1
|
Khazaei M, Harberts J, Nilghaz A, David MS, Galbraith K, Dervisevic M, Cadarso VJ, Voelcker NH. Micropillar array-based microfluidic device for electrochemical monitoring of cell culture health. Biosens Bioelectron 2025; 283:117534. [PMID: 40319724 DOI: 10.1016/j.bios.2025.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Glucose levels serve as a fundamental indicator of cell health, reflecting crucial aspects of cellular metabolism and energy production. While effective, traditional methods such as spectrophotometry and chromatography have limitations, such as labour-intensive sample collection, reliance on bulky equipment, extensive sample preparation, and prolonged experimental durations. To address these issues, we introduce a micropillar-based microfluidic electrochemical device (MED) for real-time monitoring of glucose levels in diverse cell culture systems, including human induced pluripotent stem cells (hiPSCs) and murine fibroblast cells (GP + E86). This biosensor demonstrates a linear range of 0.025-1.50 mM and a high sensitivity of 4.71 ± 0.13 μA. mM-1, and a low limit of detection of 19.10 ± 0.50 μM. The MED not only delivered fast glucose measurements with accuracy and reliability comparable to ultra-high-performance liquid chromatography (UHPLC) but was also specifically evaluated on GP + E86 murine fibroblast cells at varying seeding densities (1:5 and 1:10 ratios), across different culturing times to accurately monitor dynamic metabolic shifts associated with various growth phases. Furthermore, the MED effectively detected significant changes in glucose consumption in hiPSCs cell cultures contaminated with Escherichia coli (E. coli), highlighting its potential for early contamination detection. Integrating non-invasive, continuous monitoring platforms enhances the reliability of experimental outcomes by enabling cell health monitoring without disrupting the cell culture process. This approach enables real-time monitoring of cell cultures ensuring accurate detection of metabolic changes and early detection of media contamination.
Collapse
Affiliation(s)
- Masoud Khazaei
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Jann Harberts
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Azadeh Nilghaz
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| | - Michael Shola David
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia
| | - Kenneth Galbraith
- Invetech Pty Ltd, Cell Therapy Department, Mount Waverly, 3149, Victoria, Australia
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia.
| | - Victor J Cadarso
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC, 3168, Australia.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
2
|
Sasaki Y, Minami T. Biosensing approaches in body fluids using extended-gate-type organic field-effect transistor enzymatic sensors. ANAL SCI 2025; 41:523-530. [PMID: 40186841 PMCID: PMC12064604 DOI: 10.1007/s44211-025-00750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Biomarkers in body fluids provide essential chemical information for examining health conditions; however, unlike conventional instrumental approaches, easy-to-use analytical methods have not yet been fully established. This review introduces extended-gate-type organic field-effect transistors (OFETs) as biosensor platforms for real-sample analysis. OFETs are electronic devices that show switching profiles when gate voltages are applied. Therefore, the gate electrode of OFET functions as a sensing unit combined with appropriate molecular recognition materials. Owing to their signal amplification properties, OFETs enable sensitive biosensing. The extended-gate surfaces are easily functionalized with enzymatic layers using chemical modification, and these surfaces provide a high discrimination ability for specific biomarkers from their analogs. This review presents the designs of the extended-gate structures (i.e., integrated and separated styles) and their enzymatic layers and includes their actual sensing performance.
Collapse
Affiliation(s)
- Yui Sasaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, Japan.
| |
Collapse
|
3
|
Li P, Li Y, Chen X, Zhang S, Yi L, Liu P, Gong Y, Liu Z, Wu G, Liu F. 3D Integrated Physicochemical-Sensing Electronic Skin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411435. [PMID: 40026062 DOI: 10.1002/smll.202411435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The integration of physical and chemical signal sensing is of great significance to bridge the gap between electronic skin (e-skin) and natural skin. However, the existing method of integrating physical and chemical signal sensing units in two dimensions is not conducive to the development of e-skin in multifunctionality and miniaturization. Herein, a new three-dimensional (3D) integrated physicochemical-sensing e-skin (TDPSES) is developed by integrating a piezoresistive sensing unit, a biochemical signal sensing electrode, and a microfluidic system in a 3D superposition mode. For pressure sensing, TDPSES demonstrates an ultra-high sensitivity of 208.6 kPa-1 in 0-15 kPa and excellent stability of 8000 cycles. For glucose sensing in sweat, TDPSES has a sensitivity of 3.925 µA mm-1 and a detection limit of 29.1 µm. Meanwhile, TDPSES can not only continuously detect biological fluids, but also self-monitor its fluid-driving behavior, demonstrating its intelligent fluid-driving characteristics. Furthermore, TDPSES is applied to monitor a variety of physiological signals such as sweat, pulse, and voice, demonstrating its multifunctional sensing capabilities and application potential in health care. In conclusion, the implementation of TDPSES provides a new idea for constructing miniaturized and multifunctional e-skin, which helps to narrow the gap between e-skin and natural skin.
