1
|
Xie L, Liang J, Jiang L, Huang W. Effects of oxygen vacancies on hydrogenation efficiency by spillover in catalysts. Chem Sci 2025; 16:3408-3429. [PMID: 39926703 PMCID: PMC11803460 DOI: 10.1039/d4sc07375d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Hydrogen spillover is crucial for hydrogenation reactions on supported catalysts. The properties of supports have been reported to be very important for affecting hydrogen spillover and the subsequent hydrogenation process. The introduction of oxygen vacancies offers a promising strategy to enhance efficiency of catalysts. Recent advanced characterization and theoretical modeling techniques have provided us with increasing new insights for understanding hydrogen spillover effects. However, a comprehensive understanding of oxygen vacancy effects on hydrogen spillover and hydrogenation efficiency of catalysts is still lacking. This review focuses on the recent advances in support effects especially oxygen vacancy effects on improving the efficiency of catalysts from three process aspects including hydrogen dissociation, active hydrogen spillover, and hydrogenation by spillover. The challenges in studying the effects on hydrogenations by spillover on the supported catalysts are highlighted at the end of the review. It aims to provide valuable strategies for the development of high-performance catalytic hydrogenation materials.
Collapse
Affiliation(s)
- Lijuan Xie
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou Fujian 350117 China
| | - Jinshan Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou Fujian 350117 China
| | - Lizhi Jiang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou Fujian 350117 China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE) Fuzhou Fujian 350117 China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University Nanjing 211816 China
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
2
|
Xu H, Xu Z, Wang K, Jin L, Liu Y, Chen J, Li L. Tungsten oxide-based electrocatalysts for energy conversion. Chem Commun (Camb) 2024; 60:13507-13517. [PMID: 39485081 DOI: 10.1039/d4cc04767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of cutting-edge energy conversion technologies offers significant potential for addressing environmental challenges, enhancing energy security, improving economic competitiveness, and promoting resource conservation. This progress necessitates the development of advanced electrocatalysts. WOx demonstrates high intrinsic catalytic activity, excellent conductivity, an abundance of active sites, and remarkable stability, positioning it as a promising candidate for electrocatalytic reactions. Recently, there has been swift advancement in the development of WOx-based catalysts for various energy-conversion reactions. This review provides a thorough summary of recent developments in WOx-based catalysts for electrocatalytic reactions, emphasizing their multifunctional roles as active species, electron-transfer carriers, hydrogen spillover carriers, and microenvironment regulators. Moreover, it highlights the applications of WOx-based catalysts across different electrocatalytic reactions, with particular focus on the structure-activity relationship. Finally, the review discusses the challenges and future directions of these technologies, as well as key research areas necessary for achieving large-scale applications.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhili Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
3
|
Seok H, Kim M, Cho J, Son S, Megra YT, Lee J, Nam MG, Kim KW, Aydin K, Yoo SS, Lee H, Kanade VK, Kim M, Mun J, Kim JK, Suk JW, Kim HU, Yoo PJ, Kim T. Electron Release via Internal Polarization Fields for Optimal S-H Bonding States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411211. [PMID: 39246277 DOI: 10.1002/adma.202411211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Transition metal dichalcogenides (TMDs) have received considerable attention as promising electrocatalysts for the hydrogen evolution reaction (HER), yet their potential is often constrained by the inertness of the basal planes arising from their poor hydrogen adsorption ability. Here, the relationship between the electronic structure of the WS2 basal plane and HER activity is systemically analyzed to establish a clear insight. The valance state of the sulfur atoms on the basal plane has been tuned to enhance hydrogen adsorption through sequential engineering processes, including direct phase transition and heterostructure that induces work function-difference-induced unidirectional electron transfer. Additionally, an innovative synthetic approach, harnessing the built-in internal polarization field at the W-graphene heterointerface, triggers the in-situ formation of sulfur vacancies in the bottom WSx (x < 2) layers. The resultant modulation of the valance state of the sulfur atom stabilizes the W-S bond, while destabilizing the S-H bond. The electronic structural changes are further amplified by the release and transfer of surplus electrons via sulfur vacancies, filling the valance state of W and S atoms. Consequently, this work provides a comprehensive understanding of the interplay between the electronic structure of the WS2 basal plane and the HER activity, focusing on optimizing S-H bonding state.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yonas Tsegaye Megra
