1
|
Seker S, Surucu O, Economou A, Wang J. "On-plant" wearable electrochemical sensor for atmospheric lead monitoring. Talanta 2025; 287:127654. [PMID: 39889680 DOI: 10.1016/j.talanta.2025.127654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Considering the extremely high toxicity of lead (Pb), early detection of atmospheric Pb levels is paramount for the implementation of preventive measures, to contain sources of emission, to minimize both human and plant exposure and to prevent accumulation in the biosphere. This work demonstrates a wearable "on-plant" sensor for electrochemical Pb detection in atmospheric aerosol samples. The sensor is screen-printed onto a flexible self-adhesive vinyl-based matte substrate which enables its attachment on plant leaves. It features a bismuth/Nafion-coated carbon working electrode transducer covered with a polyvinyl alcohol (PVA) membrane which serves as a passive in-situ gas collection layer and as an electrolyte-containing matrix. The Pb collected at the interface between the sample in the gas phase and the acetate buffer solution (ABS) embedded within the PVA membrane is measured by square wave anodic stripping voltammetry (SWASV). Different steps of the fabrication process were optimized and the detection of on plant leaves was demonstrated. Simulation experiments were conducted with a Pb-containing aerosol sprayed on the leaves to evaluate the effect of various operational parameters such as long-term stability, spraying time, accumulation time, or sensor/leaf bending. The "on-plant" sensor allows remote near real-time monitoring of Pb levels as low as 50 μg L-1 in ambient air using a portable miniaturized potentiostat, and can be expanded to other target metals, forming the basis of an early warning system for atmospheric heavy metals exposure.
Collapse
Affiliation(s)
- Sumeyye Seker
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ozge Surucu
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA; Department of Chemistry, Ege University, Izmir, Türkiye
| | - Anastasios Economou
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA; Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Joseph Wang
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Son D, Lee S, Jeon S, Kim JJ, Chung S. Classifying Storage Temperature for Mandarin ( Citrus reticulata L.) Using Bioimpedance and Diameter Measurements with Machine Learning. SENSORS (BASEL, SWITZERLAND) 2025; 25:2627. [PMID: 40285315 PMCID: PMC12031307 DOI: 10.3390/s25082627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Mandarin (Citrus reticulata L.) is consumed worldwide. Improper storage temperatures cause flavor loss and shorten shelf lives, reducing marketability. Mandarins' quality is difficult to assess visually, as they show no apparent changes during storage. Therefore, a simple, non-destructive method is needed to assess their freshness as affected by temperature. This work utilized non-invasive bioimpedance spectroscopy (BIS) on mandarins stored at different temperatures. Eight machine learning (ML) models were trained with bioimpedance data to classify storage temperature. Also, we confirmed whether integrating diameter and time-series changes into the bioimpedance could improve the ML models' accuracies by minimizing sample variations. Additionally, we evaluated the effectiveness of equivalent circuit (EC) parameters derived from bioimpedance data for ML training. Although slightly less accurate than using raw bioimpedance data, EC parameters can efficiently reduce data dimensionality. Among all models, the SVM model trained with changes in bioimpedance integrated with diameter data achieved the highest accuracy of 0.92. It was a significant improvement compared to the accuracy of 0.76 achieved when using only the raw bioimpedance data. Thus, this study suggests a novel method of integrating diameter and bioimpedance changes to assess the storage temperature of mandarins. This approach can also be applied to other fruits when utilizing BIS.
Collapse
Affiliation(s)
- Daesik Son
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea; (D.S.); (S.L.); (S.J.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Siun Lee
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea; (D.S.); (S.L.); (S.J.)
| | - Sehyeon Jeon
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea; (D.S.); (S.L.); (S.J.)
| | - Jae Joon Kim
- Flexible Electronics Research Section, Hyper-Reality Metaverse Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea;
| | - Soo Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea; (D.S.); (S.L.); (S.J.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Global Smart Farm, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
He T, Wang J, Hu D, Yang Y, Chae E, Lee C. Epidermal electronic-tattoo for plant immune response monitoring. Nat Commun 2025; 16:3244. [PMID: 40185801 PMCID: PMC11971386 DOI: 10.1038/s41467-025-58584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Real-time monitoring of plant immune responses is crucial for understanding plant immunity and mitigating economic losses from pathogen and pest attacks. However, current methods relying on molecular-level assessment are destructive and time-consuming. Here, we report an ultrathin, substrate-free, and highly conductive electronic tattoo (e-tattoo) designed for plants, enabling immune response monitoring through non-invasive electrical impedance spectroscopy (EIS). The e-tattoo's biocompatibility, high conductivity, and sub-100 nm thickness allow it to conform to leaf tissue morphology and provide robust impedance data. We demonstrate continuous EIS analysis of live transgenic Arabidopsis thaliana plants for over 24 h, capturing the onset of NLR-mediated acute immune responses within three hours post-induction, prior to visible symptoms. RNA-seq and tissue ion leakage tests validate that EIS data accurately represent the physiological and molecular changes associated with immune activation. This non-invasive tissue-assessment technology has the potential to enhance our comprehension of immune activation mechanisms in plants and paves the way for real-time monitoring for plant health management.
