1
|
Zhou H, Ma X, Fu J, Cui S, Pu S. Photo-responsive color/fluorescence efficient dual-switching properties of diarylethene modified Eu-doped ZnO@Silane quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:125992. [PMID: 40088841 DOI: 10.1016/j.saa.2025.125992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Photo-responsive switches are very promising materials due to their potential applications in many fields. However, photo-controlled color/fluorescence dual-switching with higher modulation efficiency has rarely been reported. Herein, two new optical responsive switches were constructed by Eu-doped ZnO@Silane quantum dots (Eu:ZnO@Silane QDs) and two diarylethenes. The two switches exhibited strong fluorescence intensity and excellent photochromic properties due to the doping of Eu and the diarylethene modification on the surface of the QDs. The switches showed outstanding photo-controlled color/fluorescence dual-switching performance with UV/Vis lights irradiation. Although the structure of the two diarylethenes affected the fatigue resistance of the two switches, their fluorescence modulation efficiency (FME) could reach 100%. Furthermore, the two switches were successfully applied to bioimaging, and provide an alternative way for the design and construction of novel efficient color/fluorescence dual-switching.
Collapse
Affiliation(s)
- Hengju Zhou
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xinhuan Ma
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jiayu Fu
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shiqiang Cui
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
2
|
Jiang Q, Chen R, Li M, Zhang T, Kong Z, Ma K, Ye C, Sun X, Shu W. Emerging fluorescent probes for bioimaging of drug-induced liver injury biomarkers: Recent advances. Bioorg Chem 2025; 159:108407. [PMID: 40157011 DOI: 10.1016/j.bioorg.2025.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Drug-induced liver injury (DILI) has emerged as a significant concern in clinical settings, being one of the leading causes of acute liver failure. However, the specific pathogenesis of DILI remains unclear, and there is currently a lack of effective targeted therapies. Numerous studies have demonstrated that the occurrence and progression of DILI involve complex pathological processes, closely linked with various cellular substrates and microenvironments. Thus, developing non-invasive, highly sensitive, specific, and reliable methods to detect changes in biomarkers and microenvironments in situ would greatly aid in the precise diagnosis of DILI and help guide therapeutic interventions. Fortunately, fluorescence imaging technology has shown great promise in detecting biological species, microenvironments, and diagnosing DILI due to its superior detection capabilities. In this context, this review described the design strategies, working principles, and practical applications of small molecule fluorescent probes for monitoring biological species and microenvironments in DILI. Importantly, this review highlighted current limitations and future development directions, which may help uncover the underlying relationships between biological species, microenvironments, and DILI. This understanding could lead to potential diagnostic protocols and establish a platform for evaluating treatments and drug efficacy in DILI.
Collapse
Affiliation(s)
- Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ran Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Meng Li
- Huantai County Ecological Environment Management Service Center, Zibo 255000, PR China
| | - Tianyu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ziyuzhu Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Kaifu Ma
- School of Medical Laboratory, Qilu Medical University, Zibo 255000, PR China.
| | - Chao Ye
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin, 132013, PR China
| | - Xiaohan Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
3
|
Wang B, He C, Li Y, Jiang Y, Li X, Li Z, Peng C, Li H, Peng X, Zheng X, Xu F. Aminopeptidase N-Triggered Electron Rearrangement of Fluorescein for Covalent Fluorescent Labeling and Image-Guided Orthotopic Bladder Cancer Resection. Anal Chem 2025. [PMID: 40448611 DOI: 10.1021/acs.analchem.5c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Bladder cancer is the most common type of malignant tumor in the urinary system, which occurs in the bladder mucosa. Due to the lack of precise diagnostic tools, bladder cancer has a high recurrence rate. Fluorescence cystoscopy is recognized as a promising tool for improving the detection rate of bladder cancer, but its clinical application is hindered due to the scarcity of fluorescent agents. To address this issue, an aminopeptidase N (APN)-activated fluorescent agent with specific recognition and labeling abilities for bladder cancer has been developed. The fluorescent agent, namely, Flu-FAPN, exhibited high sensitivity and specificity toward APN under physiological conditions. The fluorescent intensity increased more than 37-fold after reacting with APN, and the detection limit is 0.10 ng/mL for APN. In addition, the hydrolysis of alanine catalyzed by APN could initiate the intramolecular electron rearrangement process, which subsequently contributed to the formation of protein-fluorescein adduct and thereby achieved covalent labeling of bladder cancer cells. Cell experiments conducted in cancer and normal cells demonstrate that Flu-FAPN has low cytotoxicity and high specificity for bladder cancer cells with an obvious fluorescence signal, which could be retained over 80% even in fixed cells. Finally, Flu-FAPN was successfully applied for the fluorescence-image-guided resection of tumor tissues in mice with orthotopic bladder cancer. We hope this covalent labeling-based agent can provide a promising tool for surgery navigation and accelerate the clinical application of fluorescence cystoscopy, thereby improving the cure rate of bladder cancer.
Collapse
Affiliation(s)
- Bing Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chaoxiang He
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yueqing Li
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Yihan Jiang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xiongjie Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Zonglong Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changzhen Peng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, PR China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Feng Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
- The Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, PR China
| |
Collapse
|
4
|
Zhang ZH, Liang ZQ, Xu SH, Wang P, Dai GL, Ye CQ, Wang DM. Dye-sensitized lanthanide-doped upconversion nanoprobes for homocysteine sensing in human serum and living cells via a spatial optimization strategy. J Mater Chem B 2025; 13:6093-6100. [PMID: 40331320 DOI: 10.1039/d5tb00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Homocysteine (Hcy) is an established risk factor for cardiovascular and neurodegenerative diseases, making its real-time detection critical for maintaining physiological balance and monitoring disease progression. However, developing probes that specifically recognize Hcy with a high signal-to-background ratio remains a significant challenge. In this study, we present a novel upconversion nanoprobe for Hcy detection, which integrates NIR cyanine dyes (CyPd) with β-NaGdF4:Yb20%,Er2%@NaGdF4:Yb10%,Nd10% upconversion nanoparticles (UNs). CyPd, featuring α,β-unsaturated ketone and pyridine functional groups, serves as both an efficient energy donor and a recognition antenna for the UNs. Benefiting from a hydrogen bonding-assisted two-site strategy of CyPd, coupled with highly efficient energy transfer from CyPd to UNs, the nanoprobe demonstrates high selectivity and sensitivity for Hcy in aqueous solutions, achieving a low detection limit of 0.19 μM. Importantly, the nanoprobe exhibits excellent performance in human serum, with recovery rates ranging from 97.9% to 103.2% and a low relative standard deviation of less than 3.51%. Furthermore, it was successfully applied for both exogenous and endogenous Hcy bioimaging. This innovative nanoprobe offers a promising tool for the accurate and efficient detection of Hcy, with potential applications in disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Zi-Hang Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zuo-Qin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Su-Hang Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Pu Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Guo-Liang Dai
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Chang-Qing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Dong-Mei Wang
- Baoji University of Arts and Sciences, College of Chemistry and Chemical Engineering, Baoji 721013, China
| |
Collapse
|
5
|
Zhao X, Wang Z, Liu H, Yan S, Liu Z, Duan Y, Han T, Han T. Mapping human fingerprint beyond level-3 based on an amphiphilic aggregation-induced emission luminogen and the construction of intelligent platform for personal identification. Anal Chim Acta 2025; 1352:343927. [PMID: 40210283 DOI: 10.1016/j.aca.2025.343927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Fluorescence imaging agents have been benefiting tremendously from tailor-made aggregation-induced emission (AIE) luminogens, owing to their high on-off ratio, large signal contrast, low background noise as well as the resistance to photobleaching. In the domain of fingerprint imaging, AIE luminogens are beginning to exhibit an advantage owing to the aforementioned superiorities. RESULTS We present an amphiphilic benzoic-acid salicylaldehyde AIE luminogen AIE-BASB, and outline its water sensitivity, self-assembly behavior as well as fingerprint imaging properties. AIE-BASB self-assembles into nanoscale textures when fabricated into a drop-casting film but undergoes a disassembly process in response to trace water on fingertip upon physical-contacting. Owing to the biological textures on the skin, fingerprint image can be clearly recorded by AIE-BASB film, which reveals detailed microscopic features of fingerprint information ranging from level-1 to level-3. Furthermore, it allows accurate measurements of the sizes, shapes, centroids, and areas of the sweat pores, which leads the fingerprint information into the next level. In addition, we develop an intelligent system based on AIE-BASB by integrating hardware and software modules, which is capable of recording and identifying fingerprint. After inputting fingerprint segments in trial operation, this intelligent system makes identification by calculation of the categorical probability, and successfully predicts the classification of the undefined fingerprint segments, implying 100 % accuracy in fingerprint identification. SIGNIFICANCE We predict that AIE-BASB may facilitate the development of new biometric technologies, which have broad applications in the domain of artificial intelligence, including machine tactility, target perception and object-machine interaction.
