to detect the distribution of LMC-RES in the brain tissue of AD mice. The cognitive abilities of mice were tested by water maze and nesting experiments. The effects of LMC-RES in reducing oxidative stress and protecting neurons was also explored by histological analysis. Results The results showed that LMC-RES had good sustained release effect and biocompatibility. The drug release rate of LMC-RES at 24 hours was 80.9 ± 2.25%. Meanwhile, LMC-RES could cross the BBB and enrich in neurons to exert antioxidant effects. In Aβ-induced SH-SY5Y cells, LMC-RES could inhibits oxidative stress through the Nrf-2/HO-1 signaling pathway. In AD model mice, LMC-RES was able to reduce ROS levels, inhibit Aβ-induced neurotoxicity, and protect neurons and significantly improve cognitive deficits of AD mice after drug administration. Conclusion LMC-RES can effectively across the BBB, reduce oxidative stress, inhibit Aβ aggregation, and promote the recovery of neurological function.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| | - Hui Guo
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| | - Shuai Cheng
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| | - Junpeng Sun
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| | - Jiaqun Du
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| | - Xiaobang Liu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| | - Ying Xiong
- Laboratoire Catalyse et Spectrochimie (LCS), Normandie Université, ENSICAEN, UNICAEN, CNRS, Caen, 14050, France
| | - Liqing Chen
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Chang Liu
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Chao Wu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People’s Republic of China
| |
Collapse
|
29
|
Ye P, Li L, Qi X, Chi M, Liu J, Xie M. Macrophage membrane-encapsulated nitrogen-doped carbon quantum dot nanosystem for targeted treatment of Alzheimer's disease: Regulating metal ion homeostasis and photothermal removal of β-amyloid. J Colloid Interface Sci 2023; 650:1749-1761. [PMID: 37506416 DOI: 10.1016/j.jcis.2023.07.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The abnormal aggregation of β-amyloid protein (Aβ) is a major contributor to Alzheimer's disease (AD). Cu2+ homeostasis imbalance can lead to the aggregation of Aβ, resulting in cytotoxic oligomers and fibrous aggregates, causing neuroinflammation and nerve cell damage, ultimately leading to AD. In this study, we synthesized nitrogen-doped carbon quantum dot (CQD), and designed a macrophage membrane (RAW-M) encapsulated CQD nanosystem for the first time. The abundant nitrogen-containing groups on the surface of CQD effectively capture excess Cu2+ and inhibit rapid Aβ aggregation. Additionally, the good photothermal properties of CQD dissolve the formed fiber precipitates under near-infrared light (NIR). In vitro and in vivo studies showed that the nanosystem significantly improved BBB permeability under laser irradiation, enhancing its ability to cross the BBB and overcome traditional anti-AD drug limitations. In vivo investigations conducted on APP/PS1 mice indicate that the nanosystem strongly reduced Aβ deposition, mitigated neuroinflammation, and ameliorates deficits in learning and memory. Overall, our nanocarrier approach adjusts metal ion homeostasis, inhibits abnormal Aβ aggregation, and uses excellent photothermal properties to depolymerize mature Aβ fibrils to protect cells from Aβ neurotoxicity, providing an effective strategy for Aβ-targeted treatment of AD.