Collapse
Affiliation(s)
- Peilong Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yunfan Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao Chen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shizhuo Zhang
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Longju Yi
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Peizheng Liu
- Department of Information and Communication Engineering, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yuan Gong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhe Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guoqiang Wu
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Feng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
4
|
Guan W, Zhang L. Applications and prospects of biomaterials in diabetes management. Front Bioeng Biotechnol 2025; 13:1547343. [PMID: 40124248 PMCID: PMC11926158 DOI: 10.3389/fbioe.2025.1547343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 03/25/2025] Open
Abstract
Diabetes is a widespread metabolic disorder that presents considerable challenges in its management. Recent advancements in biomaterial research have shed light on innovative approaches for the treatment of diabetes. This review examines the role of biomaterials in diabetes diagnosis and treatment, as well as their application in managing diabetic wounds. By evaluating recent research developments alongside future obstacles, the review highlights the promising potential of biomaterials in diabetes care, underscoring their importance in enhancing patient outcomes and refining treatment methodologies.
Collapse
Affiliation(s)
- Wenhe Guan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Zhang
- Department of Human Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Wang X, Dong Z, Li W, Xiao D, Liu G, Yu Z, Yin S, Liang M. A high-sensitivity continuous glucose sensor using porous 3D cellulose/ carbon nanotube network. Talanta 2025; 283:127201. [PMID: 39546834 DOI: 10.1016/j.talanta.2024.127201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
While numerous needle-based continuous glucose monitoring (CGM) devices have been available today, the insufficient enzyme immobilization on monitoring sensor severely limited the detection sensitivity of CGM devices. This manuscript describes here a high-sensitivity continuous glucose sensor (CGS) by engineering a porous 3D cellulose/carbon nanotube (CNT) network on the working electrode, which subcutaneously increases the detection enzyme capacity and thus significantly enhances the signal intensity and sensitivity. Furthermore, a tapered needle made of soft resin is engraved into three distinct microgrooves where the glucose oxidase (GOD)-modified working electrode, Pt-modified counter electrode, and Ag/AgCl-modified reference electrode are separately constructed inside the microgrooves. Moreover, a miniature potentiostat tailored for signal acquisition, processing, and transmission is engineered. After incorporated with a wireless circuit, the proposed CGS achieves continuous glucose monitoring in interstitial fluid with a surprising sensitivity of 9.15 μA/mM/cm2, as well as maintaining functionality for a period of up to 9 days in live rats. This work provides the public a high-sensitivity continuous glucose monitoring device.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiyang Dong
- School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei Li
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - DanDan Xiao
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, No.1, Jiansheng Street, Shunyi District, Beijing, 101300, China
| | - Guodong Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiqiang Yu
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Sijie Yin
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
6
|
Liu Y, Hu S, Gan N, Yu Z. Wearable Patch Biosensor through Electrothermal Film-Stimulated Sweat Secretion for Continuous Sweat Glucose Analysis at Rest. Anal Chem 2024; 96:18510-18518. [PMID: 39523533 DOI: 10.1021/acs.analchem.4c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wearable patch biosensors for noninvasive and continuous diabetes management through sweat glucose analysis present a promising prospect. However, how to obtain sweat samples safely and effectively remains a huge challenge, especially in a resting state. In this work, we propose an innovative wearable patch biosensor through a heat-stimulated approach for sweat collection. A silver nanowire-loaded electrothermal film was designed as the heat source to stimulate sweat glands for sweat secretion. Subsequently, the secreted sweat sample was transported and enriched through microfluidic channels, which was continuously and sensitively analyzed by a Prussian blue and glucose oxidase comodified glucose electrochemical biosensor. Under optimal conditions, its sensitivity could achieve 14 μM sweat glucose within 15 min, which was 17 min shorter than that without heating. The specificity, reproducibility, and accuracy were also adequate. To achieve on-body perspiration monitoring of human subjects, the wearable patch biosensor was integrated with a portable electrochemical workstation, a temperature controller, and a power source. The glucose concentration was presented on a smartphone. Results showed that the glucose concentration in sweat detected by the wearable biosensor presented a highly consistent trend with the blood glucose measured by a blood glucose meter throughout the day with normal meals. Compared with other conventional sweat stimulation strategies, the simple device and safe principle made it more suitable for individuals who were sedentary or at rest. This work provides a new approach to realizing wearable patch biosensors for personalized health monitoring.
