1
|
Li W, Chen Y, Liu S, Tang J. Enhanced electrocatalytic performance of carbon-coated NiCoO 2/NiCo composites for efficient water splitting. Sci Rep 2025; 15:12294. [PMID: 40210966 PMCID: PMC11986038 DOI: 10.1038/s41598-025-96880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
The urgent need for sustainable energy conversion technologies has propelled the development of efficient and cost-effective electrocatalysts for water splitting. In this study, we synthesize carbon-coated NiCoO2/NiCo@C composites through the calcination of CoNi Prussian Blue Analogues nanocubes, aiming to enhance the electrocatalytic performance for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Our findings demonstrate that the NiCoO2/NiCo@C composites exhibit outstanding catalytic activity, achieving low overpotentials of 329 mV for OER and 61.9 mV for HER at a current density of 10 mA cm-2, with robust stability under prolonged operational conditions. The enhanced activity is attributed to the large interface area and high density of exposed active sites facilitated by the unique heterojunction structure of NiCoO2/NiCo particles embedded in carbon frameworks and nanotubes. This architecture not only prevents the agglomeration of metal nanoparticles but also promotes efficient electron and proton transfer, significantly boosting electrochemical performance. This study introduces a promising approach for designing high-performance, cost-effective electrocatalysts, paving the way for their application in industrial water electrolysis.
Collapse
Affiliation(s)
- Weijun Li
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Yajuan Chen
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China
| | - Siyuan Liu
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China
| | - Jing Tang
- School of Mechanical Engineering, Liaoning Petrochemical University, No. 1, Dandong Road, Fushun, 113001, Liaoning, China.
| |
Collapse
|
2
|
Gao Z, Jiang Y, Meng Y, Du M, Liu F. A Review of the Fabrication of Pinhole-Free Thin Films Based on Electrodeposition Technology: Theory, Methods and Progress. Molecules 2024; 29:5615. [PMID: 39683775 DOI: 10.3390/molecules29235615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Pinhole defects in thin films can significantly degrade their physical and chemical properties and act as sites for electrochemical corrosion. Therefore, the development of methods for the preparation of pinhole-free films is crucial. Electrodeposition, recognised for its efficiency and cost-effectiveness, shows great potential for applications in electrochemistry, biosensors, solar cells and electronic device fabrication. This review aims to elucidate the role of nucleation and growth models in understanding and optimising the electrodeposition process. Key parameters, such as crystal structure, orientation, surface morphology and defect control, are highlighted. In addition, the causes of pinhole defects, the effects of impurities and the potential and electrolyte composition on the deposited films are discussed. In particular, methods for minimising pinhole defects and two exemplary cases for a compact layer in relatively large-scale perovskite solar cells and nano-scale ultramicroelectrodes are discussed, exploring the influence of surface morphology, thickness and fabrication size under current common film preparation experiments. Finally, the critical aspects of controlled preparation, theoretical and technological advances, and the ongoing challenges in the field are provided.
Collapse
Affiliation(s)
- Zike Gao
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuze Jiang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yao Meng
- Shaanxi Huaqin New Energy Technology Co., Ltd., Xi'an 710119, China
| | - Minshu Du
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Feng Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
4
|
Ahmed ATA, Sree VG, Meena A, Inamdar AI, Im H, Cho S. In Situ Transformed CoOOH@Co 3S 4 Heterostructured Catalyst for Highly Efficient Catalytic OER Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1732. [PMID: 39513812 PMCID: PMC11547189 DOI: 10.3390/nano14211732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The deprived electrochemical kinetics of the oxygen evolution reaction (OER) catalyst is the prime bottleneck and remains the major obstacle in the water electrolysis processes. Herein, a facile hydrothermal technique was implemented to form a freestanding polyhedron-like Co3O4 on the microporous architecture of Ni foam, its reaction kinetics enhanced through sulfide counterpart transformation in the presence of Na2S, and their catalytic OER performances comparatively investigated in 1 M KOH medium. The formed Co3S4 catalyst shows outstanding catalytic OER activity at a current density of 100 mA cm-2 by achieving a relatively low overpotential of 292 mV compared to the pure Co3O4 catalyst and the commercial IrO2 catalyst. This enhancement results from the improved active centers and conductivity, which boost the intrinsic reaction kinetics. Further, the optimized Co3S4 catalyst exhibits admirable prolonged durability up to 72 h at varied current rates with insignificant selectivity decay. The energy dispersive X-ray spectroscopy (EDX) and Raman spectra measured after the prolonged OER stability test reveal a partial transformation of the active catalyst into an oxyhydroxide phase (i.e., CoOOH@Co3S4), which acts as an active catalyst phase during the electrolysis process.