Collapse
Affiliation(s)
- Pengkun Ye
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Lei Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiating Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Mingyuan Chi
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jichun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
30
|
Zheng G, Hu S, Qin D, Nong C, Yang L, Deng B. Aggregation-induced electrochemiluminescence enhancement of Ag-MOG for amyloid β 42 sensing. Anal Chim Acta 2023; 1281:341898. [PMID: 38783738 DOI: 10.1016/j.aca.2023.341898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
This study aimed to introduce an immunosensor for measuring amyloid β 42 (Aβ42) levels by aggregation-induced enhanced electrochemiluminescence (ECL). Metal-organic gels (MOGs) are novel soft materials with advantages such as high gel stability, good light-emitting properties, and easy preparation. This study used silver nanoparticle metal-organic gel (Ag-MOG) as a substrate to connect Aβ42-Ab2 and the cathodoluminescent probe. Potassium persulfate was used as a co-reactant that could emit a high ECL signal. CuS@Au had the benefits of a relatively large surface area with excellent carrier function; therefore, it was used as a substrate to load a large amount of Aβ42-Ab1, significantly improving the immunosensor sensitivity. The ECL intensity of Aβ42 was linear in the range of 0.01 pg/mL to 250 ng/mL with a detection limit of 2.2 fg/mL (S/N = 3) under optimized detection conditions. This ECL immunosensor has been successfully applied to detect Aβ42 in human serum with the advantages of excellent stability and high selectivity. This method not only expands the potential applications of ECL immunosensors based on biological testing and clinical diagnosis but also provides a viable approach to basic clinical testing.
Collapse
Affiliation(s)
- Guiyue Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Chunlian Nong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lijuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
31
|
Song X, Ding Q, Wei W, Zhang J, Sun R, Yin L, Liu S, Pu Y. Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206959. [PMID: 37322406 DOI: 10.1002/smll.202206959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Excessive accumulations of reactive oxygen species (ROS) and amyloid-β (Aβ) protein are closely associated with the complex pathogenesis of Alzheimer's disease (AD). Therefore, approaches that synergistically exert elimination of ROS and dissociation of Aβ fibrils are effective therapeutic strategies for correcting the AD microenvironment. Herein, a novel near infrared (NIR) responsive Prussian blue-based nanomaterial (PBK NPs) is established with excellent antioxidant activity and photothermal effect. PBK NPs possess similar activities to multiple antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase, which can eliminate massive ROS and relieve oxidative stress. Under the NIR irradiation, PBK NPs can generate local heat to disaggregate Aβ fibrils efficiently. By modifying CKLVFFAED peptide, PBK NPs display obvious targeting ability for blood-brain barrier penetration and Aβ binding. Furthermore, in vivo studies demonstrate that PBK NPs have outstanding ability to decompose Aβ plaques and alleviate neuroinflammation in AD mouse model. Overall, PBK NPs provide evident neuroprotection by reducing ROS levels and regulating Aβ deposition, and may accelerate the development of multifunctional nanomaterials for delaying the progression of AD.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
32
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
33
|
Naser SS, Singh D, Preetam S, Kishore S, Kumar L, Nandi A, Simnani FZ, Choudhury A, Sinha A, Mishra YK, Suar M, Panda PK, Malik S, Verma SK. Posterity of nanoscience as lipid nanosystems for Alzheimer's disease regression. Mater Today Bio 2023; 21:100701. [PMID: 37415846 PMCID: PMC10320624 DOI: 10.1016/j.mtbio.2023.100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble Aβ peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Dibyangshee Singh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Faizan Zarreen Simnani
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Sumira Malik
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| |
Collapse
|
34
|
Kou D, Gao Y, Li C, Zhou D, Lu K, Wang N, Zhang R, Yang Z, Zhou Y, Chen L, Ge J, Zeng J, Gao M. Intranasal Pathway for Nanoparticles to Enter the Central Nervous System. NANO LETTERS 2023; 23:5381-5390. [PMID: 36996288 DOI: 10.1021/acs.nanolett.2c05056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intranasal administration was previously proposed for delivering drugs for central nervous system (CNS) diseases. However, the delivery and elimination pathways, which are very imperative to know for exploring the therapeutic applications of any given CNS drugs, remain far from clear. Because lipophilicity has a high priority in the design of CNS drugs, the as-prepared CNS drugs tend to form aggregates. Therefore, a PEGylated Fe3O4 nanoparticle labeled with a fluorescent dye was prepared as a model drug and studied to elucidate the delivery pathways of intranasally administered nanodrugs. Through magnetic resonance imaging, the distribution of the nanoparticles was investigated in vivo. Through ex vivo fluorescence imaging and microscopy studies, more precise distribution of the nanoparticles across the entire brain was disclosed. Moreover, the elimination of the nanoparticles from cerebrospinal fluid was carefully studied. The temporal dose levels of intranasally delivered nanodrugs in different parts of the brain were also investigated.