Collapse
Affiliation(s)
- Xinyi Zhao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zixuan Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Haoran Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Siyu Yan
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zihan Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tianyu Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Tiandong Han
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Institute of Urology, Beijing Municipal Health Commission, Beijing, 100050, China.
| |
Collapse
|
6
|
Wang MT, Xia HC, Wang XY, Zhang H, Zhao YY, Liu F, Han D, Fu YL. A BODIPY-based fluorescent probe for rapid detection of NO in cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3629-3635. [PMID: 40289733 DOI: 10.1039/d5ay00460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nitric oxide (NO) is a small biological molecule that plays a critical role in numerous physiopathological processes throughout the human body. An extensive array of studies has elucidated a robust correlation between pathological conditions and endogenous levels of NO. In this paper, we synthesized a BODIPY-based fluorescent probe, dubbed BDD, which has excellent ability to accurately detect NO. The presence of secondary amines of BDD enables it to engage in an N-nitrosation reaction with NO. This chemical interaction effectively disrupts the initial photoinduced electron transfer (PET) process, thereby facilitating the transition of BDD from a "turn-off" to a "turn-on" state. Moreover, BDD boasts several significant advantages including an expedient detection time (60 s), exceptional selectivity, and formidable anti-interference capabilities-factors that are indispensable for accurately detecting NO amidst complex environments. Furthermore, BDD demonstrates efficacy in discerning both endogenous and exogenous sources of NO within live cells and has been adeptly employed for imaging external substances in zebrafish.
Collapse
Affiliation(s)
- Meng-Ting Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hong-Cheng Xia
- School of Pharmacy, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Xiang-Yu Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Han Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yue-Yue Zhao
- Key Laboratory of Xin'an Medicine, Ministry of Education, College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Fengxiang Liu
- School of Pharmacy, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Di Han
- School of Pharmacy, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Ying-Long Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei, 230012, China
| |
Collapse
|
7
|
Sun J, Zhi J, Zhang L, Qi Y, Sun J, Jin Y, Yin J, Yao K, Shao B. An "On-Off" AIE-Based Lock-and-Key Fluorescent Probe System for Detection of Fentanyl/Norfentanyl. Molecules 2025; 30:1985. [PMID: 40363793 PMCID: PMC12073365 DOI: 10.3390/molecules30091985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The misuse of fentanyl poses significant social risks, and accurately and swiftly detecting fentanyl in field settings presents a considerable challenge. Herein, we have designed and synthesized a fluorescent probe TP-CF3-COOH, which is composed of carboxyl- and trifluoromethyl-binding center tetraphenyl butadiene. The unique centrosymmetric configuration of the TP-CF3-COOH probe allows for the construction of a fluorescence "on-off" mechanism recognition platform by spatially matching fentanyl and its metabolite norfentanyl. Importantly, this study reveals that the interaction of fentanyl or norfentanyl with TP-CF3-COOH results in spontaneous self-assembly, generating a three-dimensional complex sphere that is smaller than the two-dimensional sheet fluorescence probe. This self-assembly process results in the quenching of fluorescence. Theoretical calculations demonstrate that this process is accompanied by intermolecular through-space charge transfer during self-assembly, leading to a blue shift in emission wavelength. As a result, the TP-CF3-COOH fluorescent probe enables the quantitative detection of fentanyl/norfentanyl within a range of 1 × 10-2-1 × 103 μg/L, with limits of detection of 2 × 10-4 μg/L and 3 × 10-4 μg/L, respectively. This cost-effective, rapid, and sensitive fluorescent probe holds great potential for the onsite screening and detection of fentanyl and its analogues.
Collapse
Affiliation(s)
- Jing Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Junge Zhi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Li Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Qi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Kai Yao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
8
|
Dai Y, Xiao L, Liao J, Han Z, Fu N. Detecting Changes in Singlet Oxygen and Viscosity during Apoptosis-Ferroptosis Mediated Photodynamic Therapy and Establishing Visual Imaging of Fatty Liver. ACS Sens 2025; 10:2100-2112. [PMID: 40068122 DOI: 10.1021/acssensors.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cancer is a serious global health threat, and photodynamic therapy (PDT) is an effective treatment method for cancer. This therapy works by generating a large amount of singlet oxygen (1O2) under the influence of oxygen and light, which induces apoptosis in tumor cells, leading to their destruction. However, the resistance of cells to apoptosis limits the development of PDT, and thus the combination of ferroptosis and apoptosis provides a new perspective for PDT. During PDT and ferroptosis, the levels of 1O2 and the microenvironment (viscosity) within cells often change. To address this, this study developed a novel fluorescent probe, NI-QM-OH, based on the TICT-ICT effect, capable of monitoring changes in 1O2 and viscosity during PDT. The probe exhibits excellent selectivity, high sensitivity, and a low LOD (0.38 μM), and has been successfully applied for bioimaging in HepG2, HeLa, and MCF-7 cells, as well as for monitoring viscosity and 1O2 levels in zebrafish. Most importantly, NI-QM-OH also enables the visualization of the diagnosis of fatty liver disease (both alcoholic and nonalcoholic).
Collapse
Affiliation(s)
- Yingshu Dai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Limei Xiao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jiayang Liao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhengtao Han
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Nanyan Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
9
|
Che J, Gong H, Yang A, Gao Y, Zhong C, Chen D, Lou X, Xia F, Dai J. Asymmetric D-A-D' Ratiometric Molecule for Highly Specific Hypochlorous Acid Detection. Anal Chem 2025; 97:6230-6239. [PMID: 40079782 DOI: 10.1021/acs.analchem.5c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Hypochlorous acid exists as HClO in acidic conditions and as ClO- in alkaline conditions, posing a significant challenge for differentiation due to their strong and closely similar oxidative reaction activities. Addressing this challenge, our study presents an asymmetric donor-acceptor-donor' (D-A-D') molecular architecture for the design of a fluorescent probe (PMT NPs) that demonstrates exceptionally high specificity toward HClO alongside an optimized ratiometric response. The incorporation of the strong electron acceptor 2-(diphenylmethylene)malononitrile (A) modulates the reducing ability of the phenothiazine recognition site, adjusting the probe's oxidation potential to an intermediate level between HClO and ClO-. This adjustment directly dictates the probe's selectivity, enabling it to respond exclusively to HClO. By incorporating D', the probe's response to HClO shifts the intramolecular charge transfer (ICT) from the original D-A to D'-A, instead of the usual Dox-A as presented in previous works. This adjustment controls the blue shift in fluorescence wavelength upon recognition, thereby improving the accuracy of ratiometric signals in vivo. The ability of PMT NPs to precisely recognize HClO in acidic environments was validated through live cell imaging and in vivo experiments using zebrafish and mouse models, enabling real-time monitoring of HClO surges. This dual-pronged molecular design strategy, which combines D-A interaction modulation with a D-A-D' molecular architecture, promises to revolutionize probe designs for various biomolecules and is anticipated to advance the understanding of diseases linked to these analytes.
Collapse
Affiliation(s)
- Jinjin Che
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hongjian Gong
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Axiu Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cheng Zhong
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Chen J, Liu S, Deng D, Guo G, Min Y. A highly-sensitive fluorescent probe for the detection of copper ions and its applications in water quality monitoring, neural cell imaging and plant imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125613. [PMID: 39718269 DOI: 10.1016/j.saa.2024.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
High copper levels pose a risk to environmental and human health due to their toxicity and widespread industrial application, in which abnormal copper levels are associated with various diseases both in neurodegenerative diseases and plant growth. Thus, a turn-on fluorescent probe BBYD-Cu, based on donor-acceptor type structure, was designed and synthesized with easy preparations. BBYD-Cu can specifically recognized Cu2+ by 2-picolinic ester group, then released the fluorophore to enhance the fluorescent signals. With a detection limit of 31 nM, it displays extremely sensitive and precise Cu2+ detection. In addition, BBYD-Cu has the advantages of fast response speed (within 3 min), excellent selectivity and strong anti-interference ability for Cu2+. Significantly, the BBYD-Cu demonstrates superior detection and imaging performance even in intricate real-world environmental samples, biological nerve cells and plant soybean sprout root tissue.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Shengdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongmei Deng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangkun Guo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonggang Min
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Mao GJ, Yang TT, Gong Y, Ma N, Wang P, Li CY, Wang K, Zhang G. Hypochlorous Acid-Activatable NIR Fluorescence/Photoacoustic Dual-Modal Probe with High Signal-to-Background Ratios for Imaging of Liver Injury and Plasma Diagnosis of Sepsis. ACS Sens 2025; 10:1032-1042. [PMID: 39813236 DOI: 10.1021/acssensors.4c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper. NIRF-PA-HClO showed excellent NIRF/PA dual-modal responses with high SBRs for HClO in solution, cells, and mice. Moreover, NIRF-PA-HClO was successfully applied for high-contrast imaging of DILI. Finally, NIRF-PA-HClO was employed for the blood plasma diagnosis of sepsis with satisfactory results. In summary, the above results proved that NIRF-PA-HClO would be a potentially useful tool for the study of physiological and pathological roles of HClO, the investigation of the pathology and therapeutic mechanisms of hepatotoxicity, and the diagnosis of blood infection. Also, the development of NIRF-PA-HClO provides new design mentality for constructing other analyte-activatable NIRF/PA dual-modal probes with high SBRs.