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Myeong Gyun Nam
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Keon-Woo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Kubra Aydin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seong Soo Yoo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyeonjeong Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Vinit K Kanade
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Muyoung Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Jihun Mun
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Jin Kon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Ji Won Suk
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Department of Smart-Fab. Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeong-U Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
- Nano-Mechatronics, KIMM Campus, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Pil J Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
4
|
Kong L, Pan L, Guo H, Qiu Y, Alshahrani WA, Amin MA, Lin J. Constructing WS 2/WO 3-x heterostructured electrocatalyst enriched with oxygen vacancies for accelerated hydrogen evolution reaction. J Colloid Interface Sci 2024; 664:178-185. [PMID: 38460382 DOI: 10.1016/j.jcis.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
H2 produced through hydrogen evolution reaction (HER) is a shining star in the field of clean energy. Significant efforts have been dedicated to develop efficient and stable electrocatalysts to reduce the energy barrier and accelerate the kinetics of Hydrogen evolution reaction (HER) under various environments. Herein, we propose a strategy to accelerate the kinetics of HER under acid and alkaline environments by combining heterostructure engineering with defect engineering. We have successfully synthesized a series of WS2/WO3-x heterostructured catalysts, accompanied with substantial oxygen vacancies using a two-step synthesis method. With the partially sulfurization of WO3-x, the heterojunction interface of WS2 and WO3-x was formed along with the appearance of oxygen vacancies, which can facilitate the migration of electrons. The heterostructured catalyst enriched with oxygen vacancies (defined as WS2/WO3-x-2) demonstrates superior HER performance in acidic and alkaline electrolytes. At a current density of 10 mA cm-2, the WS2/WO3-x-2 heterostructured catalyst manifests an overpotential of 120 mV in the acidic electrolytes and a slightly higher overpotential of 150 mV in an alkaline environment. The overpotentials offer an improvement compared to reported W-based catalysts in terms of HER performance. This work provides guiding significance on the design of heterostructured catalysts with promising performance for HER in acidic and alkaline environments.
Collapse
Affiliation(s)
- Linghui Kong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lu Pan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hui Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yanzhen Qiu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wafa A Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Jianjian Lin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
5
|
Park J, Cho I, Jeon H, Lee Y, Zhang J, Lee D, Cho MK, Preston DJ, Shong B, Kim IS, Lee WK. Conversion of Layered WS 2 Crystals into Mixed-Domain Electrochemical Catalysts by Plasma-Assisted Surface Reconstruction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314031. [PMID: 38509794 DOI: 10.1002/adma.202314031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Electrocatalytic water splitting is crucial to generate clean hydrogen fuel, but implementation at an industrial scale remains limited due to dependence on expensive platinum (Pt)-based electrocatalysts. Here, an all-dry process to transform electrochemically inert bulk WS2 into a multidomain electrochemical catalyst that enables scalable and cost-effective implementation of the hydrogen evolution reaction (HER) in water electrolysis is reported. Direct dry transfer of WS2 flakes to a gold thin film deposited on a silicon substrate provides a general platform to produce the working electrodes for HER with tunable charge transfer resistance. By treating the mechanically exfoliated WS2 with sequential Ar-O2 plasma, mixed domains of WS2, WO3, and tungsten oxysulfide form on the surfaces of the flakes, which gives rise to a superior HER with much greater long-term stability and steady-state activity compared to Pt. Using density functional theory, ultraefficient atomic sites formed on the constituent nanodomains are identified, and the quantification of atomic-scale reactivities and resulting HER activities fully support the experimental observations.