Collapse
Affiliation(s)
- Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhe Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
35
|
Zhang X, Liu C, Lyu Y, Xing N, Li J, Song K, Yan X. NIR-propelled Janus nanomotors for active photoacoustic imaging and synergistic photothermal/chemodynamic therapy. J Colloid Interface Sci 2023; 648:457-472. [PMID: 37302229 DOI: 10.1016/j.jcis.2023.05.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023]
Abstract
Synthetic nanomotors have great application potential in deep tissue imaging and tumor treatment due to their active movement ability. Herein, a novel near infrared (NIR) light-driven Janus nanomotor is reported for active photoacoustic (PA) imaging and synergistic photothermal/chemodynamic therapy (PTT/CDT). Au nanoparticles (Au NPs) are sputtered on the half-sphere surface of copper-doped hollow cerium oxide nanoparticles after bovine serum albumin (BSA) modification. Such Janus nanomotors exhibit a rapid autonomous motion with a maximum speed of 110.6 ± 0.2 μm/s under 808 nm laser irradiation with a density of 3.0 W/cm2. With the assistance of light-powered motion, the Au/Cu-CeO2@BSA nanomotors (ACCB Janus NMs) can effectively adhere to and mechanically perforate tumor cells, thereby causing the higher cellular uptake and significantly enhancing the tumor tissue permeability in the tumor microenvironment (TME). ACCB Janus NMs also exhibit high nanozyme activity that can catalyze the production of reactive oxygen species (ROS) to reduce the TME oxidative stress response. Meanwhile, the potential PA imaging capability of ACCB Janus NMs offer promise for early diagnosis of tumors due to the photothermal conversion efficiency of Au NPs. Therefore, the nanotherapeutic platform provides a new tool for effectively imaging of deep tumors site in vivo to achieve synergistic PTT/CDT and accurate diagnosis.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China; School of Material Science and Engineering, University of Jinan, Jinan, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China; Gynecology oncology key laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yangsai Lyu
- Department of Mathematics and Statistics, Queen's University, Kingston, Canada
| | - Ningning Xing
- School of Material Science and Engineering, University of Jinan, Jinan, China
| | - Jia Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China; Gynecology oncology key laboratory, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
36
|
Spurio E, Pelli Cresi JS, Ammirati G, Pelatti S, Paladini A, D’Addato S, Turchini S, O’Keeffe P, Catone D, Luches P. Injecting Electrons into CeO 2 via Photoexcitation of Embedded Au Nanoparticles. ACS PHOTONICS 2023; 10:1566-1574. [PMID: 37215314 PMCID: PMC10197162 DOI: 10.1021/acsphotonics.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The electron injection efficiency and the steady state absorptance at different photon energies for a composite system made of Au NPs embedded in a cerium oxide matrix are reported. Cerium oxide can be coupled with plasmonic nanoparticles (NPs) to improve its catalytic properties by visible-light absorption. The present work is a study of the ultrafast dynamics of excited states induced by ultraviolet and visible-light excitation in Au NPs combined with cerium oxide, aimed at understanding the excitation pathways. The data, obtained by femtosecond transient absorption spectroscopy, show that the excitation of localized surface plasmon resonances (LSPRs) in the Au NPs leads to an ultrafast injection of electrons into the empty 4f states of the surrounding cerium oxide. Within the first few picoseconds, the injected electrons couple with the lattice distortion forming a polaronic excited state, with similar properties to that formed after direct band gap excitation of the oxide. At sub-picosecond delay times, we observed relevant differences in the energetics and the time dynamics as compared to the case of band gap excitation of the oxide. Using different pump energies across the LSPR-related absorption band, the efficiency of the electron injection from the NPs into the oxide was found to be rather high, with a maximum above 30%. The injection efficiency has a different trend in energy as compared to the LSPR-related static optical absorptance, showing a significant decrease in low energies. This behavior is explained considering different deexcitation pathways with variable weight across the LSPR band. The results are important for the design of materials with high overall solar catalytic efficiency.