Collapse
Affiliation(s)
- Guo-Jiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tian-Tian Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yijun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Peng Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou, Zhejiang 310022, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
12
|
Dutta B, Waghmare A, Das SK, Bhargava Y, Kumar A, Debnath AK, Barick KC, Hassan PA. Fluorescence tunable carbon dots for in vitro nuclear dynamics and gastrointestinal imaging in live zebrafish and their in vivo toxicity evaluation by cardio-craniofacial disfunction assessment. NANOSCALE 2025; 17:4502-4523. [PMID: 39801425 DOI: 10.1039/d4nr04077e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds. These challenges underscore the need for safer, more effective diagnostic and therapeutic solutions. In these aspects, we have developed highly photostable, biocompatible, water-dispersible carbon dots (TNCDs) with an average size of 5.5 nm using tartaric acid and ethylenediamine via a hydrothermal route. The synthesized TNCDs have shown bright blue fluorescence under the irradiation of UV-light at an excitation wavelength of 365 nm. They exhibit a quantum yield (QY) of 25.1% with maximum emission at 390 nm. A nice tri-exponential fitting of the decay curve with characteristic lifetimes of 1.52 ns, 3.05 ns and 6.11 ns for TNCDs was obtained. In vitro studies demonstrated that TNCDs have high biocompatibility (20 μg ml-1) with almost 100% cell viability and excellent nucleus targeting and staining capabilities with low background interference (with 10-12 times enhancement in fluorescence intensity). Additionally, if tagged with photosensitizers or radionuclides, TNCDs can serve as therapeutic agents in photodynamic therapy against cancer cells. Importantly, TNCDs exhibited negligible toxicity in developing zebrafish even at high concentrations (up to 400 mg L-1) as investigated by cardio and craniofacial disfunction assessment. Live organism imaging revealed that TNCDs produced aggregation-induced strong and specific green fluorescence in the gut of zebrafish larvae even at low concentrations, indicating their potential for nucleus staining and gut-specific optical imaging (at 50 mg L-1). Thus, our TNCDs represent a robust nanoplatform for cellular and whole-organism fluorescence imaging, offering both diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| | - Ashwini Waghmare
- Molecular Engineering and Imaging Lab, Department of Microbiology, Dr Harisingh Gour University (A Central University), Sagar-470003, M.P., India
| | - Sourav Kumar Das
- Radiation Biology &Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Yogesh Bhargava
- Molecular Engineering and Imaging Lab, Department of Microbiology, Dr Harisingh Gour University (A Central University), Sagar-470003, M.P., India
| | - Amit Kumar
- Radiation Biology &Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A K Debnath
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| |
Collapse
|
13
|
Luo R, Xu L, Chen J, Zhang W, Feng S, Qiu Z, Hong Y, Feng G. Near-Infrared Fluorescent Probe for Simultaneously Imaging Ferrous Ions and Viscosity in a Mouse Model of Hepatocellular Carcinoma. Anal Chem 2025; 97:1719-1728. [PMID: 39815399 DOI: 10.1021/acs.analchem.4c05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Abnormal ferrous ion (Fe2+) levels lead to an increase in reactive oxygen species (ROS) in cells, disrupting intracellular viscosity and the occurrence of hepatocellular carcinoma (HCC). Simultaneously visualizing Fe2+ and intracellular viscosity is essential for understanding the detailed pathophysiological processes of HCC. Herein, we report the first dual-responsive probe, QM-FV, capable of simultaneously monitoring Fe2+ and viscosity. QM-FV shows highly selective turn-on near-infrared fluorescence (∼30-fold enhancement at 740 nm) for Fe2+ with high sensitivity (LOD = 25 nM) and a significant Stokes shift (290 nm). Moreover, QM-FV shows a distinct orange-red fluorescence enhancement at 587 nm as the viscosity increases. Due to its lower cytotoxicity and high sensitivity, QM-FV can distinguish cancer cells from normal cells by detecting Fe2+ and viscosity in dual channels. More importantly, using QM-FV, we found that the levels of Fe2+ and viscosity elevated in the precancerous stage of HCC and gradually increased as the disease progressed. Overall, this work provides a new potential tool for investigating viscosity and Fe2+-related pathological processes underlying HCC.
Collapse
Affiliation(s)
- Rongqing Luo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenxuan Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shumin Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guoqiang Feng
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
14
|
Wang J, Li D, Zhang J, Gao Z, Han J. Curcumin/kaolin composite for advanced latent fingerprint imaging with fluorescence quantification. Analyst 2025; 150:513-526. [PMID: 39750732 DOI: 10.1039/d4an01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized via a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application. Afterward, a novel method, termed Fingerprint Fluorescence Intensity Ratio (FFIR), was developed to quantify the contrast between fingerprint signals and background noise and to compare the efficacy of full-color developing agents. Compared with the existing grayscale conversion strategy, the proposed FFIR method achieved tunable multi-color fingerprint image enhancement for the first time, which helped to eliminate background fluorescence interference and improved visual perception. The feasibility of FFIR and its sensitivity in tracking image capture parameters were demonstrated by the established mathematical model. Hence, the newly synthesized modified composites and the mathematical model-validated method demonstrate profound practical significance in comprehensive fingerprint imaging.
Collapse
Affiliation(s)
- Jiujiang Wang
- College of Forensic Science, Criminal Investigation Police University of China, Shenyang, Liaoning, 110854, China.
| | - Dawu Li
- College of Forensic Science, Criminal Investigation Police University of China, Shenyang, Liaoning, 110854, China.
| | - Jianghua Zhang
- College of Anti-Drug and Public Security, Criminal Investigation Police University of China, Shenyang, Liaoning, 110854, China
| | - Zijian Gao
- Department of Information Systems, Business Statistics and Operations Management, HKUST Business School, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Jinke Han
- Questrom School of Business, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
15
|
Ma T, Gao H, Wu J, Zhao J, Chang B, Zhang Z, Zhang S, Zhang B, Fang J. Diselenides as novel effective fluorescence quenchers to construct a two-photon fluorescent probe for thiols in a mouse stroke model. Chem Commun (Camb) 2025; 61:1910-1913. [PMID: 39774747 DOI: 10.1039/d4cc06286h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A fluorescence quenching mechanism using linear diselenides was proposed for the first time through a combination of intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET). Herein, we synthesized and screened a two-photon fluorescent probe AFC-SeSe, demonstrating a remarkable 300-fold increase in response to glutathione (GSH). Additionally, AFC-SeSe enabled real-time observation of increased thiol levels following treatment within a short timeframe in a mouse model of stroke.
Collapse
Affiliation(s)
- Tao Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhibin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
16
|
Di L, Jiang Y, Song Q, Sun W, Xing Y, Yang Z, Xia Z, Zhang T, Chen X. Rotor proliferation promotes high-brightness AIE of iridium emitter accomplishing high-contrast luminous imaging of latent fingerprints to level 3 details. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125145. [PMID: 39299072 DOI: 10.1016/j.saa.2024.125145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Luminous imaging of latent fingerprints (LFPs) necessitates the possession of high-brightness aggregation-state luminescence by developers to ensure sufficient imaging contrast and resolution. A novel strategy involving incremental rotor modification is presented for AIE activation of the iridium developer. The rotor proliferation prominently improves the rotational activity of groups and facilitates high-efficiency RIM, thereby prompting the AIE activation of iridium developer with high luminous efficiency. Subsequently, a prompt, high-contrast, and robust LFP imaging protocol is developed utilizing the high-brightness AIE-active iridium developer. This innovative protocol realizes the luminous imaging and quantification of microscopic features in fingerprint ridges and furrows, including ridge widths, edge morphology of ridges, included angles, pores, and pore pitches with exceptional imaging contrast and refined detail resolution. Moreover, it allows for accurate identification of individual traits across diverse substrates without any pre-/post-processing to LFPs. The high-brightness AIE-active iridium developer provides outstanding aging resistance to developed fingerprints, thereby strongly supporting the acquisition, transfer, and preservation of fingerprint evidence. The luminous imaging protocol of LFPs based on high-brightness AIE exhibits robust adaptability to actual scenes and offers a premium scheme for facilitating forensic investigation.
Collapse
Affiliation(s)
- Ling Di
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yingnan Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Qi Song
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Wen Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yang Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Zhanxu Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xuebing Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
17
|
Zeng H, Ma X, Pan S, Han Y, Tang Y, Fan Y, Wu Y. A near-infrared frequency upconversion fluorescent probe for rapid and sensitive visual detection of sulfur dioxide. Analyst 2024. [PMID: 39569728 DOI: 10.1039/d4an01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Inflammation is a complex physiological response involving various cellular and molecular events. Sulfur dioxide (SO2), which is usually in the form of HSO3- and SO32- under physiological conditions, plays a crucial role in the regulation of inflammation and diseases. Frequency upconversion luminescence (FUCL) can realize the unique anti-Stokes process of long-wavelength excitation to short-wavelength emission; thus, it is a highly promising optical method for in vivo imaging due to its deep tissue penetration, low photo-damage, etc. Therefore, we developed a near-infrared FUCL NIRX-1 probe for the detection of HSO3-. NIRX-1 had a fast response (80 s), a low detection limit (0.43 μM), and high selectivity towards HSO3-. In addition, NIRX-1 had deep light penetration ability due to the near-infrared excitation at 808 nm and was able to detect HSO3- in living cells and mice. Lastly, NIRX-1 was employed in the imaging of HSO3- in an inflammation mouse model through FUCL imaging techniques. All these features make NIRX-1 a good candidate for the investigation of SO2-associated physiological and pathological processes.