Collapse
Affiliation(s)
- Yuting Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shuhao Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Saha T, Khan MI, Sandhu SS, Yin L, Earney S, Zhang C, Djassemi O, Wang Z, Han J, Abdal A, Srivatsa S, Ding S, Wang J. A Passive Perspiration Inspired Wearable Platform for Continuous Glucose Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405518. [PMID: 39264314 PMCID: PMC11538657 DOI: 10.1002/advs.202405518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Indexed: 09/13/2024]
Abstract
The demand for glucose monitoring devices has witnessed continuous growth from the rising diabetic population. The traditional approach of blood glucose (BG) sensor strip testing generates only intermittent glucose readings. Interstitial fluid-based devices measure glucose dynamically, but their sensing approaches remain either minimally invasive or prone to skin irritation. Here, a sweat glucose monitoring system is presented, which completely operates under rest with no sweat stimulation and can generate real-time BG dynamics. Osmotically driven hydrogels, capillary action with paper microfluidics, and self-powered enzymatic biochemical sensor are used for simultaneous sweat extraction, transport, and glucose monitoring, respectively. The osmotic forces facilitate greater flux inflow and minimize sweat rate fluctuations compared to natural perspiration-based sampling. The epidermal platform is tested on fingertip and forearm under varying physiological conditions. Personalized calibration models are developed and validated to obtain real-time BG information from sweat. The estimated BG concentration showed a good correlation with measured BG concentration, with all values lying in the A+B region of consensus error grid (MARD = 10.56% (fingertip) and 13.17% (forearm)). Overall, the successful execution of such osmotically driven continuous BG monitoring system from passive sweat can be a useful addition to the next-generation continuous sweat glucose monitors.
Collapse
Affiliation(s)
- Tamoghna Saha
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Muhammad Inam Khan
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Samar Singh Sandhu
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Lu Yin
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Sara Earney
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Chenyang Zhang
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Omeed Djassemi
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Zongnan Wang
- Department of Mechanical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Jintong Han
- Department of Mechanical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Abdulhameed Abdal
- Department of Mechanical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Samarth Srivatsa
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Shichao Ding
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
8
|
Gao N, Xu G, Chang G, Wu Y. From Lab to Life: Self-Powered Sweat Sensors and Their Future in Personal Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409178. [PMID: 39467262 DOI: 10.1002/advs.202409178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of wearable sweat sensors has demonstrated their potential for continuous, non-invasive disease diagnosis and health monitoring. Emerging energy harvesters capable of converting various environmental energy sources-biomechanical, thermal, biochemical, and solar-into electrical energy are revolutionizing power solutions for wearable devices. Based on self-powered technology, the integration of the energy harvesters with wearable sweat sensors can drive the device for biosensing, signal processing, and data transmission. As a result, self-powered sweat sensors are able to operate continuously without external power or charging, greatly facilitating the development of wearable electronics and personalized healthcare. This review focuses on the recent advances in self-powered sweat sensors for personalized healthcare, covering sweat sensors, energy harvesters, energy management, and applications. The review begins with the foundations of wearable sweat sensors, providing an overview of their detection methods, materials, and wearable devices. Then, the working mechanism, structure, and a characteristic of different types of energy harvesters are discussed. The features and challenges of different energy harvesters in energy supply and energy management of sweat sensors are emphasized. The review concludes with a look at the future prospects of self-powered sweat sensors, outlining the trajectory of the field and its potential to flourish.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
9
|
Song C, Guo J, Wang Y, Xiang H, Yang Y. Electrochemical Glucose Sensors: Classification, Catalyst Innovation, and Sampling Mode Evolution. Biotechnol J 2024; 19:e202400349. [PMID: 39385538 DOI: 10.1002/biot.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Glucose sensors are essential tools for monitoring blood glucose concentration in diabetic patients. In recent years, with the increasing number of individuals suffering from diabetes, blood glucose monitoring has become extremely necessary, which expedites the iteration and upgrade of glucose sensors greatly. Currently, two main types of glucose sensors are available for blood glucose testing: enzyme-based glucose sensor (EBGS) and enzyme-free glucose sensor (EFGS). For EBGS, several progresses have been made to comprehensively improve detection performance, ranging from enhancing enzyme activity, thermostability, and electron transfer properties, to introducing new materials with superior properties. For EFGS, more and more new metallic materials and their oxides are being applied to further optimize its blood glucose monitoring. Here the latest progress of electrochemical glucose sensors, their manufacturing methods, electrode materials, electrochemical parameters, and applications were summarized, the development glucose sensors with various noninvasive sampling modes were also compared.