Collapse
Affiliation(s)
- Eleonora Spurio
- Dipartimento
FIM, Università degli Studi di Modena
e Reggio Emilia, Via G. Campi 213/a, 41125 Modena, Italy
- Istituto
Nanoscienze, CNR (NANO-CNR), Via G. Campi 213/a, 41125 Modena, Italy
| | | | - Giuseppe Ammirati
- CHOSE
(Centre for Hybrid and Organic Solar Energy), Department of Electronic
Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Istituto
di Struttura della Materia − CNR (ISM-CNR), EuroFEL Support
Laboratory (EFSL), 00133 Rome, Italy
| | - Samuele Pelatti
- Dipartimento
FIM, Università degli Studi di Modena
e Reggio Emilia, Via G. Campi 213/a, 41125 Modena, Italy
- Istituto
Nanoscienze, CNR (NANO-CNR), Via G. Campi 213/a, 41125 Modena, Italy
| | - Alessandra Paladini
- Istituto
di Struttura della Materia − CNR (ISM-CNR), EuroFEL Support
Laboratory (EFSL), Monterotondo
Scalo 00015, Italy
| | - Sergio D’Addato
- Dipartimento
FIM, Università degli Studi di Modena
e Reggio Emilia, Via G. Campi 213/a, 41125 Modena, Italy
- Istituto
Nanoscienze, CNR (NANO-CNR), Via G. Campi 213/a, 41125 Modena, Italy
| | - Stefano Turchini
- Istituto
di Struttura della Materia − CNR (ISM-CNR), EuroFEL Support
Laboratory (EFSL), 00133 Rome, Italy
| | - Patrick O’Keeffe
- Istituto
di Struttura della Materia − CNR (ISM-CNR), EuroFEL Support
Laboratory (EFSL), Monterotondo
Scalo 00015, Italy
| | - Daniele Catone
- Istituto
di Struttura della Materia − CNR (ISM-CNR), EuroFEL Support
Laboratory (EFSL), 00133 Rome, Italy
| | - Paola Luches
- Istituto
Nanoscienze, CNR (NANO-CNR), Via G. Campi 213/a, 41125 Modena, Italy
| |
Collapse
|
37
|
Han S, Wang JTW, Yavuz E, Zam A, Rouatbi N, Utami RN, Liam-Or R, Griffiths A, Dickson W, Sosabowski J, Al-Jamal KT. Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting. J Control Release 2023; 357:606-619. [PMID: 37061195 PMCID: PMC10390340 DOI: 10.1016/j.jconrel.2023.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Intranasal administration is becoming increasingly more attractive as a fast delivery route to the brain for therapeutics circumventing the blood-brain barrier (BBB). Gold nanorods (AuNRs) demonstrate unique optical and biological properties compared to other gold nanostructures due to their high aspect ratio. In this study, we investigated for the first time the brain region-specific distribution of AuNRs and their potential as a drug delivery platform for central nervous system (CNS) therapy following intranasal administration to mice using a battery of analytical and imaging techniques. AuNRs were functionalized with a fluorescent dye (Cyanine5, Cy5) or a metal chelator (diethylenetriaminepentaacetic dianhydride, DTPA anhydride) to complex with Indium-111 via a PEG spacer for optical and nuclear imaging, respectively. Direct quantification of gold was achieved by inductively coupled plasma mass spectrometry. Rapid AuNRs uptake in mice brains was observed within 10 min following intranasal administration which gradually reduced over time. This was confirmed by the 3 imaging/analytical techniques. Autoradiography of sagittal brain sections suggested entry to the brain via the olfactory bulb followed by diffusion to other brain regions within 1 h of administration. The presence of AuNR in glioblastoma (GBM) tumors following intranasal administration was also proven which opens doors for AuNRs applications, as nose-to-brain drug delivery carriers, for treatment of a range of CNS diseases.