Collapse
Affiliation(s)
- Hong Zeng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Xiao Ma
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Shufen Pan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yuting Han
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yanyan Tang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yulan Fan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| | - Yongquan Wu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P R China.
| |
Collapse
|
18
|
Swati G, Mishra S. Luminescent nanomaterials for developing high-contrast latent fingerprints. NANOTECHNOLOGY 2024; 36:032001. [PMID: 39383882 DOI: 10.1088/1361-6528/ad84fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Fingerprint patterns (or epidermal ridges) are by far one of the most reliable techniques for individual identification. Fingerprint patterns get deposited on all kinds of solid surfaces due to human transudation or exudation process. Bodily fluids through sweat glands contain moisture, natural oils and proteins. Since latent fingerprint patterns are not readily recognizable they are collected from a crime scene and are further processed physically or chemically. Fingerprints obtained using conventional black and white powders face severe drawbacks including low sensitivity, high background interference from the substrates, involvement of toxic materials, and poor stability. To overcome the above-listed issues, especially for coloured and transparent substrates, luminescent materials have emerged as potential agents for rapid visualization of high-contrast latent fingerprints. This review covers the recent advancements in luminescent nanomaterials of both kinds (up and down conversion) and persistent nanophosphors for developing latent fingerprints. Special emphasis has been given to an unusual class of luminescent materials known as persistent nanophosphors, which do not require a constant excitation, thereby completely eradicating background noise. The review also covers different approaches to gathering fingerprints such as powder dusting, cyanoacrylate fuming, ninhydrin fuming and vacuum metal deposition.
Collapse
Affiliation(s)
- G Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Savvi Mishra
- Department of Physics, Maitreyi College, University of Delhi, New Delhi 110021, India
| |
Collapse
|
19
|
Luan J, Li Y, Yuan J, Wang Z, Shang X, Wang KP, Fang Y, Chen S, Hu ZQ. Simple cyclic chalcone dye with multiple optical functions: Piezochromism and lysosomes staining. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124485. [PMID: 38788510 DOI: 10.1016/j.saa.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Both artificially synthesized and naturally occurring cyclic chalcones have been widely studied for their excellent biological activities. However, research on its photophysical properties is still limited. In the present study, we designed and synthesized a small molecule fluorescent dye based on the ICT effect, using dimethylamino as the electron-donating group and carbonyl as the electron withdrawing group, and investigated its photophysical properties in depth. Although YB is a simple small molecule, it exhibits significant piezochromic properties. The fluorescence of YB can change from green to yellow through grinding. After solvent fumigation, the fluorescence reverts to green. Furthermore, YB was used successfully in the lysosomal targeting. This study expands the research on the photophysical properties of cyclic chalcone and give richness to application of cyclic chalcone compounds.
Collapse
Affiliation(s)
- Junyu Luan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yahang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianhao Yuan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zezhong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianzhao Shang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Fang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
20
|
Xia Z, Xu H, Huang A, Hao W, Wu D, Yin S, He H. Theoretical Investigations on the Sensing Mechanism of Dicyanoisophorone Fluorescent Probe for the Detection of Hydrogen Sulfide. J Fluoresc 2024:10.1007/s10895-024-03911-6. [PMID: 39298055 DOI: 10.1007/s10895-024-03911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
As one of the biomolecules, hydrogen sulfide (H2S) has received a lot of attention. Recent studies have shown that endogenous hydrogen sulfide plays different roles in different organs in biological systems. Fluorescent probe technology has been widely adopted due to its many advantages such as low cost, simple operation, and high sensitivity. Among many probes, dicyanoisophorone fluorophore is often used in probe design for real-time detection of endogenous H2S due to the large Stokes shift and long fluorescence emission wavelength. In this paper, the fluorescence sensing mechanism of dicyanoisophorone-like probe L and its product 3 with near-infrared fluorescence emission has been theoretically investigated by using theory methods. The analysis of infrared (IR) vibration spectra and reduced density gradient (RDG) showed that the hydrogen bond of the enolic structure of product 3 was significantly enhanced in the S1 state. The spectroscopic information revealed that the emission of NIR fluorescence originated from the keto structure of the product. Finally, potential energy curves and frontier molecular orbitals diagrams showed that the fluorescence quenching phenomenon of the probe L was attributed to the photoinduced electron transfer (PET) process, whereas the product 3 generated after the detection of H2S undergoes the excited state intramolecular proton transfer (ESIPT) process.
Collapse
Affiliation(s)
- Zhicheng Xia
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Honghong Xu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Anran Huang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Wenxuan Hao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Dongxia Wu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Haixiang He
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
21
|
Wang Q, Cai M, Ma Y, Zhang Y, Chen S, Zhang S. Phenylboronic Acid-Functionalized Ratiometric Surface-Enhanced Raman Scattering Nanoprobe for Selective Tracking of Hg 2+ and CH 3Hg + in Aqueous Media and Living Cells. Anal Chem 2024; 96:13566-13575. [PMID: 39105712 DOI: 10.1021/acs.analchem.4c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The development of appropriate molecular tools to monitor different mercury speciation, especially CH3Hg+, in living organisms is attractive because its persistent accumulation and toxicity are very harmful to human health. Herein, we develop a novel activity-based ratiometric SERS nanoprobe to selectively monitor Hg2+ and CH3Hg+ in aqueous media and in vivo. In this nanoprobe, a new bifunctional Raman probe bis-s-s'-[(s)-(4-(ethylcarbamoyl)phenyl)boronic acid] (b-(s)-EPBA) was synthesized and immobilized on the surface of gold nanoparticles via a Au-S bond, in which the phenylboronic acid group was employed as the recognition unit for Hg2+ and CH3Hg+ based on the Hg-promoted transmetalation reaction. In the presence of Hg2+ and CH3Hg+, a new surface-enhanced Raman scattering (SERS) peak aroused from of C-Hg appeared at 1080 cm-1, and the SERS intensity at 1002 cm-1 belonged to the B-O symmetric stretching decreased simultaneously. The quantitative tracking of Hg2+ and CH3Hg+ was realized based on the SERS intensity ratio (I1080/I1303) with rapid response (∼4 min) and high sensitivity, with detection limits of 10.05 and 25.13 nM, respectively. Moreover, the SERS sensor was used for the quantitative detection of Hg2+ and CH3Hg+ in four actual water samples with a high accuracy and excellent recovery. More importantly, cell imaging experiments showed that AuNPs@b-(s)-EPBA could quantitatively detect intracellular CH3Hg+ and had a good concentration dependence in ratiometric SERS imaging. Meanwhile, we demonstrated that AuNPs@b-(s)-EPBA could detect and image CH3Hg+ in zebrafish. We anticipate that AuNPs@b-(s)-EPBA could potentially be used to study the physiological functions related to CH3Hg+ in the future.
Collapse
Affiliation(s)
- Qian Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhe Cai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yafei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Bera S, Selvakumaraswamy A, Nayak BP, Prasad P. Aggregation-induced emission luminogens for latent fingerprint detection. Chem Commun (Camb) 2024; 60:8314-8338. [PMID: 39037456 DOI: 10.1039/d4cc02026j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For over a century, fingerprints have served as a pivotal tool for identification of individuals owing to their enduring characteristics and easily apparent features, particularly in the realm of criminal investigations. Latent fingerprints (LFPs) are "invisible fingerprints" that are most commonly available at crime scenes and require a rapid, selective, sensitive, and convenient method for detection. However, existing fingerprint development techniques harbour limitations, prompting the exploration of novel approaches that prioritize investigator safety and environmental sustainability. Leveraging the unique photophysical properties of aggregation-induced emission luminogens (AIEgens) has emerged as a promising strategy for on-site analysis of LFP visualization. In this highlight, we have presented a comparative analysis of various AIEgens (organic compounds, metal complexes, nanoparticles, and polymers) for the development and detection of LFPs. Through this examination, insights into the efficiency and potential applications of AIE-based fingerprint development techniques are provided. In addition, several strategies have been proposed for circumventing the limitations of existing AIEgens. We hope that this highlight article will encourage more researchers to investigate AIEgens in LFP detection, contributing to forensic science.