Collapse
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Artificial Intelligence Research Institute, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Jinge Wang
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Donghui Hu
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Eunyoung Chae
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
4
|
Kim D, Zarei M, Lee S, Lee H, Lee G, Lee SG. Wearable Standalone Sensing Systems for Smart Agriculture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414748. [PMID: 40125565 PMCID: PMC12021045 DOI: 10.1002/advs.202414748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/10/2025] [Indexed: 03/25/2025]
Abstract
Monitoring crops' biotic and abiotic responses through sensors is crucial for conserving resources and maintaining crop production. Existing sensors often have technical limitations, measuring only specific parameters with limited reliability and spatial or temporal resolution. Wearable sensing systems are emerging as viable alternatives for plant health monitoring. These systems employ flexible materials attached to the plant body to detect nonchemical (mechanical and optical) and chemical parameters, including transpiration, plant growth, and volatile organic compounds, alongside microclimate factors like surface temperature and humidity. In smart farming, data from real-time monitoring using these sensors, integrated with Internet of Things technologies, can enhance crop production efficiency by supporting growth environment optimization and pest and disease management. This study examines the core components of wearable standalone systems, such as sensors, circuits, and power sources, and reviews their specific sensing targets and operational principles. It further discusses wearable sensors for plant physiology and metabolite monitoring, affordability, and machine learning techniques for analyzing multimodal sensor data. By summarizing these aspects, this study aims to advance the understanding and development of wearable sensing systems for sustainable agriculture.
Collapse
Affiliation(s)
- Dongpil Kim
- Department of Horticultural ScienceChungnam National UniversityDaejeon34134Republic of Korea
| | - Mohammad Zarei
- Department of ChemistryUniversity of UlsanUlsan44610Republic of Korea
| | - Siyoung Lee
- Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Hansol Lee
- Department of Chemical and Biological EngineeringGachon UniversitySeongnam13120Republic of Korea
| | - Giwon Lee
- Department of Chemical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Seung Goo Lee
- Department of ChemistryUniversity of UlsanUlsan44610Republic of Korea
| |
Collapse
|
5
|
Pimentel GJC, Ayres LB, Costa JNY, Paschoalino WJ, Whitehead K, Kubota LT, de Oliveira Piazzetta MH, Gobbi AL, Shimizu FM, Garcia CD, Lima RS. Ultradense Electrochemical Chips with Arrays of Nanostructured Microelectrodes to Enable Sensitive Diffusion-Limited Bioassays. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13037-13049. [PMID: 38537173 DOI: 10.1021/acsami.4c01159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nanostructured microelectrodes (NMEs) are an attractive alternative to yield sensitive bioassays in unprocessed samples. However, although valuable for different applications, nanoporous NMEs usually cannot boost the sensitivity of diffusion-limited analyses because of the enlarged Debye length within the nanopores, which reduces their accessibility. To circumvent this limitation, nanopore-free gold NMEs were electrodeposited from 45 μm SU-8 apertures, featuring nanoridged microspikes on a recessed surface of gold thin film while carrying interconnected crown-like and spiky structures along the edge of a SU-8 passivation layer. These structures were grown onto ultradense, vertical array chips that offer a promising strategy for translating reproducible, high-resolution, and cost-effective sensors into real-world applications. The NMEs yielded reproducible analyses, while machine learning allowed us to predict the analytical responses from NME electrodeposition data. By taking advantage of the high surface area and accessible structure of the NMEs, these structures provided a sensitivity for [Fe(CN)6]3-/4- that was 5.5× higher than that of bare WEs while also delivering a moderate antibiofouling property in undiluted human plasma. As a proof of concept, these electrodes were applied toward the fast (22 min) and simple determination of Staphylococcus aureus by monitoring the oxidation of [Fe(CN)6]4-, which acted as a cellular respiration rate redox reporter. The sensors also showed a wide dynamic range, spanning 5 orders of magnitude, and a calculated limit of detection of 0.2 CFU mL-1.