Collapse
Affiliation(s)
- Abu Talha Aqueel Ahmed
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | | | - Abhishek Meena
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | - Akbar I. Inamdar
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | - Hyunsik Im
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| | - Sangeun Cho
- Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea; (A.T.A.A.); (A.M.); (A.I.I.)
| |
Collapse
|
5
|
Zhao J, Kou M, Yuan Q, Yuan Y, Zhao J. Encapsulating Transition Metal Nanoparticles inside Carbon (TM@C) Chainmail Catalysts for Hydrogen Evolution Reactions: A Review. Molecules 2024; 29:4677. [PMID: 39407607 PMCID: PMC11477923 DOI: 10.3390/molecules29194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Green hydrogen energy from electrocatalytic hydrogen evolution reactions (HERs) has gained much attention for its advantages of low carbon, high efficiency, interconnected energy medium, safety, and controllability. Non-precious metals have emerged as a research hotspot for replacing precious metal catalysts due to low cost and abundant reserves. However, maintaining the stability of non-precious metals under harsh conditions (e.g., strongly acidic, alkaline environments) remains a significant challenge. By leveraging the curling properties of two-dimensional materials, a new class of catalysts, encapsulating transition metal nanoparticles inside carbon (TM@C) chainmail, has been successfully developed. This catalyst can effectively isolate the active metal from direct contact with harsh reaction media, thereby delaying catalyst deactivation. Furthermore, the electronic structure of the carbon layer can be regulated through the transfer of electrons, which stimulates its catalytic activity. This addresses the issue of the insufficient stability of traditional non-precious metal catalysts. This review commences with a synopsis of the synthetic advancement of the engineering of TM@C chainmail catalysts. Thereafter, a critical discussion ensues regarding the electrocatalytic performance of TM@C chainmail catalysts during hydrogen production. Ultimately, a comprehensive review of the conformational relationship between the structure of TM@C chainmail catalysts and HER activity is provided, offering substantial support for the large-scale application of hydrogen energy.
Collapse
Affiliation(s)
| | | | | | - Ying Yuan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (J.Z.); (M.K.); (Q.Y.)
| | - Jinsheng Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (J.Z.); (M.K.); (Q.Y.)
| |
Collapse
|
6
|
Zhang F, Zhang Q, Zhang F, Luo X, Wang W. Metal-Organic Skeleton-Derived W-Doped Ga 2O 3-NC Catalysts for Aerobic Oxidative Dehydrogenation of N-Heterocycles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4804. [PMID: 39410375 PMCID: PMC11477574 DOI: 10.3390/ma17194804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
N-heterocycles with quinoline structures hold significant importance within the chemical and pharmaceutical industries. However, achieving their efficient transformations remains a vital yet challenging endeavor. Herein, a series of W-doped Ga2O3-NC catalysts were synthesized using a Ga-MOF-derived strategy through a simple solvothermal method, with a remarkably high activity and selectivity towards the oxidative dehydrogenation of N-heterocycles. Furthermore, the MOF-derived W-doped Ga2O3-NC catalysts exhibit remarkable substrate tolerance and recyclability. The outstanding catalytic activity was attributed to the robust synergistic interaction between the W species and the Ga2O3-NC carrier, which facilitates the activation of hydrogen atoms in the C-H and C=N bonds on both the oxygen molecule and the substrate to produce H2O2. Additionally, the solvent effect of methanol can significantly enhance dehydrogenation due to its strong ability to donate and accept protons of hydrogen bonding. The present work provides a new approach to MOF-derived non-precious metal catalysts for achieving the efficient oxidation dehydrogenation of N-heterocycles.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China; (F.Z.); (Q.Z.); (F.Z.); (X.L.)