Collapse
Affiliation(s)
- Sonali Bera
- Medicinal Chemistry and Chemical Biology Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | | | - Biswa Prakash Nayak
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Puja Prasad
- Medicinal Chemistry and Chemical Biology Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
23
|
Cai H, Zhang XC, Zhang L, Luo C, Lin HJ, Han DM, Chen FZ, Huang C. Molecule Engineering Metal-Organic Framework-Based Organic Photoelectrochemical Transistor Sensor for Ultrasensitive Bilirubin Detection. Anal Chem 2024; 96:12739-12747. [PMID: 39056189 DOI: 10.1021/acs.analchem.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The functionalization of metal-organic frameworks (MOFs) with organic small molecules by in situ postsynthetic modification has garnered considerable attention. However, the precise engineering of recognition sites using this method remains rarely explored in optically controlled bioelectronics. Herein, employing the Schiff base reaction to embed the small molecule (THBA) into a Zr-MOF, we fabricated a hydroxyl-rich MOF on the surface of titanium dioxide nanorod arrays (U6H@TiO2 NRs) to develop light-sensitive gate electrodes with tailored recognition capabilities. The U6H@TiO2 NR gate electrodes were integrated into organic photoelectrochemical transistor (OPECT) sensing systems to tailor a sensitive device for bilirubin (I-Bil) detection. In the presence of I-Bil, coordination effects, hydrogen bonding, and π-π interactions facilitated strong binding between U6H@TiO2 NRs and the target I-Bil. The electron-donating property of I-Bil influenced the gate voltage, enabling precise control of the channel status and modulation of the channel current. The OPECT device exhibited exceptional analytical performance toward I-Bil with wide linearity ranging from 1 × 10-16 to 1 × 10-9 M and a low limit detection of 0.022 fM. Leveraging the versatility of small molecules for boosting the functionalization of materials, this work demonstrates the great potential of the small molecule family for OPECT bioanalysis and holds promise for the advancement of OPECT sensors.
Collapse
Affiliation(s)
- Huihui Cai
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiao-Cui Zhang
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Lin Zhang
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chen Luo
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hui-Jin Lin
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - De-Man Han
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Feng-Zao Chen
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University, Lanxi, Zhejiang 321100, China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
24
|
Zhang Q, Zhang D, Zhu Z, Jiang Y. Detection and application of hypochlorous acid in both aqueous environments and living organisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124225. [PMID: 38581774 DOI: 10.1016/j.saa.2024.124225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
The scarcity of water resources has raised concerns regarding drinking water safety. Excessive addition of hypochlorous acid (OCl-) as a disinfectant in drinking water can result in severe consequences. Moreover, abnormal levels of OCl- within the human body can lead to various diseases. Employing fluorescence analysis, the design and synthesis of specific fluorescent probes for simultaneous detection of OCl- in water environments and living organisms holds strategic significance in ensuring the safety of drinking water and mitigating potential risks caused by its abnormal concentrations. This article utilizes naphthalimide as a precursor to develop a novel probe enabling highly sensitive detection of OCl- in water environments and at the organelle level within living organisms. This endeavor serves to provide assurance for drinking water safety and offers health alerts.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Di Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Zeyu Zhu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Xu C, Zhang Y, Ren M, Liu K, Wu Q, Zhang C, Kong F. Near-infrared dual-response fluorescent probe for detection of N 2H 4 and intracellular viscosity changes in biological samples and various water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124180. [PMID: 38522378 DOI: 10.1016/j.saa.2024.124180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
N2H4 is a common raw material used in the production of pesticides and has good water solubility, so it may contaminate water sources and eventually enter living organisms, causing serious health problems. Viscosity is an important indicator of the cellular microenvironment and an early warning signal for many diseases. The high reactivity of hydrazine depletes glutathione (GSH) in hepatocytes, causing oxidative stress ultimately leading to significant changes in intracellular viscosity and even death. Therefore, it is particularly important to develop an effective method to detect N2H4 and viscosity in environmental and biological systems. On this basis, we developed two fluorescent probes, BDD and BHD, based on xanthene and 2-benzothiazole acetonitrile. The experimental results show that BHD and BDD have good imaging capabilities for N2H4 in cells, zebrafish and Arabidopsis. BHD and BDD also showed sensitive detection and fluorescence enhancement in the near-infrared region when the intracellular viscosity was changed. Notably, the probe BDD has also successfully imaged N2H4 in a variety of real water samples.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yukun Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chunling Zhang
- Department of Rheumatology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
26
|
Sun J, Li H, Ouyang M, Cheng J, Xu D, Tan X, Lin Q. User-Friendly Multifunctional Red-Emissive Carbon Dots for Rapid Cell Nucleus Staining via Targeting Nuclear Proteins. Anal Chem 2024; 96:8432-8440. [PMID: 38709576 DOI: 10.1021/acs.analchem.3c05922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.
Collapse
Affiliation(s)
- Jingbo Sun
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongchen Li
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Min Ouyang
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Cheng
- Technology Center of Changsha Customs, Hunan Academy of Inspection and Quarantine, Changsha 410004, China
| | - Dong Xu
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Tan
- The Key Lab of Cultivation and Protection for Non-Wood Forest Trees of Education Ministry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
27
|
Wang Y, Wang R, Zou J, Xie W, Chang J, Dong B, Yue T. Development of a turn-on fluorescent probe for the imaging of intracellular hypochlorous acid (HClO) during ferroptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124123. [PMID: 38452460 DOI: 10.1016/j.saa.2024.124123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Ferroptosis is a burgeoning iron-dependent cell death form, and has close relation with hypochlorous acid (HClO). Exploring the fluctuation of the HClO level in living cells during ferroptosis could contribute to the profound study of the biological functions of HClO during ferroptosis. Here, we present a turn-on probe (RH-C) for the imaging of intracellular HClO during ferroptosis. The probe RH-C utilized the N,N-dimethylthiocarbamate group as a selective recognition site for HClO, and displayed desirable sensitivity and selectivity to HClO. The probe RH-C could detect the exogenous and endogenous HClO in living cells. Furthermore, RH-C was competent in monitoring the changes of endogenous HClO level during the process of ferroptosis. Biological imaging results suggested that erastin-induced ferroptosis can result in the excessive production of the endogenous HClO, and ferrostatin-1 (Fer-1) and vitamin E (VE) could block the massive accumulation of HClO in living cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Ruifei Wang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong 250014, China
| | - Jidong Zou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.
| | - Wanru Xie
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jia Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong 250014, China.
| |
Collapse
|
28
|
Xiong X, Qiu J, Fu S, Gu B, Zhong C, Zhao L, Gao Y. Accurate detection depression cell model with a dual-locked fluorescence probe in response to noradrenaline and HClO. Bioorg Chem 2024; 146:107296. [PMID: 38527389 DOI: 10.1016/j.bioorg.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Due to the serious harm of depression to human health and quality of life, an accurate diagnosis of depression is warranted. For the complex etiology of depression, a single biomarker diagnostic method often leads to misdiagnosis. As noradrenaline and HClO are closely related to depression, a "dual-locked" fluorescence probe R-NE-HClO for diagnosing of depression through the simultaneous detection of noradrenaline and HClO was designed and synthesized. Fluorescence of R-NE-HClO can only be restored in the presence of both noradrenaline and HClO. The probe demonstrates excellent selectivity for noradrenaline and HClO and low cytotoxicity in cell imaging experiments. It is to be observed that we successfully applied the probe to accurately detect depressed cells which provides a possible tool for diagnosing depression.
Collapse
Affiliation(s)
- Xinyi Xiong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianwen Qiu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Shaofei Fu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Biaofeng Gu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Chunli Zhong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Lan Zhao
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yong Gao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
29
|
Chen Y, Ji X, Tao L, Ma C, Nie J, Lu C, Yang G, Wang E, Liu H, Wang F, Ren J. Rational design of a ratiometric fluorescent nanoprobe for real-time imaging of hydroxyl radical and its therapeutic evaluation of diabetes. Biosens Bioelectron 2024; 246:115868. [PMID: 38029709 DOI: 10.1016/j.bios.2023.115868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Hydroxyl radical (•OH), one of the most reactive and deleterious substances in organisms, belongs to a class of reactive oxygen species (ROS), and it has been verified to play an essential role in numerous pathophysiological scenarios. However, due to its extremely high reactivity and short lifetime, the development of a reliable and robust method for tracking endogenous •OH remains an ongoing challenge. In this work, we presented the first ratiometric fluorescent nanoprobe NanoDCQ-3 for •OH sensing based on oxidative C-H abstraction of dihydroquinoline to quinoline. The study mainly focused on how to modulate the electronic effects to achieve an ideal ratiometric detection of •OH, as well as solving the inherent problem of hydrophilicity of the probe, so that it was more conducive to monitoring •OH in living organisms. The screened-out probe NanoDCQ-3 exhibited an exceptional ratiometric sensing capability, better biocompatibility, good cellular uptake, and appropriate in vivo retention, which has been reliably used for detecting exogenous •OH concentration fluctuation in living cells and zebrafish models. More importantly, NanoDCQ-3 facilitated visualization of •OH and evaluation of drug treatment efficacy in diabetic mice. These findings afforded a promising strategy for designing ratiometric fluorescent probes for •OH. NanoDCQ-3 emerged as a valuable tool for the detection of •OH in vivo and held potential for drug screening for inflammation-related diseases.