Collapse
Affiliation(s)
- Gabriel J C Pimentel
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Lucas B Ayres
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Juliana N Y Costa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Waldemir J Paschoalino
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Kristi Whitehead
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Lauro T Kubota
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Maria H de Oliveira Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Flávio M Shimizu
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Carlos D Garcia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13565-590, Brazil
| |
Collapse
|
6
|
Du Y, Yang J, Song K, Jiang Q, Bappy MO, Zhu Y, Go DB, Zhang Y. Autonomous Aerosol and Plasma Co-Jet Printing of Metallic Devices at Ambient Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409751. [PMID: 39955746 PMCID: PMC11922012 DOI: 10.1002/smll.202409751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Additive manufacturing of metallic materials holds the potential to revolutionize the fabrication of functional devices unattainable via traditional methods. Despite recent advancements, printing metallic materials typically requires thermal processing at elevated temperatures to form dense structures with desired properties, which presents a major challenge for direct printing and integration with temperature-sensitive materials. Herein, a unique co-jet printing (CJP) method is reported integrating an aerosol jet and a non-thermal, atmospheric pressure plasma jet to enable concurrent aerosol deposition of metal nanoparticle inks and in situ sintering at ambient temperature. A machine learning algorithm is integrated with the CJP to perform real-time defect detection and autonomous correction, enhancing the yield of printed films with high electrical conductivity from 44% to 94%. Concurrent printing and sintering eliminate the need for post-printing processing, reducing the overall manufacturing time by multiple folds depending on product size. CJP enables direct printing of functional devices on a variety of temperature-sensitive materials including biological materials. Direct printing of hydration sensors on living plant leaves is demonstrated for long-duration monitoring of hydration level in the plant. The versatile CJP method opens tremendous opportunities to harmoniously integrate abiotic and biotic materials for emerging applications in wearable/implantable devices and biohybrid systems.
Collapse
Affiliation(s)
- Yipu Du
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jinyu Yang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kaidong Song
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Qiang Jiang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Md Omarsany Bappy
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yuchen Zhu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David B Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
7
|
Doretto DS, Corsato PCR, Silva CO, Pessoa JC, Vieira LCS, de Araújo WR, Shimizu FM, O Piazzetta MH, Gobbi AL, S Ribeiro IR, Lima RS. Ultradense Electrochemical Chip and Machine Learning for High-Throughput, Accurate Anticancer Drug Screening. ACS Sens 2025; 10:773-784. [PMID: 39612231 DOI: 10.1021/acssensors.4c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Despite the potentialities of electrochemical sensors, these devices still encounter challenges in devising high-throughput and accurate drug susceptibility testing. The lack of platforms for providing these analyses over the preclinical trials of drug candidates remains a significant barrier to developing medicines. In this way, ultradense electrochemical chips are combined with machine learning (ML) to enable high-throughput, user-friendly, and accurate determination of the viability of 2D tumor cells (breast and colorectal) aiming at drug susceptibility assays. The effect of doxorubicin (anticancer drug model) was assessed through cell detachment electrochemical assays by interrogating Ru(NH3)63+ with square wave voltammetry (SWV). This positive probe is presumed to imply sensitive monitoring of the on-sensor cellular death because of its electrostatic preconcentration in the so-called nanogap zone between the electrode surface and adherent cells. High-throughput assays were obtained by merging fast individual SWV measurements (9 s) with the ability of chips to yield analyses of Ru(NH3)63+ in series. The approach's applicability was demonstrated across two analysis formats, drop-casting and microfluidic assays. One should also mention that fitting a multivariate descriptor from selected input data via ML proved to be essential to providing accurate determinations (98 to 104%) of cell viability and half-maximal lethal concentration of the drug. The achieved results underscore the potential of the method in steering electrochemical sensors toward enabling high-throughput drug screening in practical applications.