Collapse
Affiliation(s)
- Chenyang Song
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Jian Guo
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Yuhan Wang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Hongying Xiang
- Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yufeng Yang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| |
Collapse
|
10
|
Jamshidnejad-Tosaramandani T, Kashanian S, Omidfar K, Schiöth H. Recent advances in gold nanostructure-based biosensors in detecting diabetes biomarkers. Front Bioeng Biotechnol 2024; 12:1446355. [PMID: 39355278 PMCID: PMC11442290 DOI: 10.3389/fbioe.2024.1446355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 10/03/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent disorder with an urgent need for continuous, precise, and on-site biomarker monitoring devices. The continuous monitoring of DM biomarkers from different biological matrices will become routine in the future, thanks to the promising biosensor design. Lately, employing different nanomaterials in biosensor receptor parts has had a great impact on smart DM monitoring. Among them, gold nanostructures (AuNSs) have arisen as highly potential materials in fabricating precise DM biosensors due to their unique properties. The present study provides an update on the applications of AuNSs in biosensors for detecting glucose as well as other DM biomarkers, such as glycated hemoglobin (HbA1c), glycated albumin (GA), insulin, insulin antibodies, uric acid, lactate, and glutamic acid decarboxylase antibodies (GADA), with a focus on the most important factors in biosensor performance such as sensitivity, selectivity, response time, and stability. Specified values of limit of detection (LOD), linear concentrations, reproducibility%, recovery%, and assay time were used to compare studies. In conclusion, AuNSs, owing to the wide electrochemical potential window and low electrical resistivity, are valuable tools in biosensor design, alongside other biological reagents and/or nanomaterials.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Sensor and Biosensor Research Center (SBRC), Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Helgi Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Yang Y, Sheng C, Dong F, Liu S. An integrated wearable differential microneedle array for continuous glucose monitoring in interstitial fluids. Biosens Bioelectron 2024; 256:116280. [PMID: 38603840 DOI: 10.1016/j.bios.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Monitoring biomarkers in human interstitial fluids (ISF) using microneedle sensors has been extensively studied. However, most of the previous studies were limited to simple in vitro demonstrations and lacked system integration and analytical performance. Here we report a miniaturized, high-precision, fully integrated wearable electrochemical microneedle sensing device that works with a customized smartphone application to wirelessly and in real-time monitor glucose in human ISF. A microneedle array fabrication method is proposed which enables multiple individually addressable, regionally separated sensing electrodes on a single microneedle system. As a demonstration, a glucose sensor and a differential sensor are integrated in a single sensing patch. The differential sensing electrodes can eliminate common-mode interference signals, thus significantly improving the detection accuracy. The basic mechanism of microneedle penetration into the skin was analyzed using the finite element method (FEM). By optimizing the structure of the microneedle, the puncture efficiency was improved while the puncture force was reduced. The electrochemical properties, biocompatibility, and system stability of the microneedle sensing device were characterized before human application. The test results were closely correlated with the gold standard (blood). The platform can be used not only for glucose detection, but also for various ISF biomarkers, and it expands the potential of microneedle technology in wearable sensing.
Collapse
Affiliation(s)
- Yong Yang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Can Sheng
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fang Dong
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| | - Sheng Liu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China; School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China; School of Microelectronics, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Pei S, Babity S, Sara Cordeiro A, Brambilla D. Integrating microneedles and sensing strategies for diagnostic and monitoring applications: The state of the art. Adv Drug Deliv Rev 2024; 210:115341. [PMID: 38797317 DOI: 10.1016/j.addr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Microneedles (MNs) offer minimally-invasive access to interstitial fluid (ISF) - a potent alternative to blood in terms of monitoring physiological analytes. This property is particularly advantageous for the painless detection and monitoring of drugs and biomolecules. However, the complexity of the skin environment, coupled with the inherent nature of the analytes being detected and the inherent physical properties of MNs, pose challenges when conducting physiological monitoring using this fluid. In this review, we discuss different sensing mechanisms and highlight advancements in monitoring different targets, with a particular focus on drug monitoring. We further list the current challenges facing the field and conclude by discussing aspects of MN design which serve to enhance their performance when monitoring different classes of analytes.