Collapse
Affiliation(s)
- Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Emine Yavuz
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; Advanced Technology Research and Application Center, Selcuk University, Aleaddin Keykubat Yerleskesi, Akademi Mah. Yeni Istanbul Cad. No: 355/C, Selcuklu, Konya, Turkey
| | - Alaa Zam
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Rifka Nurul Utami
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Alexander Griffiths
- London Metallomics Facility, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wayne Dickson
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom.
| |
Collapse
|
38
|
Sun W, Wang C, Wan D, Zheng Y, Wu S, Shen J, Zhang Y, Liu X. CuCeO Bimetallic Oxide Rapidly Treats Staphylococcus aureus-Infected Osteomyelitis through Microwave Strengthened Microwave Catalysis and Fenton-Therapy. SMALL METHODS 2023:e2300203. [PMID: 37116093 DOI: 10.1002/smtd.202300203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Osteomyelitis caused by bacteria is a deep-seated lesion and is often treated clinically with antibiotics. Long-term use of antibiotics may predispose bacteria to develop resistance. Here, CuCeOx material is applied to treat infectious bacterial osteomyelitis using microwave (MW)-assisted bacterial killing. Heat generation occurs as a result of the dielectric properties of the material under MW irradiation, and the material generates reactive oxygen species (ROS) under MW irradiation. Heat and ROS increase the thermal sensitivity and permeability of bacterial cell membranes, and the released copper ions easily penetrate the bacterial membrane and react with H2 O2 to produce a toxic hydroxyl group inside the bacteria, leading to the bacteria's eventual death. This is due to the synergistic effect of the MW thermal effect, ROS, and the breaking of the equilibrium within the bacteria. CuCeOx can effectively treat osteomyelitis caused by Staphylococcus aureus using MW irradiation. This study can safely and effectively address the challenge of deep tissue infections by shedding light on non-invasive antimicrobial systems and using MW thermal therapy and MW dynamics to achieve therapeutic results.
Collapse
Affiliation(s)
- Wenchan Sun
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chaofeng Wang
- School of Life Science and Health Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Danya Wan
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
- School of Life Science and Health Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
39
|
Guo Z, Zhang J, Luo Y, Li D, Zhao R, Huang Y, Ren H, Yao X. Atomically dispersed Au anchored on CeO 2to enhancing the antioxidant activity. NANOTECHNOLOGY 2023; 34:285101. [PMID: 37114843 DOI: 10.1088/1361-6528/acc9ca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The modification of Au nanoparticles can improve the antioxidant activity of CeO2, however, nano Au/CeO2has also met some problems such as low atomic utilization, the limit of reaction conditions, and high cost. Au single atom catalysts can well solve the above-mentioned problems, but there are some contradictory results about the activity of single atom Au1/CeO2and nano Au/CeO2. Here, we synthesized rod-like Au single atom Au/CeO2(0.4% Au1/CeO2) and nano Au/CeO2(1% Au/CeO2, 2% Au/CeO2and 4% Au/CeO2), and their antioxidant activity from strong to weak is 0.4% Au1/CeO2, 1% Au/CeO2, 2% Au/CeO2and 4% Au/CeO2, respectively. The higher antioxidant activity of 0.4% Au1/CeO2is mainly due to the high Au atomic utilization ratio and the stronger charge transfer between Au single atoms and CeO2, resulting in the higher content of Ce3+. Due to the coexistence of Au single atoms and Au NPs in 2% Au/CeO2, the antioxidant activity 2% Au/CeO2is higher than that of 4% Au/CeO2. And the enhancement effect of Au single atoms was not affected by the concentration of ·OH and material concentration. These results can promote the understanding of the antioxidant activity of 0.4% Au1/CeO2and promote its application.