Collapse
Affiliation(s)
- Yiyu Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Xueying Ji
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Linlin Tao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Junqi Nie
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Cuifen Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Guichun Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Erfei Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Heng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
30
|
Lin P, Xie C, Liu T, Yuan X, Luo K, Yang Q, Tan L, Lin Q, Zhou L. Rational construction of reliable fluorescent probes for rapid detection and imaging evaluation of hazardous thiophenol in real-food and biosystems. Food Chem 2024; 432:137264. [PMID: 37643519 DOI: 10.1016/j.foodchem.2023.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Thiophenol (PhSH), a highly reactive aromatic thiol, plays an essential role as a common industrial raw material in food, pesticides, pharmaceuticals, and cosmetics. In this work, we designed and constructed two fluorescent probes CM-PhSH and CM-Ratio-PhSH by a rational strategy. Specifically, coumarin fluorophores with excellent optical properties were modified, and olefinic unsaturated bonds served as reaction sites for the detection of PhSH. Based on this, the introduction of the nitro group at specific positions of the CM-PhSH changed the fluorescence emission of the CM-Ratio-PhSH, eventually obtaining a novel ratiometric fluorescent probe CM-Ratio-PhSH for PhSH detection. Surprisingly, these two probes exhibited advantages such as high specificity and low limit of detection (LOD) for CM-PhSH 32.3 nM and CM-Ratio-PhSH 40.2 nM, respectively. Furthermore, subsequent experiments demonstrated CM-PhSH and CM-Ratio-PhSH could be successfully used for highly selective and rapid detection of PhSH in aqueous solutions, live cells, and complex food samples.
Collapse
Affiliation(s)
- Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
31
|
Mardani H, Mehrbakhsh S, Sheikhzadegan S, Babazadeh-Mamaqani M, Roghani-Mamaqani H. Colloidal Polymer Nanoparticles as Smart Inks for Authentication and Indication of Latent Fingerprints and Scratch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1605-1615. [PMID: 38150585 DOI: 10.1021/acsami.3c16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
An environmentally friendly smart ink was developed by incorporating fluorescein into functionalized poly(methyl methacrylate) (PMMA) nanoparticles synthesized using an emulsifier-free emulsion copolymerization approach. The functional comonomers of 2-(dimethylamino)ethyl methacrylate (DMAEMA), acrylamide, hydroxyethyl methacrylate, and glycidyl methacrylate in 10 wt % with respect to methyl methacrylate were used to obtain the functionalized colloidal PMMA nanoparticles. Functional groups of the latex nanoparticles were characterized by Fourier-transform infrared spectroscopy. Field emission scanning electron microscopy results showed that all of the latex nanoparticles have nearly spherical morphologies with variations in size and surface smoothness due to the presence of different comonomers. Ultraviolet-visible and fluorescence spectra indicated that the fluorescein-doped latex nanoparticles containing the DMAEMA comonomer had the highest absorbance and fluorescence intensity. In the alkaline media, fluorescein turns to a dianion, showing a red shift and increased absorbance in the UV-vis spectroscopy. In addition, the electron inductive characteristics of the tertiary amine groups result in enhancing the conjugation of fluorescein molecules and increasing the fluorescence intensities. Therefore, the colloidal nanoparticles with amine functional groups were used in the formulation of a smart ink with applications in securing documents and fingerprints, encrypting banknotes and money, detecting latent fingerprints, crafting anticounterfeiting paper, and eventually providing optical detection and indication of surface scratches.
Collapse
Affiliation(s)
- Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Sana Mehrbakhsh
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Sina Sheikhzadegan
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| |
Collapse
|
32
|
Zhang K, Zhu MJ, Zhou YW, Liu X, Chen F, Zhou YY, Li WF, Liu S, Jiang Y, Liu SQ. Coordination effect enhanced visualization of latent fingerprint with Eu (TTA) 3phen-SiO 2 microspheres. Anal Chim Acta 2023; 1279:341774. [PMID: 37827672 DOI: 10.1016/j.aca.2023.341774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Latent fingerprint (LFP) powders are crucial in the detection of LFPs in forensic science. However, it is often plagued by poor image resolution and low contrast. Herein, enhanced LFP fluorescence (FL) visualizations are achieved by doping Eu(III) coordination compound Eu(TTA)3phen directly into SiO2 microspheres instead of Eu(III) ions. Using the synthesized Eu(TTA)3phen-SiO2 microspheres, the fine characteristic structure of LFP can be seen and recognized under 365 nm irradiation, up to Level 3. However, the Eu3+-SiO2 microspheres were difficult to recognize the Level 2,3 fingerprint structure. The difference between the ridge and furrow gray values of Eu(TTA)3phen-SiO2 microspheres is 2.1 times that of Eu3+-SiO2 microspheres. The coordination effect increased the asymmetry around Eu(III) ions, resulting in the ultrasensitive 5D0→7F2 transition, thus increasing the FL intensity, and the uniform doping of the Eu(III) coordination compound into SiO2 also reduced the surface FL quenching due to shielding from oxygen. Under this dual effect, the LFP performance of Eu(TTA)3phen-SiO2 microspheres has been significantly improved. We believe that this novel and easy LFP visualization method is a promising routine in specific target detection including criminal investigation, customhouse check-in, and drug control.
Collapse
Affiliation(s)
- Kang Zhang
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Meng-Jiao Zhu
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yi-Wen Zhou
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Liu
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feng Chen
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yu-Yang Zhou
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wan-Fei Li
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Sheng Liu
- Gusu Branch of Suzhou Public Security Bureau, Suzhou, 215000, China
| | - Yun Jiang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215021, China
| | - Shou-Qing Liu
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
33
|
Chen Y, Shi W, Xu Y, Wang P. Real-time visualization of sulfatase in living cells and in vivo with a ratiometric AIE fluorescent probe. Chem Commun (Camb) 2023; 59:9754-9757. [PMID: 37482817 DOI: 10.1039/d3cc02783j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Different from the traditional enzymatic hydrolysis strategy, we rationally developed a ratiometric fluorescence probe DQMT-OH with AIE characteristics for sulfatase detection utilizing the "Lock-Key" strategy. It can be successfully used to monitor sulfatase in living cells and in vivo through different fluorescent channels with good cell permeability and low cytotoxicity.
Collapse
Affiliation(s)
- Yanli Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenhui Shi
- Jiangsu Health Development Research Center, State Contraceptives Adverse Reaction Surveillance Center, Nanjing, 210036, China
| | - Yanqi Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
34
|
Li X, Chu D, Wang J, Qi Y, Yuan W, Li J, Zhou Z. A dicyanoisophorone-based ICT fluorescent probe for the detection of Hg 2+ in water/food sample analysis and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122628. [PMID: 36965244 DOI: 10.1016/j.saa.2023.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Mercury ions are notoriously difficult to biodegradable, and its abnormal bioaccumulation in the human body through the food chain can cause various diseases. Therefore, the quantitative and real-time detection of Hg2+ is very extremely important. Herein, we have brilliant designed and synthesized (E)-O-(4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)phenyl) O-phenyl carbonothioate (ICM-Hg) as a selective fluorescent probe for Hg2+ detection in real samples and intracellular staining. ICM-Hg displayed high specificity toward Hg2+ by activating the intramolecular charge transfer (ICT) process, resulting in distinguished color change from colorless to bright yellow along with noticeable switch on yellow fluorescence emission. The fluorescent intensity of ICM-Hg at 585 nm shows a well linear relationship in the range of Hg2+ concentration (0-45 μM), and the detection of limit for Hg2+ is calculated to be 231 nM. Promisingly, ICM-Hg can efficiently detect Hg2+ in real samples including tap water, tea, shrimp, and crab with quantitative recovery as well as the intracellular fluorescence imaging.
Collapse
Affiliation(s)
- Xiangqian Li
- School of Chemical & Environmental Engineering, Key Lab of Ecological Restoration in Hilly Areas, Pingdingshan University, Pingdingshan 467000, PR China
| | - Dandan Chu
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Yueheng Qi
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China
| | - Weiwei Yuan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China.
| | - Zhan Zhou
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
35
|
Di L, Xing Y, Yang Z, Li C, Yu Z, Wang X, Xia Z. High-definition and robust visualization of latent fingerprints utilizing ultrabright aggregation-induced emission of iridium developer. Talanta 2023; 264:124775. [PMID: 37311327 DOI: 10.1016/j.talanta.2023.124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Creation of AIEgens with high brightness is compactly related to acquiring optimum AIE capabilities and still faces challenges. This study proposes an ingenious structurally regulative approach for preparing ultrabright AIEgens, taking iridium complexes as the model. The incremental rotational activity of substituents obtained by fine adjustment of the stereoscopic configuration efficaciously activates the AIE of iridium complexes and synchronously imparts high-brightness luminescence. Subsequently, benefitting from the ultrabright AIE, high-resolution visualization of latent fingerprints (LFPs) is achieved on diverse substrates by transient immersion in a solution of the AIE-active iridium complex (Ir3) for 60 s. The LFPs stained by Ir3 are integral and distinct enough to possess level 1-3 detail features, which allow precisely realizing personal identification. The LFP photograph emerges inconspicuous attenuation of contrast when aged under ambient light for 10 days and then being continuously irradiated with high-power ultraviolet light for 1 h, reflecting extraordinary aging resistance. Notably, the ultrabright AIE of Ir3 with room-temperature phosphorescence feature successfully achieves enhanced visualization of local fingerprint details with ultrahigh contrast. This LFP visualization protocol based on the ultrabright AIEgens is practical and provides a reliable solution for forensic investigations in actual scenarios.