Collapse
Affiliation(s)
- Shihao Pei
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Samuel Babity
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | - Davide Brambilla
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
13
|
Srikrishnarka P, Haapasalo J, Hinestroza JP, Sun Z, Nonappa. Wearable Sensors for Physiological Condition and Activity Monitoring. SMALL SCIENCE 2024; 4:2300358. [PMID: 40212111 PMCID: PMC11935081 DOI: 10.1002/smsc.202300358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Indexed: 04/13/2025] Open
Abstract
Rapid technological advancements have transformed the healthcare sector from traditional diagnosis and treatment to personalized health management. Biofluids such as teardrops, sweat, interstitial fluids, and exhaled breath condensate offer a rich source of metabolites that can be linked to the physiological status of an individual. More importantly, these biofluids contain biomarkers similar to those in the blood. Therefore, developing sensors for the noninvasive determination of biofluid-based metabolites can overcome traditionally invasive and laborious blood-test-based diagnostics. In this context, wearable devices offer real-time and continuous physiological conditions and activity monitoring. The first-generation wearables included wristwatches capable of tracking heart rate variations, breathing rate, body temperature, stress responses, and sleeping patterns. However, wearable sensors that can accurately measure the metabolites are needed to achieve real-time analysis of biomarkers. In this review, recent progresses in wearable sensors utilized to monitor metabolites in teardrops, breath condensate, sweat, and interstitial fluids are thoroughly analyzed. More importantly, how metabolites can be selectively detected, quantified, and monitored in real-time is discussed. Furthermore, the review includes a discussion on the utility of, multifunctional sensors that combine metabolite sensing, human activity monitoring, and on-demand drug delivery system for theranostic applications.
Collapse
Affiliation(s)
| | - Joonas Haapasalo
- Department of NeurosurgeryTampere University Hospital and Tampere UniversityKuntokatu 233520TampereFinland
| | - Juan P. Hinestroza
- Department of Fiber Science and Apparel DesignCornell UniversityIthacaNY14853USA
| | - Zhipei Sun
- Department of Electronics and NanoengineeringAalto UniversityP.O. Box 13500FI‐00076AaltoFinland
- QTF Center of ExcellenceDepartment of Applied PhysicsAalto University00076AaltoFinland
| | - Nonappa
- Faculty of Engineering and Natural SciencesKorkeakoulunkatu 6FI‐33720TampereFinland
| |
Collapse
|
14
|
Xu W, Lu L, He Y, Cheng L, Liu A. Long-Term Detection of Glycemic Glucose/Hypoglycemia by Microfluidic Sweat Monitoring Patch. BIOSENSORS 2024; 14:294. [PMID: 38920598 PMCID: PMC11202208 DOI: 10.3390/bios14060294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate.
Collapse
Affiliation(s)
| | | | | | - Lin Cheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (L.L.); (Y.H.)
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (L.L.); (Y.H.)
| |
Collapse
|
15
|
Li G, Xue P, Fan H, Ma Y, Wang H, Lu D, Gao J, Wen D. AuNi bimetallic aerogel with ultra-high stability applied in smart and portable biosensing. Anal Chim Acta 2024; 1306:342613. [PMID: 38692794 DOI: 10.1016/j.aca.2024.342613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Glucose detection is of significant importance in providing information to the human health management. However, conventional enzymatic glucose sensors suffer from a limited long-term stability due to the losing activity of the enzymes. In this work, the AuNi bimetallic aerogel with a well-defined nanowire network is synthesized and applied as the sensing nanomaterial in the non-enzymatic glucose detection. The three-dimensional (3D) hierarchical porous structure of the AuNi bimetallic aerogel ensures the high sensitivity of the sensor (40.34 μA mM-1 cm-2). Theoretical investigation unveiled the mechanism of the boosting electrocatalytic activity of the AuNi bimetallic aerogel toward glucose. A better adhesion between the sensing nanomaterial and the screen-printing electrodes (SPEs) is obtained after the introduction of Ni. On the basis of a wide linearity in the range of 0.1-5 mM, an excellent selectivity, an outstanding long-term stability (90 days) as well as the help of the signal processing circuit and an M5stack development board, the as-prepared glucose sensor successfully realizes remote monitoring of the glucose concentration. We speculate that this work is favorable to motivating the technological innovations of the non-enzymatic glucose sensors and intelligent sensing devices.