Collapse
Affiliation(s)
- Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yangkai Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hao Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
40
|
MoS2 quantum dots based on lipid drug delivery system for combined therapy against Alzheimer's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
41
|
Fan Y, Xu C, Deng N, Gao Z, Jiang Z, Li X, Zhou Y, Pei H, Li L, Tang B. Understanding drug nanocarrier and blood-brain barrier interaction based on a microfluidic microphysiological model. LAB ON A CHIP 2023; 23:1935-1944. [PMID: 36891748 DOI: 10.1039/d2lc01077a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As many nanoparticles (NPs) have been exploited as drug carriers to overcome the resistance of the blood-brain barrier (BBB), reliable in vitro BBB models are urgently needed to help researchers to comprehensively understand drug nanocarrier-BBB interaction during penetration, which can prompt pre-clinical nanodrug exploitation. Herein, we developed a microfluidic microphysiological model, allowing the analysis of BBB homeostasis and NP penetration. We found that the BBB penetrability of gold nanoparticles (AuNPs) was size- and modification-dependent, which might be caused by a distinct transendocytosis pathway. Notably, transferrin-modified 13 nm AuNPs held the strongest BBB penetrability and induced the slightest BBB dysfunction, while bare 80 nm and 120 nm AuNPs showed opposite results. Moreover, further analysis of the protein corona showed that PEGylation reduced the protein absorption, and some proteins facilitated the BBB penetration of NPs. The developed microphysiological model provides a powerful tool for understanding the drug nanocarrier-BBB interaction, which is vital for exploiting high-efficiency and biocompatible nanodrugs.
Collapse
Affiliation(s)
- Yuanyuan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Ning Deng
- Shandong Institute for Product Quality Inspection, Jinan 250101, P. R. China
| | - Ze Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaoxiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Yingshun Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
42
|
Functionalised penetrating peptide-chondroitin sulphate‑gold nanoparticles: Synthesis, characterization, and applications as an anti-Alzheimer's disease drug. Int J Biol Macromol 2023; 230:123125. [PMID: 36603725 DOI: 10.1016/j.ijbiomac.2022.123125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to construct a transmembrane peptide-chondroitin sulphate‑gold nanoparticle (TAT-CS@Au) delivery system and investigate its activity as an anti-Alzheimer's disease (AD) drug. We successfully prepared TAT-CS@Au nanoparticles, investigated their anti-AD effects, and explored the possible mechanisms in in vitro models. TAT-CS@Au exhibited excellent cellular uptake and transport capacity, effectively inhibited the accumulation of Aβ1-40, and significantly reduced Aβ1-40-induced apoptosis in SH-SY5Y cells. Furthermore, TAT-CS@Au significantly reduced oxidative stress damage and cholinergic injury induced by Aβ1-40 by regulating intracellular concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and acetylcholine (ACh). Western blotting results demonstrated that TAT-CS@Au inhibited aberrant tau phosphorylation (Ser199, Thr205, Ser404, and Ser396) through GSK3β inactivation. TAT-CS@Au decreased the levels of inflammatory factors, specifically TNF-α, IL-6, and IL-1β, by inhibiting NF-κB nuclear translocation by activating MAPK signalling pathways. Overall, these results indicate that TAT-CS@Au exhibits excellent transmembrane ability, inhibits Aβ1-40 accumulation, antagonises oxidative stress, reduces aberrant tau phosphorylation, and suppresses the expression of inflammatory factors. TAT-CS@Au may be a multi-target anti-AD drug with good cell permeability, providing new insights into the design and research of anti-AD therapeutics.