Collapse
Affiliation(s)
- Daniel S Doretto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Paula C R Corsato
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Christian O Silva
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Department of Chemistry, Federal University of São Carlos, Sao Carlos, São Paulo 13565-905, Brazil
| | - James C Pessoa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luis C S Vieira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - William R de Araújo
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Flávio M Shimizu
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H O Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Iris R S Ribeiro
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, Sao Carlos, São Paulo 13565-590, Brazil
| |
Collapse
|
8
|
Zhang F, Li D, Li G, Xu S. New horizons in smart plant sensors: key technologies, applications, and prospects. FRONTIERS IN PLANT SCIENCE 2025; 15:1490801. [PMID: 39840367 PMCID: PMC11747371 DOI: 10.3389/fpls.2024.1490801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025]
Abstract
As the source of data acquisition, sensors provide basic data support for crop planting decision management and play a foundational role in developing smart planting. Accurate, stable, and deployable on-site sensors make intelligent monitoring of various planting scenarios possible. Recent breakthroughs in plant advanced sensors and the rapid development of intelligent manufacturing and artificial intelligence (AI) have driven sensors towards miniaturization, intelligence, and multi-modality. This review outlines the key technologies in developing new advanced sensors, such as micro-nano technology, flexible electronics technology, and micro-electromechanical system technology. The latest technological frontiers and development trends in sensor principles, fabrication processes, and performance parameters in soil and different segmented crop scenarios are systematically expounded. Finally, future opportunities, challenges, and prospects are discussed. We anticipate that introducing advanced technologies like nanotechnology and AI will rapidly and radically revolutionize the accuracy and intelligence of agricultural sensors, leading to new levels of innovation.
Collapse
Affiliation(s)
- Fucheng Zhang
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Denghua Li
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| | - Ganqiong Li
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| | - Shiwei Xu
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| |
Collapse
|
9
|
Wang L, Xiao M, Guo X, Yang Y, Zhang Z, Lee C. Sensing Technologies for Outdoor/Indoor Farming. BIOSENSORS 2024; 14:629. [PMID: 39727894 PMCID: PMC11674220 DOI: 10.3390/bios14120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
To face the increasing requirement for grains as the global population continues to grow, improving both crop yield and quality has become essential. Plant health directly impacts crop quality and yield, making the development of plant health-monitoring technologies essential. Variable sensing technologies for outdoor/indoor farming based on different working principles have emerged as important tools for monitoring plants and their microclimates. These technologies can detect factors such as plant water content, volatile organic compounds (VOCs), and hormones released by plants, as well as environmental conditions like humidity, temperature, wind speed, and light intensity. To achieve comprehensive plant health monitoring for multidimensional assessment, multimodal sensors have been developed. Non-invasive monitoring approaches are also gaining attention, leveraging biocompatible and flexible sensors for plant monitoring without interference with its natural growth. Furthermore, wireless data transmission is crucial for real-time monitoring and efficient farm management. Reliable power supplies for these systems are vital to ensure continuous operation. By combining wearable sensors with intelligent data analysis and remote monitoring, modern agriculture can achieve refined management, resource optimization, and sustainable production, offering innovative solutions to global food security and environmental challenges.
Collapse
Affiliation(s)
- Luwei Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore 117558, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Mengyao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Xinge Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore 117558, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore 117558, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School–Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
10
|
Touloupakis E, Calegari Moia I, Zampieri RM, Cocozza C, Frassinelli N, Marchi E, Foderi C, Di Lorenzo T, Rezaie N, Muzzini VG, Traversi ML, Giovannelli A. Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires. BIOSENSORS 2024; 14:373. [PMID: 39194602 DOI: 10.3390/bios14080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
The development of tools to quickly identify the fate of damaged trees after a stress event such as a wildfire is of great importance. In this context, an innovative approach to assess irreversible physiological damage in trees could help to support the planning of management decisions for disturbed sites to restore biodiversity, protect the environment and understand the adaptations of ecosystem functionality. The vitality of trees can be estimated by several physiological indicators, such as cambium activity and the amount of starch and soluble sugars, while the accumulation of ethanol in the cambial cells and phloem is considered an alarm sign of cell death. However, their determination requires time-consuming laboratory protocols, making the approach impractical in the field. Biosensors hold considerable promise for substantially advancing this field. The general objective of this review is to define a system for quantifying the plant vitality in forest areas exposed to fire. This review describes recent electrochemical biosensors that can detect plant molecules, focusing on biosensors for glucose, fructose, and ethanol as indicators of tree vitality.