Collapse
Affiliation(s)
- Ling Di
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Yang Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Zhanxu Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Chun Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Zongbao Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Xiaoning Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
36
|
Song B, Yan H, Jiang J, Yu J, Huang S, Yuan J. An activatable nanoprobe based on nanocomposites of visible-light-excitable europium(III) complex-anchored MnO 2 nanosheets for bimodal time-gated luminescence and magnetic resonance imaging of tumor cells. Analyst 2023; 148:2493-2500. [PMID: 37183980 DOI: 10.1039/d3an00405h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bimodal imaging probes that combine magnetic resonance imaging (MRI) and photoluminescence imaging are quite appealing since they can supply both anatomical and molecular information to effectively ameliorate the accuracy of detection. In this study, an activatable nanoprobe, [Eu(BTD)3(DPBT)]@MnO2, for bimodal time-gated luminescence imaging (TGLI) and MRI has been constructed by anchoring visible-light-excitable Eu3+ complexes on lamellar MnO2 nanosheets. Due to the luminescence quenching effect and non-magnetic resonance (MR) activity of MnO2 nanosheets, the developed nanoprobe presents quite weak TGL and MR signals. After exposure to H2O2 or GSH, accompanied by the transformation from MnO2 to Mn2+, the nanoprobe exhibits rapid, sensitive, and selective "turn-on" responses towards GSH and H2O2 in TGL and MR detection modes. Furthermore, the nanoprobe displays high stability, low cytotoxicity, good biocompatibility and water dispersion. Given the high contents of GSH and H2O2 in cancer cells, the nanoprobe was used for the identification of cancer cells by TGLI of intracellular GSH and H2O2, as well as for the tracing of tumor cells in tumor-bearing mice by tumor-targeting in vivo MRI and TGLI of tumor tissues. The research outcomes proved the potential of [Eu(BTD)3(DPBT)]@MnO2 as a useful nanoprobe for the tracing and accurate detection of cancer cells in vitro and in vivo via bimodal TGLI and MRI.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Huinan Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jiao Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jin Yu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Shengjun Huang
- Division of Fossil Energy Conversion, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
37
|
Chen Y, Li A, Li X, Tu L, Xie Y, Xu S, Li Z. Multi-Stimuli-Responsive Amphiphilic Pyridinium Salt and Its Application in the Visualization of Level 3 Details in Latent Fingerprints. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211917. [PMID: 36870363 DOI: 10.1002/adma.202211917] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Indexed: 05/19/2023]
Abstract
Organic luminescent materials that can simultaneously achieve multimode mechanochromism and its water-vapor-induced recovery are desirable for practical applications but rarely reported. Herein, an amphiphilic compound, 4-(9H-carbazol-9-yl)-1-(2-hydroxyethyl)pyridin-1-ium bromide (CPAB), is designed by integrating a lipophilic aromatic unit and hydrophilic end in the molecular architecture. Self-recovered mechanochromism from brown to cyan is observed upon mechanical grinding in air. Comprehensive research by X-ray diffraction, infrared spectroscopy, and single-crystal analysis reveals that the photoluminescence switch originates from the variation in intermolecular hydrogen bonds and molecular packing mode. The amphiphilic nature of CPAB allows water molecules to enter the crystalline lattice, forming two polymorphs of the crystalline phase, namely CPAB-D and CPAB-W. The hydrosoluble CPAB exhibits excellent capability in probing the level 3 details of fingerprints because its lipophilic part can target the fatty acid residues of fingerprints, leading to strong aggregation-induced fluorescence. The research may inspire the design of latent fingerprint developers and application in forensics/anti-counterfeiting.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Aisen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
38
|
Xu L, Huang Y, Peng H, Xu W, Yi X, He G. Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids. ACS OMEGA 2023; 8:13213-13221. [PMID: 37065079 PMCID: PMC10099141 DOI: 10.1021/acsomega.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Liquid safety is considered a serious public health problem; a convenient and effective viscosity determination method has been regarded as one of the powerful means to detect liquid safety. Herein, one kind of triphenylamine-modified cinnamaldehyde-based fluorescent sensor (3-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylaldehyde (DPABA)) has been developed for sensing viscosity fluctuations in a liquid system, where a cinnamaldehyde derivative was extracted from one kind of natural plant cinnamon and acted as an acceptor, which has been combined with a triphenylamine derivate via the Suzuki coupling reaction within one facile step. Twisted intramolecular charge transfer (TICT) was observed, and the rotation could be restricted in the high-viscosity microenvironment; thus, the fluorescent signal was released at 548 nm. Featured with a larger Stokes shift (223.8 nm in water, 145.0 nm in glycerol), high adaptability, sensitivity, selectivity, and good photostability, the capability of high signal-to-noise ratio sensing was achieved. Importantly, this sensor DPABA has achieved noninvasively identifying thickening efficiency investigation, and viscosity fluctuations during the liquid deterioration program have been screened as well. We believed that this unique strategy can accelerate intelligent molecular platforms toward liquid quality and safety inspection.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
- State
Key Laboratory of Luminescent Materials & Devices, College of
Materials Science & Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Yanrong Huang
- School
of Modern Agriculture and Forestry Engineering, Ji’an Vocational and Technical College, Ji’an 343009, Jiangxi, China
| | - Hui Peng
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Wenyan Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Xiuguang Yi
- School
of Chemistry and Chemical Engineering, Jinggangshan
University, Ji’an 343009, Jiangxi, China
| | - Genhe He
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| |
Collapse
|
39
|
Liu M, Weng J, Huang S, Yin W, Zhang H, Jiang Y, Yang L, Sun H. Water-soluble fluorescent probes for differentiating cancer cells and normal cells by tracking lysosomal viscosity. Chem Commun (Camb) 2023; 59:3570-3573. [PMID: 36880332 DOI: 10.1039/d3cc00359k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Lysosomal viscosity is a significant parameter of lysosomes and closely related to various diseases. Herein, two fluorescent probes, Lyso-vis-A and Lyso-vis-B, were developed, which demonstrate diverse advantages, including great water solubility, lysosome targeting ability and viscosity sensitivity. In particular, Lyso-vis-A exclusively showed fluorescence response toward viscosity but was not influenced by pH changes, rendering it a selective lysosomal viscosity probe. Furthermore, Lyso-vis-A was successfully applied to monitor lysosomal viscosity variations in living cells and differentiate cancer cells and normal cells.
Collapse
Affiliation(s)
- Minghui Liu
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Jintao Weng
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Shumei Huang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Wenjin Yin
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yin Jiang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
40
|
Chang H, Hu X, Tang X, Tian S, Li Y, Lv X, Shang L. A Mitochondria-Targeted Fluorescent Probe for Monitoring NADPH Overproduction during Influenza Virus Infection. ACS Sens 2023; 8:829-838. [PMID: 36689687 DOI: 10.1021/acssensors.2c02458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor in the progress of antioxidant synthesis and biosynthesis, and an abnormal NADPH level has been observed in many viral infection processes. However, efficient tools to monitor NADPH in living cells after viral infection have not been reported. In this work, we present a fluorescent probe, NAFP4, that could detect NADPH ex vivo with a low detection limit of 3.66 nM and image mitochondrial NADPH level changes in living cells. The probe exhibits excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. Using NAFP4, we reveal that the NADPH is overproduced in the host cells infected by influenza virus, which was caused by an elevated level of G6PDH during the virus infection. Moreover, there was positive association between the G6PDH level and virus replication. With the proposed probe NAFP4, our study highlights that the virus infection would influence the host metabolism in NADPH production and also suggests that G6PDH is expected to be a promising target for antiviral therapy.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiaomei Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Shiwei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yidan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xing Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| |
Collapse
|
41
|
Liu Y, Chen X, Liu X, Guan W, Lu C. Aggregation-induced emission-active micelles: synthesis, characterization, and applications. Chem Soc Rev 2023; 52:1456-1490. [PMID: 36734474 DOI: 10.1039/d2cs01021f] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aggregation-induced emission (AIE)-active micelles are a type of fluorescent functional materials that exhibit enhanced emissions in the aggregated surfactant state. They have received significant interest due to their excellent fluorescence efficiency in the aggregated state, remarkable processability, and solubility. AIE-active micelles can be designed through the self-assembly of amphipathic AIE luminogens (AIEgens) and the encapsulation of non-emissive amphipathic molecules in AIEgens. Currently, a wide range of AIE-active micelles have been constructed, with a significant increase in research interest in this area. A series of advanced techniques has been used to characterize AIE-active micelles, such as cryogenic-electron microscopy (Cryo-EM) and confocal laser scanning microscopy (CLSM). This review provides an overview of the synthesis, characterization, and applications of AIE-active micelles, especially their applications in cell and in vivo imaging, biological and organic compound sensors, anticancer drugs, gene delivery, chemotherapy, photodynamic therapy, and photocatalytic reactions, with a focus on the most recent developments. Based on the synergistic effect of micelles and AIE, it is anticipated that this review will guide the development of innovative and fascinating AIE-active micelle materials with exciting architectures and functions in the future.