Collapse
|
43
|
Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023; 21:135. [PMID: 36814278 PMCID: PMC9945713 DOI: 10.1186/s12967-023-03988-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.
Collapse
Affiliation(s)
- Wei-tong Pan
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Pan-miao Liu
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK. .,National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Jian-jun Yang
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
44
|
Zheng Y, Guo M, Wu S, Wang W, Jin M, Wang Q, Wang K. Construction of a DNA Nanoassembly Based on Spatially Ordered Recognition Elements for Inhibiting β-Amyloid Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2192-2203. [PMID: 36735839 DOI: 10.1021/acs.langmuir.2c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A β-amyloid (Aβ) aggregation process is a spontaneous process where the original random coil or helical structure changes into a regularly arranged β-sheet structure. The development of inhibitors with the features of low cost, high efficiency, and biosafety by targeting Aβ self-aggregation is significant for Alzheimer's disease treatment. However, the issues of low inhibition efficiency under low concentrations of inhibitors and biological toxicity are currently to be addressed. To resolve the above problems, a DNA nanoassembly (HCR-Apt) based on spatially ordered recognition elements was constructed by targeted disruption of Aβ ordered arrangement. It was discovered that HCR-Apt could inhibit effectively the fibrillation of Aβ40 monomers and oligomers at substoichiometric ratios. This may be due to orderly arrangement of aptamers in rigid nanoskeletons for enhancing the recognition interaction between aptamers and Aβ40. The strong interaction between HCR-Apt and Aβ40 limited the flexible conformational conversion of Aβ40 molecules, thereby inhibiting their self-assembly. Computational simulations and experimental analysis revealed the interactions of Apt42 with Aβ40, which explained different inhibition effects on the fibrillation of Aβ40 monomers and oligomers. Furthermore, the analysis of tyrosine intrinsic fluorescence spectra and surface plasmon resonance imaging showed that the interaction of HCR-Apt and Aβ40 was stronger than that of Apt42 and Aβ40. These findings contributed to establishing a promising method of boosting the recognition interaction by orderly arrangement of recognition elements. Taken together, this work is expected to provide a simple and efficient strategy for inhibiting Aβ aggregation, expanding aptamer's application potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingmei Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shang Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Meimei Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
45
|
Ren Q, Chen H, Chen Y, Song Z, Ouyang S, Lian S, Tao J, Song Y, Zhao P. Imine-Linked Covalent Organic Framework Modulates Oxidative Stress in Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4947-4958. [PMID: 36651694 DOI: 10.1021/acsami.2c19839] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative stress due to Cu2+-triggered aggregation of β-amyloid protein (Aβ) and reactive oxygen species (ROS) overexpression in the brain is an important hallmark of early stages of Alzheimer's disease (AD) pathogenesis. The ideal modulator for improving the oxidative stress microenvironment in AD brains should take both Cu2+ and ROS into consideration, which has been rarely reported. Here, a combined therapeutic strategy was achieved by co-encapsulating superoxide dismutase (SOD) and catalase (CAT) in imine-linked covalent organic frameworks (COFs), which were modified with peptide KLVFF (T5). The nanocomposite SC@COF-T5 exhibited an oxidative stress eradicating ability through ROS elimination and Cu2+ chelation, combined with the inhibition of Aβ42 monomer aggregation and disaggregation of Aβ42 fibrils. In vivo experiments indicated that SC@COF-T5 with a high blood-brain barrier (BBB) penetration efficiency was effective to reduce Aβ deposition, expression of pro-inflammatory cytokines, ROS levels, and neurologic damage in AD model mice, consequently rescuing memory deficits of AD mice. This work not only confirms the feasibility and merits of the therapeutic strategy regarding multiple targets for treatment of early AD pathogenesis but also opens up a novel direction for imine-linked COFs in biomedical applications.
Collapse
Affiliation(s)
- Qingfan Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zibin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Shengsen Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
46
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|