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Isabela Calegari Moia
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Raffaella Margherita Zampieri
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Niccolò Frassinelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Enrico Marchi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Cristiano Foderi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Valerio Giorgio Muzzini
- Research Institute on Terrestrial Ecosystems, National Research Council, Research Area of Rome 1, Strada Provinciale 35d n. 9, Montelibretti, 00010 Rome, Italy
| | - Maria Laura Traversi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Perdomo SA, Valencia DP, Velez GE, Jaramillo-Botero A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens Bioelectron 2024; 255:116261. [PMID: 38565026 DOI: 10.1016/j.bios.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[μmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 μmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia
| | | | | | - Andres Jaramillo-Botero
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
12
|
Li X, Li M, Li J, Gao Y, Liu C, Hao G. Wearable sensor supports in-situ and continuous monitoring of plant health in precision agriculture era. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1516-1535. [PMID: 38184781 PMCID: PMC11123445 DOI: 10.1111/pbi.14283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Plant health is intricately linked to crop quality, food security and agricultural productivity. Obtaining accurate plant health information is of paramount importance in the realm of precision agriculture. Wearable sensors offer an exceptional avenue for investigating plant health status and fundamental plant science, as they enable real-time and continuous in-situ monitoring of physiological biomarkers. However, a comprehensive overview that integrates and critically assesses wearable plant sensors across various facets, including their fundamental elements, classification, design, sensing mechanism, fabrication, characterization and application, remains elusive. In this study, we provide a meticulous description and systematic synthesis of recent research progress in wearable sensor properties, technology and their application in monitoring plant health information. This work endeavours to serve as a guiding resource for the utilization of wearable plant sensors, empowering the advancement of plant health within the precision agriculture paradigm.
Collapse
Affiliation(s)
- Xiao‐Hong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou UniversityGuiyangChina
| | - Meng‐Zhao Li
- National Key Laboratory of Green Pesticide, College of ChemistryCentral China Normal UniversityWuhanChina
| | - Jing‐Yi Li
- National Key Laboratory of Green Pesticide, College of ChemistryCentral China Normal UniversityWuhanChina
| | - Yang‐Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou UniversityGuiyangChina
| | - Chun‐Rong Liu
- National Key Laboratory of Green Pesticide, College of ChemistryCentral China Normal UniversityWuhanChina
| | - Ge‐Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou UniversityGuiyangChina
- National Key Laboratory of Green Pesticide, College of ChemistryCentral China Normal UniversityWuhanChina
| |
Collapse
|
13
|
Rocha J, de Oliveira JC, Bettini J, Strauss M, Selmi GS, Okazaki AK, de Oliveira RF, Lima RS, Santhiago M. Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine. ACS MEASUREMENT SCIENCE AU 2024; 4:188-200. [PMID: 38645575 PMCID: PMC11027207 DOI: 10.1021/acsmeasuresciau.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 04/23/2024]
Abstract
Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300-1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl4]- ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.
Collapse
Affiliation(s)
- Jaqueline
F. Rocha
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| | - Julia C. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Jefferson Bettini
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Mathias Strauss
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Guilherme S. Selmi
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Anderson K. Okazaki
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Rafael F. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Renato S. Lima
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
- Institute
of Chemistry, University of Campinas, São Paulo, Campinas 13083-970, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo, São Paulo, São Carlos 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| |
Collapse
|
14
|
Babangida AA, Uddin A, Stephen KT, Yusuf BA, Zhang L, Ge D. A Roadmap from Functional Materials to Plant Health Monitoring (PHM). Macromol Biosci 2024; 24:e2300283. [PMID: 37815087 DOI: 10.1002/mabi.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Soft bioelectronics have great potential for the early diagnosis of plant diseases and the mitigation of adverse outcomes such as reduced crop yields and stunted growth. Over the past decade, bioelectronic interfaces have evolved into miniaturized conformal electronic devices that integrate flexible monitoring systems with advanced electronic functionality. This development is largely attributable to advances in materials science, and micro/nanofabrication technology. The approach uses the mechanical and electronic properties of functional materials (polymer substrates and sensing elements) to create interfaces for plant monitoring. In addition to ensuring biocompatibility, several other factors need to be considered when developing these interfaces. These include the choice of materials, fabrication techniques, precision, electrical performance, and mechanical stability. In this review, some of the benefits plants can derive from several of the materials used to develop soft bioelectronic interfaces are discussed. The article describes how they can be used to create biocompatible monitoring devices that can enhance plant growth and health. Evaluation of these devices also takes into account features that ensure their long-term durability, sensitivity, and reliability. This article concludes with a discussion of the development of reliable soft bioelectronic systems for plants, which has the potential to advance the field of bioelectronics.