Collapse
Affiliation(s)
- Guanglei Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China
| | - Pengxin Xue
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Haoxin Fan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China
| | - Yuan Ma
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Haoyu Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Danfeng Lu
- Faculty of Printing, Packaging Engineering, and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jie Gao
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China; Research Institute of Industrial Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China.
| |
Collapse
|
16
|
Tang C, Zhou K, Wang R, Li M, Liu W, Li C, Chen X, Lu Q, Chang Y. Wearable biosensors for human sweat glucose detection based on carbon black nanoparticles. Anal Bioanal Chem 2024; 416:1407-1415. [PMID: 38246908 DOI: 10.1007/s00216-024-05135-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Wearable glucose biosensors enable noninvasive glucose monitoring, thereby enhancing blood glucose management. In this work, we present a wearable biosensor based on carbon black nanoparticles (CBNPs) for glucose detection in human sweat. The biosensor consists of CBNPs, Prussian blue (PB), glucose oxidase, chitosan, and Nafion. The fabricated biosensor has a linear range of 5 µM to 1250 µM, sensitivity of 14.64 µA mM-1 cm-2, and a low detection potential (-0.05 V, vs. Ag/AgCl). The detection limit for glucose was calculated as 4.83 µM. This reusable biosensor has good selectivity and stability and exhibits a good response to glucose in real sweat. These results demonstrate the potential of our CBNP-based biosensor for monitoring blood glucose in human sweat.
Collapse
Affiliation(s)
- Chaoli Tang
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Kai Zhou
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Rujing Wang
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China.
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Mengya Li
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenlong Liu
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyu Chen
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qinwen Lu
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yongjia Chang
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China.
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
17
|
Yao W, He H, Wang F. CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity. SENSORS (BASEL, SWITZERLAND) 2024; 24:1603. [PMID: 38475139 DOI: 10.3390/s24051603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024]
Abstract
Micropillar array electrodes represent a promising avenue for enhancing detection sensitivity and response current. However, existing methods for depositing electrode materials on micropillar arrays often result in uneven distribution, with the thin sidewall layer being less conductive and prone to corrosion. In addressing this issue, this study introduces electroplating to enhance the copper layer on the sidewall of micropillar array electrodes. These electrodes, fabricated through standard microelectronics processes and electroplating, are proposed for non-enzymatic glucose detection, with the copper layer deposited via electroplating significantly enhancing sensitivity. Initially, the impact of cetyltrimethylammonium bromide (CTAB) concentration as an inhibitor on the surface morphology and sensitivity of the plated layer was investigated. It was discovered that CTAB could decrease surface roughness, hinder the development of large and coarse grains, generate small particles, and boost sensitivity. Compared to the uncoated electrode and plating without CTAB, sensitivity was elevated by a factor of 1.66 and 1.62, respectively. Subsequently, the alterations in plating morphology and detection performance within a range of 0.3 ASD to 3 ASD were examined. Sensitivity demonstrated a tendency to increase initially and then decrease. The electrode plated at 0.75 ASD achieved a maximum sensitivity of 3314 μA·mM-1·cm-2 and a detection limit of 15.9 μM. Furthermore, a potential mechanism explaining the impact of different morphology on detection performance due to CTAB and current density was discussed. It was believed that the presented effective strategy to enhance the sensitivity of micropillar array electrodes for glucose detection would promote the related biomedical detection applications.
Collapse
Affiliation(s)
- Wenhao Yao
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Hu He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Fuliang Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
18
|
Xiao Y, Hou L, Wang M, Liu R, Han L, Nikolai M, Zhang S, Cheng C, Hu K. Noninvasive glucose monitoring using portable GOx-Based biosensing system. Anal Chim Acta 2024; 1287:342068. [PMID: 38182375 DOI: 10.1016/j.aca.2023.342068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Wearable biosensors have gained huge interest due to their potential for real-time physiological information. The development of a non-invasive blood glucose device is of great interests for health monitoring in reducing the diabetes incidence. Here, we report a sandwich-structured biosensor that is designed for glucose levels detection by using sweat as the means of monitoring. The Prussian blue nanoparticles (PBNPs) and carboxylated carbon nanotubes (MWCNT-COOH) were self-assembled on the electrode to improve the electrochemical performance and as the sensor unit, glucose oxidase (GOx) was immobilized by chitosan (CS) as the reaction catalysis unit, and finally encapsulated with Nafion to ensure a stable performance. As a result, the GOx/PBNPs/MWCNT-COOH sensor displays a low detection limit (7.0 μM), high sensitivity (11.87 μA mM-1 cm-2), and excellent interference resistance for a full sweat glucose application range (0.0-1.0 mM) for both healthy individuals and diabetic patients. Additionally, the glucose sensor exhibits stable stability for two weeks and can be successfully applied to screen-printed carbon electrodes (SPCE), demonstrating its great potential for personalized medical detection and chronic disease management.