Collapse
Affiliation(s)
- Jiheon Park
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Iaan Cho
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Hotae Jeon
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Youjin Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jian Zhang
- International Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dongwook Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Min Kyung Cho
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, TX, 77005, USA
| | - Bonggeun Shong
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
6
|
Zhou B, Ding H, Jin W, Zhang Y, Wu Z, Wang L. Oxygen-deficient tungsten oxide inducing electron and proton transfer: Activating ruthenium sites for hydrogen evolution in wide pH and alkaline seawater. J Colloid Interface Sci 2024; 660:321-333. [PMID: 38244499 DOI: 10.1016/j.jcis.2024.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The design of electrocatalysts for the hydrogen evolution reaction (HER) that perform effectively across a broad pH spectrum is paramount. The efficiency of hydrogen evolution at ruthenium (Ru) active sites, often hindered by the kinetics of water dissociation in alkaline or neutral conditions, requires further enhancement. Metal oxides, due to superior electron dynamics facilitated by oxygen vacancies (OVS) and shifts in the Fermi level, surpass carbon-based materials. In particular, tungsten oxide (WO3) promotes the directed migration of electrons and protons which significantly activates the Ru sites. Ru/WO3-OV is prepared through a simple hydrothermal and low-temperature annealing process. The prepared catalyst achieves 10 mA cm-2 at overpotentials of 23 mV (1 M KOH), 36 mV (0.5 M H2SO4), 62 mV (1 M PBS), and 38 mV (1 M KOH + seawater). At an overpotential corresponding to 10 mA cm-2 in 1 M KOH and 1 M KOH + seawater, the mass activity of Ru/WO3-OV is about 7.7 and 7.86 times that of 20 wt% Pt/C. The improvement in activity and stability arises from electronic modifications attributed to metal-support interaction. This work offers novel insights for modulating the HER activity of Ru sites across a wide pH range.
Collapse
Affiliation(s)
- Bowen Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Hao Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042 Qingdao, PR China.
| |
Collapse
|
7
|
Nam J, Lee GY, Lee DY, Sung D, Hong S, Jang AR, Kim KS. Tailored Synthesis of Heterogenous 2D TMDs and Their Spectroscopic Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:248. [PMID: 38334519 PMCID: PMC10856291 DOI: 10.3390/nano14030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Two-dimensional (2D) vertical van der Waals heterostructures (vdWHs) show great potential across various applications. However, synthesizing large-scale structures poses challenges owing to the intricate growth parameters, forming unexpected hybrid film structures. Thus, precision in synthesis and thorough structural analysis are essential aspects. In this study, we successfully synthesized large-scale structured 2D transition metal dichalcogenides (TMDs) via chemical vapor deposition using metal oxide (WO3 and MoO3) thin films and a diluted H2S precursor, individual MoS2, WS2 films and various MoS2/WS2 hybrid films (Type I: MoxW1-xS2 alloy; Type II: MoS2/WS2 vdWH; Type III: MoS2 dots/WS2). Structural analyses, including optical microscopy, Raman spectroscopy, transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy, and cross-sectional imaging revealed that the A1g and E2g modes of WS2 and MoS2 were sensitive to structural variations, enabling hybrid structure differentiation. Type II showed minimal changes in the MoS2's A1g mode, while Types I and III exhibited a ~2.8 cm-1 blue shift. Furthermore, the A1g mode of WS2 in Type I displayed a 1.4 cm-1 red shift. These variations agreed with the TEM-observed microstructural features, demonstrating strain effects on the MoS2-WS2 interfaces. Our study provides insights into the structural features of diverse hybrid TMD materials, facilitating their differentiation through Raman spectroscopy.
Collapse
Affiliation(s)
- Jungtae Nam
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Republic of Korea; (J.N.); (G.Y.L.); (D.Y.L.); (S.H.)
| | - Gil Yong Lee
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Republic of Korea; (J.N.); (G.Y.L.); (D.Y.L.); (S.H.)
| | - Dong Yun Lee
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Republic of Korea; (J.N.); (G.Y.L.); (D.Y.L.); (S.H.)
| | - Dongchul Sung
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Republic of Korea; (J.N.); (G.Y.L.); (D.Y.L.); (S.H.)
| | - Suklyun Hong
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Republic of Korea; (J.N.); (G.Y.L.); (D.Y.L.); (S.H.)
| | - A-Rang Jang
- Division of Electrical, Electronic and Control Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Keun Soo Kim
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 05006, Republic of Korea; (J.N.); (G.Y.L.); (D.Y.L.); (S.H.)
| |
Collapse
|
8
|
Prasanna M, Logeshwaran N, Ramakrishnan S, Yoo DJ. Metallic 1T-N-WS 2 /WO 3 Heterojunctions Featuring Interface-Engineered Cu-S Configuration for Selective Electrochemical CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306165. [PMID: 37715287 DOI: 10.1002/smll.202306165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Indexed: 09/17/2023]
Abstract
Electrocatalytic carbon-dioxide reduction reactions (ECO2 RR) are one of the most rational techniques to control one's carbon footprint. The desired product formation depends on deliberate reaction kinetics and a choice of electron-proton contribution. Herein the usage of novel CuS active centers decorated over stable 1T metallic N-WS2 /WO3 nanohybrids as an efficient selective formate conversion electrocatalyst with regard to ECO2 RR is reported. The preferred reaction pathway is identified as *OCHO, which is reduced (by gaining H+ + e- ) to HCOO- (HCOO- path) as the primary product. More significantly, at -1.3 V versus RHE yield of FEHCOO - is 55.6% ± 0.5 with a Jgeo of -125.05 mA cm-2 for CuS@1T-N-WS2 /WO3 nanohybrids. In addition, predominant catalytic activity, selectivity, and stability properties are observed; further post-mortem analysis demonstrates the choice of material importance. The present work describes an impressive approach to develop highly active electrocatalysts for selective ECO2 RR applications.