Collapse
Affiliation(s)
- Abubakar A Babangida
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Azim Uddin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Kukwi Tissan Stephen
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bashir Adegbemiga Yusuf
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Liqiang Zhang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214126, China
| | - Daohan Ge
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
15
|
Zhou S, Zhou J, Pan Y, Wu Q, Ping J. Wearable electrochemical sensors for plant small-molecule detection. TRENDS IN PLANT SCIENCE 2024; 29:219-231. [PMID: 38071111 DOI: 10.1016/j.tplants.2023.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 02/10/2024]
Abstract
Small molecules in plants - such as metabolites, phytohormones, reactive oxygen species (ROS), and inorganic ions - participate in the processes of plant growth and development, physiological metabolism, and stress response. Wearable electrochemical sensors, known for their fast response, high sensitivity, and minimal plant damage, serve as ideal tools for dynamically tracking these small molecules. Such sensors provide producers or agricultural researchers with noninvasive or minimally invasive means of obtaining plant signals. In this review we explore the applications of wearable electrochemical sensors in detecting plant small molecules, enabling scientific assessment of plant conditions, quantification of environmental stresses, and facilitation of plant health monitoring and disease prediction.
Collapse
Affiliation(s)
- Shenghan Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jin Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yuxiang Pan
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China; Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural, Anhui Agricultural University, Anhui, PR China.
| |
Collapse
|
16
|
Rocha JF, Hasimoto LH, Santhiago M. Recent progress and future perspectives of polydopamine nanofilms toward functional electrochemical sensors. Anal Bioanal Chem 2023; 415:3799-3816. [PMID: 36645457 PMCID: PMC9841946 DOI: 10.1007/s00216-023-04522-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Jaqueline F Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Leonardo H Hasimoto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| |
Collapse
|
17
|
Martins TS, Machado SAS, Oliveira ON, Bott-Neto JL. Optimized paper-based electrochemical sensors treated in acidic media to detect carbendazim on the skin of apple and cabbage. Food Chem 2023; 410:135429. [PMID: 36641915 DOI: 10.1016/j.foodchem.2023.135429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Wearable sensors such as those made with paper are needed for non-destructive routine analysis of pesticides on plants, fruits, and vegetables. Herein we report on electrochemical sensors made with screen-printed carbon electrodes on kraft and parchment papers to detect the fungicide carbendazim. A systematic optimization was performed to find that electrochemical sensors on kraft paper treated in an acidic medium led to the highest performance, with a detection limit of 0.06 µM for carbendazim. The enhanced sensitivity for this sensor was attributed to the porous nature of kraft paper, which allowed for a large electrode surface area, and to the carboxylic groups formed during electrochemical activation. As a proof-of-concept, the electrochemical sensor attached to the skin of apple and cabbage was used to detect carbendazim with the same performance as the gold standard method, thus demonstrating that the sensor can be used in the farm and on supermarket shelves.
Collapse
Affiliation(s)
- Thiago S Martins
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - José L Bott-Neto
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Peng B, Wu X, Zhang C, Zhang C, Lan L, Ping J, Ying Y. In-Time Detection of Plant Water Status Change by Self-Adhesive, Water-Proof, and Gas-Permeable Electrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19199-19208. [PMID: 37022351 DOI: 10.1021/acsami.3c01789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Leaf capacitance can reflect plant water content. However, the rigid electrodes used in leaf capacitance monitoring may affect plant health status. Herein, we report a self-adhesive, water-proof, and gas-permeable electrode fabricated by in situ electrospinning of a polylactic acid nanofiber membrane (PLANFM) on a leaf, spraying a layer of the carbon nanotube membrane (CNTM) on PLANFM, and in situ electrospinning of PLANFM on CNTM. The electrodes could be self-adhered to the leaf via electrostatic adhesion due to the charges on PLANFM and the leaf, thus forming a capacitance sensor. Compared with the electrode fabricated by a transferring approach, the in situ fabricated one did not show obvious influence on plant physiological parameters. On that basis, a wireless leaf capacitance sensing system was developed, and the change of plant water status was detected in the first day of drought stress, which was much earlier than direct observation of the plant appearance. This work paved a useful way to realize noninvasive and real-time detection of stress using plant wearable electronics.