Collapse
Affiliation(s)
- Yingying Xiao
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Lanlan Hou
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Mengzhu Wang
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing, 102600, China.
| | - Lu Han
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Mukhurov Nikolai
- SSPA Optics, Optoelectronics and Laser Technology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chuantong Cheng
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Chen H, Yang K, Sang S, Guo X, Ge Y, Wang H, Xiao P, Dong X, Zhao D. A mechanical HSA biosensor based on multi-field-coupling-mediated magnetic sensitization strategy. Anal Biochem 2023; 677:115264. [PMID: 37516423 DOI: 10.1016/j.ab.2023.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The conventional mechanical biosensor based on stress and electrical conversion can be an effective method to detect key human biomarkers for clinical diagnosis and early disease prevention. However, the applications of this type of biosensor are greatly limited due to their unsatisfactory sensitivity. In this work, a magnetic-sensitized (MS) mechanical biosensor based on multi-field coupling was developed for higher sensitivity, giving access to detect human serum albumin (HSA). Via introducing secondary magnetic antibodies labeled with magnetized Fe2O3 nanoparticles to the stress and electrical conversion element of the MS-biosensor, the multi-field coupling was realized based on stress, electricity, and magnetism. Under the action of the magnetic field, the magnetic force of the secondary magnetic antibody and the stress of antigen-antibody binding jointly drove and enhanced the deformation of the MS-biosensor, amplifying the electrical signal, and realizing magnetic sensitization. The HSA was detected by the MS-biosensor at a range of 0-80 μg/mL with a limit of detection (LOD) of 0.14 μg/mL, demonstrating the high performance of the MS-biosensor. Moreover, the MS-biosensor showed high selectivity, specificity, and stability, indicating that the magnetic sensitization strategy of the MS-biosensor was significant for the clinical application of mechanical biosensors.
Collapse
Affiliation(s)
- Honglie Chen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Kun Yang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yang Ge
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Haoyu Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Pengli Xiao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | | | - Dong Zhao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
20
|
Lazaro A, Villarino R, Lazaro M, Canellas N, Prieto-Simon B, Girbau D. Recent Advances in Batteryless NFC Sensors for Chemical Sensing and Biosensing. BIOSENSORS 2023; 13:775. [PMID: 37622861 PMCID: PMC10452174 DOI: 10.3390/bios13080775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
This article reviews the recent advances in the field of batteryless near-field communication (NFC) sensors for chemical sensing and biosensing. The commercial availability of low-cost commercial NFC integrated circuits (ICs) and their massive integration in smartphones, used as readers and cloud interfaces, have aroused great interest in new batteryless NFC sensors. The fact that coil antennas are not importantly affected by the body compared with other wireless sensors based on far-field communications makes this technology suitable for future wearable point-of-care testing (PoCT) devices. This review first compares energy harvesting based on NFC to other energy-harvesting technologies. Next, some practical recommendations for designing and tuning NFC-based tags are described. Power transfer is key because in most cases, the energy harvested has to be stable for several seconds and not contaminated by undesired signals. For this reason, the effect of the dimensions of the coils and the conductivity on the wireless power transfer is thoroughly discussed. In the last part of the review, the state of the art in NFC-based chemical and biosensors is presented. NFC-based tags (or sensor tags) are mainly based on commercial or custom NFC ICs, which are used to harvest the energy from the RF field generated by the smartphone to power the electronics. Low-consumption colorimeters and potentiostats can be integrated into these NFC tags, opening the door to the integration of chemical sensors and biosensors, which can be harvested and read from a smartphone. The smartphone is also used to upload the acquired information to the cloud to facilitate the internet of medical things (IoMT) paradigm. Finally, several chipless sensors recently proposed in the literature as a low-cost alternative for chemical applications are discussed.
Collapse
Affiliation(s)
- Antonio Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Ramon Villarino
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Marc Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Nicolau Canellas
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Beatriz Prieto-Simon
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - David Girbau
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| |
Collapse
|
21
|
Gong L, Bonmarin M, Spano F, Shen Y, Shen L, Han G, Wei S, Zhang Q, Chen Z, Zhao F. Integrated Device Based on a Sudomotor Nanomaterial for Sweat Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37318096 DOI: 10.1021/acsami.3c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The compositions of sweat and blood are related. Therefore, sweat is an ideal noninvasive test body fluid that could replace blood for linear detection of many biomarkers, especially blood glucose. However, access to sweat samples remains limited to physical exercise, thermal stimulation, or electrical stimulation. Despite intensive research, a continuous, innocuous, and stable method for sweat stimulation and detection has not yet been developed. In this study, a nanomaterial for a sweat-stimulating gel based on the transdermal drug delivery system is presented, which transports acetylcholine chloride into the receptors of sweat glands to achieve the function of biological stimulation of skin sweating. The nanomaterial was applied to a suitable integrated sweat glucose detection device for noninvasive blood glucose monitoring. The total amount of evaporated sweat enabled by the nanomaterial is up to 35 μL·cm-2 for 24 h, and the device detects up to 17.65 μM glucose under optimal conditions, showing stable performance regardless of the user's activity level. In addition, the in vivo test was performed and compared with several studies and products, which showed excellent detection performance and osmotic relationship. The nanomaterial and associated integrated device represent a significant advance in continuous passive sweat stimulation and noninvasive sweat glucose measurement for point-of-care applications.