Collapse
Affiliation(s)
- Murugesan Prasanna
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Natarajan Logeshwaran
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Shanmugam Ramakrishnan
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE17RU, UK
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
9
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
10
|
Nguyen NA, Chuluunbat E, Choi HS, Keidar M. Data on a high electrocatalytic activity of metal-WO 3 nanocomposite electrocatalysts for hydrogen evolution reaction. Data Brief 2023; 49:109362. [PMID: 37456106 PMCID: PMC10344671 DOI: 10.1016/j.dib.2023.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
The data given in this article are related to the research article entitled "High electrocatalytic activity of Rh-WO3 electrocatalyst for hydrogen evolution reaction under the acidic, alkaline, and alkaline seawater electrolytes (N.-A. Nguyen et al., 2023) [1]. In this work, metal-WO3 nanocomposites were synthesized and used as electrocatalysts for hydrogen evolution reaction (HER) performance. The morphology and chemical properties of the prepared metal-WO3 nanocomposites were investigated by using scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques.
Collapse
Affiliation(s)
- Ngoc-Anh Nguyen
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Enkhjin Chuluunbat
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Ho-Suk Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
11
|
Xu H, Li J, Chu X. Interfacial built-in electric-field for boosting energy conversion electrocatalysis. NANOSCALE HORIZONS 2023; 8:441-452. [PMID: 36762488 DOI: 10.1039/d2nh00549b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The formation of a built-in electric field (BIEF) can induce electron-rich and electron-poor counterparts to synergistically modify electronic configurations and optimize the binding strengths with intermediates, thereby leading to outstanding electrocatalytic performance. Herein, a critical review regarding the concept, modulation strategies, and applications of BIEFs is comprehensively summarized, which begins with the fundamental concepts, together with the advantages of BIEF for boosting electrocatalytic reactions. Then, a systematic summary of the advanced strategies for the modulation of BIEF along with the in-detail mechanisms in its formation are also added. Finally, the applications of BIEF in driving electrocatalytic reactions and some cascade systems for illustrating the conclusive role from the induced BIEF are also systematically discussed, followed by perspectives on the future deployment and opportunity of the BIEF design.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, P. R. China.
| | - Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, P. R. China.
| |
Collapse
|
12
|
Xu H, Li J, Chu X. Intensifying Hydrogen Spillover for Boosting Electrocatalytic Hydrogen Evolution Reaction. CHEM REC 2023; 23:e202200244. [PMID: 36482015 DOI: 10.1002/tcr.202200244] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover-based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover-based electrocatalysts are also systematically discussed.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
13
|
Wu Q, Zhang K, Wang D, Lin Y, Xie T. Dual-suppression of bulk and surface charges recombination for hematite photoanode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
14
|
Chu X, Wang L, Li J, Xu H. Strategies for Promoting Catalytic Performance of Ru-based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction. CHEM REC 2023; 23:e202300013. [PMID: 36806446 DOI: 10.1002/tcr.202300013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Ru-based materials hold great promise for substituting Pt as potential electrocatalysts toward water electrolysis. Significant progress is made in the fabrication of advanced Ru-based electrocatalysts, but an in-depth understanding of the engineering methods and induced effects is still in their early stage. Herein, we organize a review that focusing on the engineering strategies toward the substantial improvement in electrocatalytic OER and HER performance of Ru-based catalysts, including geometric structure, interface, phase, electronic structure, size, and multicomponent engineering. Subsequently, the induced enhancement in catalytic performance by these engineering strategies are also elucidated. Furthermore, some representative Ru-based electrocatalysts for the electrocatalytic HER and OER applications are also well presented. Finally, the challenges and prospects are also elaborated for the future synthesis of more effective Ru-based catalysts and boost their future application.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Lu Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.,Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|