Collapse
Affiliation(s)
- Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xinyue Wu
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chi Zhang
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chao Zhang
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lingyi Lan
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, People's Republic of China
| |
Collapse
|
19
|
Perdomo SA, De la Paz E, Del Caño R, Seker S, Saha T, Wang J, Jaramillo-Botero A. Non-invasive in-vivo glucose-based stress monitoring in plants. Biosens Bioelectron 2023; 231:115300. [PMID: 37058961 DOI: 10.1016/j.bios.2023.115300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Plant stress responses involve a suite of genetically encoded mechanisms triggered by real-time interactions with their surrounding environment. Although sophisticated regulatory networks maintain proper homeostasis to prevent damage, the tolerance thresholds to these stresses vary significantly among organisms. Current plant phenotyping techniques and observables must be better suited to characterize the real-time metabolic response to stresses. This impedes practical agronomic intervention to avoid irreversible damage and limits our ability to breed improved plant organisms. Here, we introduce a sensitive, wearable electrochemical glucose-selective sensing platform that addresses these problems. Glucose is a primary plant metabolite, a source of energy produced during photosynthesis, and a critical molecular modulator of various cellular processes ranging from germination to senescence. The wearable-like technology integrates a reverse iontophoresis glucose extraction capability with an enzymatic glucose biosensor that offers a sensitivity of 22.7 nA/(μM·cm2), a limit of detection (LOD) of 9.4 μM, and a limit of quantification (LOQ) of 28.5 μM. The system's performance was validated by subjecting three different plant models (sweet pepper, gerbera, and romaine lettuce) to low-light and low-high temperature stresses and demonstrating critical differential physiological responses associated with their glucose metabolism. This technology enables non-invasive, non-destructive, real-time, in-situ, and in-vivo identification of early stress response in plants and provides a unique tool for timely agronomic management of crops and improving breeding strategies based on the dynamics of genome-metabolome-phenome relationships.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Rafael Del Caño
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States; Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, E- 14014, Spain
| | - Sumeyye Seker
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Tamoghna Saha
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States.
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
20
|
de Lima Tinoco MV, Fujii LR, Nicoliche CYN, Giordano GF, Barbosa JA, da Rocha JF, Dos Santos GT, Bettini J, Santhiago M, Strauss M, Lima RS. Scalable and green formation of graphitic nanolayers produces highly conductive pyrolyzed paper toward sensitive electrochemical sensors. NANOSCALE 2023; 15:6201-6214. [PMID: 36917005 DOI: 10.1039/d2nr07080d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While pyrolyzed paper (PP) is a green and abundant material that can provide functionalized electrodes with wide detection windows for a plethora of targets, it poses long-standing challenges against sensing assays such as poor electrical conductivity, with resistivities generally higher than 200.0 mΩ cm (e.g., gold and silver show resistivities 1000-fold lower, ∼0.2 mΩ cm). In this regard, the fundamental hypothesis that drives this work is whether a scalable, cost-effective, and eco-friendly strategy is capable of significantly reducing the resistivity of PP electrodes toward the development of sensitive electrochemical sensors, whether faradaic or capacitive. We address this hypothesis by simply annealing PP under an isopropanol atmosphere for 1 h, reaching resistivities as low as 7 mΩ cm. Specifically, the annealing of PP at 800 or 1000 °C under isopropanol vapor leads to the formation of a highly graphitic nanolayer (∼15 nm) on the PP surface, boosting conductivity as the delocalization of π electrons stemming from carbon sp2 is favored. The reduction of carbonyl groups and the deposition of dehydrated isopropanol during the annealing process are hypothesized herein as the dominant PP graphitization mechanisms. Electrochemical analyses demonstrated the capability of the annealed PP to increase the charge-transfer kinetics, with the optimum heterogeneous standard rate constant being roughly 3.6 × 10-3 cm s-1. This value is larger than the constants reported for other carbon electrodes and indium tin oxide. Furthermore, freestanding fingers of the annealed PP were prototyped using a knife plotter to fabricate impedimetric on-leaf electrodes. These wearable sensors ensured the real-time and in situ monitoring of the loss of water content from soy leaves, outperforming non-annealed electrodes in terms of reproducibility and sensitivity. Such an application is of pivotal importance for precision agriculture and development of agricultural inputs. This work addresses the foundations for the achievement of conductive PP in a scalable, low-cost, simple, and eco-friendly way, i.e. without producing any liquid chemical waste, providing new opportunities to translate PP-based sensitive electrochemical devices into practical use.