Collapse
Affiliation(s)
- Liuyu Gong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| | - Mathias Bonmarin
- School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, Winterthur, Zurich 8400, Switzerland
| | - Fabrizio Spano
- School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, Winterthur, Zurich 8400, Switzerland
| | - Ya Shen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| | - Lin Shen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| | - Guocheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| | - Shanshan Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| | - Qihan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| | - Feijun Zhao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
| |
Collapse
|
22
|
Zhang S, Zhao W, Zeng J, He Z, Wang X, Zhu Z, Hu R, Liu C, Wang Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater Today Bio 2023; 20:100638. [PMID: 37128286 PMCID: PMC10148187 DOI: 10.1016/j.mtbio.2023.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The development of wearable non-invasive glucose sensors provides a convenient technical means to monitor the glucose concentration of diabetes patients without discomfortability and risk of infection. Apart from enzymes as typical catalytic materials, the active catalytic materials of the glucose sensor are mainly composed of polymers, metals, alloys, metal compounds, and various metals that can undergo catalytic oxidation with glucose. Among them, metallic nanomaterials are the optimal materials applied in the field of wearable non-invasive glucose sensing due to good biocompatibility, large specific surface area, high catalytic activity, and strong adsorption capacity. This review summarizes the metallic nanomaterials used in wearable non-invasive glucose sensors including zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) monometallic nanomaterials, bimetallic nanomaterials, metal oxide nanomaterials, etc. Besides, the applications of wearable non-invasive biosensors based on these metallic nanomaterials towards glucose detection are summarized in detail and the development trend of the wearable non-invasive glucose sensors based on metallic nanomaterials is also outlook.
Collapse
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- NingboTech University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junyan Zeng
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiang Wang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zehui Zhu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Runqing Hu
- NingboTech University, Ningbo, 315100, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- NingboTech University, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
23
|
Chen Y, Ma B, Zuo Y, Chen G, Hao Q, Zhao C, Liu H. Versatile sweat bioanalysis on demand with hydrogel-programmed wearables. Biosens Bioelectron 2023; 235:115412. [PMID: 37236013 DOI: 10.1016/j.bios.2023.115412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Wearable sweat bioanalysis is promising for non-invasive diagnostics of diseases. However, collection of representative sweat samples without disturbing daily life and wearable bioanalysis of targets that are clinically significant are still challenging. In this work, we report on a versatile method for the sweat bioanalysis. The method is based on a thermoresponsive hydrogel which can imperceptibly absorb slowly secreted sweat without stimulation such as heat or sport exercise. The wearable bioanalysis is accomplished by programmed electric heating of hydrogel modules to 42°C to release absorbed sweat or preloaded reagents into a microfluidic detection channel. Using our method, not only one-step detection of glucose but also multi-step immunoassay of cortisol is accomplished within 1 h, even at a very low sweat rate. Our test results are also compared with those obtained with conventional blood samples and stimulated sweat samples to evaluate the applicability of our method to non-invasive clinical practice.
Collapse
Affiliation(s)
- Yichen Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Biao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Yinxiu Zuo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gangsheng Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
24
|
Yuan X, Li C, Yin X, Yang Y, Ji B, Niu Y, Ren L. Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. BIOSENSORS 2023; 13:313. [PMID: 36979525 PMCID: PMC10045998 DOI: 10.3390/bios13030313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biological information detection technology is mainly used for the detection of physiological and biochemical parameters closely related to human tissues and organ lesions, such as biomarkers. This technology has important value in the clinical diagnosis and treatment of chronic diseases in their early stages. Wearable biosensors can be integrated with the Internet of Things and Big Data to realize the detection, transmission, storage, and comprehensive analysis of human physiological and biochemical information. This technology has extremely wide applications and considerable market prospects in frontier fields including personal health monitoring, chronic disease diagnosis and management, and home medical care. In this review, we systematically summarized the sweat biomarkers, introduced the sweat extraction and collection methods, and discussed the application and development of epidermal wearable biosensors for monitoring biomarkers in sweat in preclinical research in recent years. In addition, the current challenges and development prospects in this field were discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xu Yin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|