Collapse
Affiliation(s)
- Yuhao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoting Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
Magesh K, Vijay N, Wu SP, Velmathi S. Dual-Responsive Benzo-Hemicyanine-Based Fluorescent Probe for Detection of Cyanide and Hydrogen Sulfide: Real-Time Application in Identification of Food Spoilage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1190-1200. [PMID: 36602329 DOI: 10.1021/acs.jafc.2c05567] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colorimetric and fluorescent probes have received a lot of attention for detecting lethal analytes in realistic systems and in living things. Herein, a dual-approachable Benzo-hemicyaninebased red-emitting fluorescent probe PBiSMe, for distinct and instantaneous detection of CN- and HS- was synthesized. The PBiSMe emitted red fluorescence (570 nm) can switch to turn-off (570 nm) and blue fluorescence (465 nm) in response to CN- and HS-, respectively. Other nucleophilic reagents, such as reactive sulfur species (RSS) and anions, have no contact or interference with the probe; instead, a unique approach is undertaken to exclusively interact with CN- and HS- over a wide pH range. The measured detection limits for CN- (0.43 μM) and HS- (0.22 μM) ions are lower than the World Health Organization's (WHO) recommended levels in drinking water. We confirmed 1:1 stoichiometry ratio using Job's plot and observed good quantum yield for both analytes. The probe-coated paper strips were used to detect the H2S gas produced by food spoilage (such as eggs, raw meat, and fish) via an eye-catching visual response. Moreover, fluorescence bioimaging studies of living cells was done to confirm the probe's potential by monitoring the presence of CN- and HS- in a living system.
Collapse
Affiliation(s)
- Kuppan Magesh
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Shu Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, ROC
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
43
|
Li M, Gao M, Fu Q, Chen X, Xu K, Gong S, Liang Y, Wang Z, Wang S. Novel 2-Benzo[ d]thiazolyl-4-quinolinylphenol Skeleton-Based Turn-on Fluorescent Probe for H 2S Detection and its Multiple Applications in Water Environment, Foodstuffs, and Living Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:780-788. [PMID: 36563285 DOI: 10.1021/acs.jafc.2c08385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) has comprehensive contributions to maintaining the normal operation and stability of organisms, and it also occurs in the wastewater environment and is related to the deterioration of foodstuffs. Therefore, developing high-sensitive detection techniques for tracing H2S is promising and meaningful. Inspired by this, a novel nopinone-based fluorescent probe NPS for the recognition of H2S was designed and synthesized with excellent sensitivity, low limit of detection (79 nM), good selectivity, and wide pH range (5-9). NPS could emit strong yellow fluorescence and its emission intensity showed a remarkable augmentation at 520 nm upon the supplement of H2S. Furthermore, the recognition mechanism of NPS for H2S was verified by the HRMS analysis, 1H NMR spectra titration, and DFT computation. What is more, NPS also had broad applications in the monitoring of real water samples, red wine, beer, and eggs samples, which showed its development prospect and value in environmental pollution, foodstuffs quality analysis fields. NPS also was applied to monitor trace exogenous H2S and bioimaging in living cells and zebrafish.
Collapse
Affiliation(s)
- Mingxin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengchen Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yueyin Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
44
|
Wiwasuku T, Chuaephon A, Puangmali T, Boonmak J, Ittisanronnachai S, Promarak V, Youngme S. Multifunctional fluorescent Eu-MOF probe for tetracycline antibiotics and dihydrogen phosphate sensing and visualizing latent fingerprints †‡. RSC Adv 2023; 13:10384-10396. [PMID: 37020885 PMCID: PMC10068594 DOI: 10.1039/d3ra00100h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
The contamination of tetracycline antibiotics and dihydrogen phosphate (H2PO4−) in food and the environment is one of the major concerns for human health. Herein, a water-stable carboxyl-functionalized europium metal–organic framework (Eu-MOF) was prepared and demonstrated, for the first time, as a dual-responsive fluorescent sensor of tetracycline antibiotics (oxytetracycline (OTC), tetracycline (TC), and doxycycline (DOX)) and H2PO4−via fluorescent turn-on and turn-off, respectively. Eu-MOF presents a sensitive and selective detection of OTC with a rapid response time (1 min) and good anti-interference ability. The limits of detection (LODs) of 78 nm, 225 nm, and 201 nM were achieved for OTC, TC, and DOX, respectively. Coordination and hydrogen bonding led to energy and electron transfer from the TC to the MOF, contributing to the fluorescent enhancement mechanism. Moreover, Eu-MOF can effectively detect H2PO4−via fluorescence turn-off with a LOD of 0.70 μM. The interactions between H2PO4− and MOF interrupt the energy transfer from ligand to MOF, leading to fluorescence quenching. In addition, Eu-MOF was successfully applied to determine OTC and H2PO4− in real samples, obtaining satisfactory recoveries and RSDs. More fascinating, Eu-MOF could be utilized to develop latent fingerprints on various surfaces, providing well-defined fluorescent fingerprint details in which the sweat pores can be seen with the naked eye. Water-stable Eu-MOF as a fluorescent probe for detecting tetracycline antibiotics and dihydrogen phosphate in real samples and visualization of latent fingerprints.![]()
Collapse
Affiliation(s)
- Theanchai Wiwasuku
- Materials Chemistry Research Center and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
- Functional Materials and Nanotechnology Centre of Excellence, Walailak UniversityNakhon Si Thammarat80160Thailand
| | - Adulvit Chuaephon
- Department of Physics, Faculty of Science, Khon Kaen UniversityKhon Kaen 40002Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen UniversityKhon Kaen 40002Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and TechnologyRayong21210Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and TechnologyRayong21210Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| |
Collapse
|
45
|
Bécue A, Champod C. Interpol review of fingermarks and other body impressions 2019 - 2022). Forensic Sci Int Synerg 2022; 6:100304. [PMID: 36636235 PMCID: PMC9830181 DOI: 10.1016/j.fsisyn.2022.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andy Bécue
- University of Lausanne, School of Criminal Justice, Faculty of Law Criminal Justice and Public Administration, Switzerland
| | - Christophe Champod
- University of Lausanne, School of Criminal Justice, Faculty of Law Criminal Justice and Public Administration, Switzerland
| |
Collapse
|
46
|
Gong S, Qin A, Zhang Y, Li M, Liang Y, Xu X, Wang Z, Wang S. A novel flavonol-based fluorescent probe for rapid detection of Cysteine in food samples and its applications in bioimaging systems. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Li Y, Sun X, Zhou L, Tian L, Zhong K, Zhang J, Yan X, Tang L. Novel Colorimetric and NIR Fluorescent Probe for Bisulfite/Sulfite Detection in Food and Water Samples and Living Cells Based on the PET Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10899-10906. [PMID: 35998392 DOI: 10.1021/acs.jafc.2c04571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite their status of being widely used as food additives, bisulfite (HSO3-)/sulfite (SO32-) can pose serious health risks when they are excessively added. Therefore, it is vital to develop a new method for detecting HSO3-/SO32- in foodstuff. In this paper, a benzopyran-benzothiazole derivative (probe DCA-Btl) with near-infrared emission was designed and synthesized by constructing a "push-pull" electronic system. DCA-Btl can selectively recognize HSO3-/SO32- via a colorimetric and fluorescence dual channel in DMF/PBS (1:1, v/v, pH = 8.4), and the emission wavelength of DCA-Btl can reach 710 nm. The fluorescence quenching of DCA-Btl after recognition of HSO3- is attributed to the photoinduced electron transfer (PET) process of the adduct DCA-Btl-HSO3- as evaluated by the DFT/TD-DFT method. In addition, DCA-Btl has many advantages, including a large Stokes shift (95 nm), good anti-interference ability, and little cytotoxicity. What's more, DCA-Btl has been successfully applied for the detection of HSO3-/SO32- in actual water samples and food samples such as sugar, red wine, and biscuits with satisfying results, as well as for fluorescent imaging of HSO3- in living MCF-7 cells.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xiaofei Sun
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Lulu Zhou
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Li Tian
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| |
Collapse
|
48
|
AIEgens functionalized hollow mesoporous silica nanospheres for selective detection of the antimicrobial furazolidone. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Shu L, Shang Z, Li J, Gao Y, Bi W. A dual-response triphenylamine-based fluorescent probe for selective sensing of copper(II) and nitric oxide in live cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Choi NE, Kim EJ, Lee J. A fluorescent molecular rotor for the in situ imaging of latent fingerprints. RSC Adv 2022; 12:33180-33186. [DOI: 10.1039/d2ra06728e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
We developed a fluorescent molecular rotor that responds to hydrophobic and viscous environments and visualizes latent fingerprints with level 3 details.
Collapse
Affiliation(s)
- Na-Eun Choi
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Eun-Ji Kim
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Jiyoun Lee
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| |
Collapse
|