Collapse
Affiliation(s)
- Marcos V de Lima Tinoco
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Lucas R Fujii
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Gabriela F Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Julia A Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Jaqueline F da Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gabriel T Dos Santos
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Material Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90010-150, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
21
|
Lo Presti D, Di Tocco J, Massaroni C, Cimini S, De Gara L, Singh S, Raucci A, Manganiello G, Woo SL, Schena E, Cinti S. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture. Biosens Bioelectron 2023; 222:115005. [PMID: 36527829 DOI: 10.1016/j.bios.2022.115005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The devastating effects of global climate change on crop production and exponential population growth pose a major challenge to agricultural yields. To cope with this problem, crop performance monitoring is becoming increasingly necessary. In this scenario, the use of sensors and biosensors capable of detecting changes in plant fitness and predicting the evolution of their morphology and physiology has proven to be a useful strategy to increase crop yields. Flexible sensors and nanomaterials have inspired the emerging fields of wearable and on-plant portable devices that provide continuous and accurate long-term sensing of morphological, physiological, biochemical, and environmental parameters. This review provides an overview of novel plant sensing technologies by discussing wearable and integrated devices proposed for engineering plant and monitoring its morphological traits and physiological processes, as well as plant-environment interactions. For each application scenario, the state-of-the-art sensing solutions are grouped according to the plant organ on which they have been installed highlighting their main technological advantages and features. Finally, future opportunities, challenges and perspectives are discussed. We anticipate that the application of this technology in agriculture will provide more accurate measurements for farmers and plant scientists with the ability to track crop performance in real time. All of this information will be essential to enable rapid optimization of plants development through tailored treatments that improve overall plant health even under stressful conditions, with the ultimate goal of increasing crop productivity in a more sustainable manner.
Collapse
Affiliation(s)
- Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Joshua Di Tocco
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Sima Singh
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Ada Raucci
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Gelsomina Manganiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Sheridan L Woo
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy.
| | - Stefano Cinti
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy.
| |
Collapse
|
22
|
Giordano GF, Ferreira LF, Bezerra ÍRS, Barbosa JA, Costa JNY, Pimentel GJC, Lima RS. Machine learning toward high-performance electrochemical sensors. Anal Bioanal Chem 2023:10.1007/s00216-023-04514-z. [PMID: 36637495 PMCID: PMC9838410 DOI: 10.1007/s00216-023-04514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
The so-coined fourth paradigm in science has reached the sensing area, with the use of machine learning (ML) toward data-driven improvements in sensitivity, reproducibility, and accuracy, along with the determination of multiple targets from a single measurement using multi-output regression models. Particularly, the use of supervised ML models trained on large data sets produced by electrical and electrochemical bio/sensors has emerged as an impacting trend in the literature by allowing accurate analyses even in the presence of usual issues such as electrode fouling, poor signal-to-noise ratio, chemical interferences, and matrix effects. In this trend article, apart from an outlook for the coming years, we present examples from the literature that demonstrate how helpful ML algorithms can be for dispensing the adoption of experimental methods to address the aforesaid interfering issues, ultimately contributing to translate testing technologies into on-site, practical, and daily applications.
Collapse
Affiliation(s)
- Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| | - Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970 Brazil
| | - Ítalo R. S. Bezerra
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Júlia A. Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590 Brazil
| | - Juliana N. Y. Costa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,School of Sciences, São Paulo State University, Bauru, São Paulo 17033-360 Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil ,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590 Brazil
| |
Collapse
|
23
|
Nicoliche CYN, da Silva GS, Gomes-de-Pontes L, Schleder GR, Lima RS. Single-Response Electronic Tongue and Machine Learning Enable the Multidetermination of Extracellular Vesicle Biomarkers for Cancer Diagnostics Without Recognition Elements. Methods Mol Biol 2023; 2679:83-94. [PMID: 37300610 DOI: 10.1007/978-1-0716-3271-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Platforms based on impedimetric electronic tongue (nonselective sensor) and machine learning are promising to bring disease screening biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point-of-care, thus contributing to rationalize and decentralize laboratory tests with social and economic impacts being achieved. By combining a low-cost and scalable electronic tongue with machine learning, in this chapter, we describe the simultaneous determination of two extracellular vesicle (EV) biomarkers, i.e., the concentrations of EV and carried proteins, in mice blood with Ehrlich tumor from a single impedance spectrum without using biorecognizing elements. This tumor shows primary features of mammary tumor cells. Pencil HB core electrodes are integrated into polydimethylsiloxane (PDMS) microfluidic chip. The platform shows the highest throughput in comparison with the methods addressed in the literature to determine EV biomarkers.
Collapse
Affiliation(s)
- Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | - Leticia Gomes-de-Pontes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriel R Schleder
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
- Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
24
|
Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022; 7:1045-1057. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Collapse
Affiliation(s)
- Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|