| |
Collapse
|
7
|
Yusuf BO, Umar M, Kotob E, Abdulhakam A, Taialla OA, Awad MM, Hussain I, Alhooshani KR, Ganiyu SA. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects. Chem Asian J 2024; 19:e202300641. [PMID: 37740712 DOI: 10.1002/asia.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
As energy demand continues to rise and the global population steadily grows, there is a growing interest in exploring alternative, clean, and renewable energy sources. The search for alternatives, such as green hydrogen, as both a fuel and an industrial feedstock, is intensifying. Methane steam reforming (MSR) has long been considered a primary method for hydrogen production, despite its numerous advantages, the activity and stability of the conventional Ni catalysts are major concerns due to carbon formation and metal sintering at high temperatures, posing significant drawbacks to the process. In recent years, significant attention has been given to bimetallic catalysts as a potential solution to overcome the challenges associated with methane steam reforming. Thus, this review focuses on the recent advancements in bimetallic catalysts for hydrogen production through methane steam reforming. The review explores various aspects including reactor type, catalyst selection, and the impact of different operating parameters such as reaction temperature, pressure, feed composition, reactor configuration, and feed and sweep gas flow rates. The analysis and discussion revolve around key performance indicators such as methane conversion, hydrogen recovery, and hydrogen yield.
Collapse
Affiliation(s)
- Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mustapha Umar
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Esraa Kotob
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Abdullahi Abdulhakam
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Omer Ahmed Taialla
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Mohammed Mosaad Awad
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Ijaz Hussain
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Khalid R Alhooshani
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| | - Saheed A Ganiyu
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Liu H, Wang P, Qi X, Yin A, Wang Y, Ye Y, Luo J, Ren Z, Chen L, Yu S, Wei J. Insights into the Understanding of the Nickel-Based Pre-Catalyst Effect on Urea Oxidation Reaction Activity. Molecules 2024; 29:3321. [PMID: 39064899 PMCID: PMC11279396 DOI: 10.3390/molecules29143321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nickel-based catalysts are regarded as the most excellent urea oxidation reaction (UOR) catalysts in alkaline media. Whatever kind of nickel-based catalysts is utilized to catalyze UOR, it is widely believed that the in situ-formed Ni3+ moieties are the true active sites and the as-utilized nickel-based catalysts just serve as pre-catalysts. Digging the pre-catalyst effect on the activity of Ni3+ moieties helps to better design nickel-based catalysts. Herein, five different anions of OH-, CO32-, SiO32-, MoO42-, and WO42- were used to bond with Ni2+ to fabricate the pre-catalysts β-Ni(OH)2, Ni-CO3, Ni-SiO3, Ni-MoO4, and Ni-WO4. It is found that the true active sites of the five as-fabricated catalysts are the same in situ-formed Ni3+ moieties and the five as-fabricated catalysts demonstrate different UOR activity. Although the as-synthesized five catalysts just serve as the pre-catalysts, they determine the quantity of active sites and activity per active site, thus determining the catalytic activity of the catalysts. Among the five catalysts, the amorphous nickel tungstate exhibits the most superior activity per active site and can catalyze UOR to reach 158.10 mA·cm-2 at 1.6 V, exceeding the majority of catalysts. This work makes for a deeper understanding of the pre-catalyst effect on UOR activity and helps to better design nickel-based UOR catalysts.
Collapse
Affiliation(s)
- Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi Ren
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (P.W.); (X.Q.); (A.Y.); (Y.W.); (Y.Y.); (J.L.); (Z.R.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
9
|
Cheng X, Qiu Y, Wang Y, Yu M, Qi J, Ma Z, Sun T, Liu S. Conductive and capacitive network for enriching the exoelectrogens and enhancing the extracellular electron transfer in microbial fuel cells. J Colloid Interface Sci 2024; 664:309-318. [PMID: 38479267 DOI: 10.1016/j.jcis.2024.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
Although lots of nanomaterials modified anodes have been reported to improve the bacterial attachment and extracellular electron transfer (EET) in microbial fuel cells (MFCs), the lack of a three dimensional (3D) conductive and capacitive network severely limited MFCs performance. In this work, 3D conductive networks derived from mucor mycelia were grown on carbon cloth (CC), and capacitive FeMn phosphides/oxides were further anchored on these 3D networks by electrochemical deposition (denoted as FeMn/CMM@CC) to simultaneously address the above challenges. As a result, the multivalent metal active sites were evenly distributed on 3D conductive network, which favored the enrichment of exoelectrogens, mass transport and EET. Consequently, the as-prepared FeMn/CMM@CC anode displayed accumulated charge of 131.4C/m2, higher than bare CC. Meanwhile, FeMn/CMM@CC anode substantially promoted flavin excretion and the amounts of nano conduits. The abundance of Geobacter was 63 % on bare CC, and greatly increased to 83 % on FeMn/CMM@CC. MFCs equipped by FeMn/CMM@CC anode presented the power density of 3.06 W/m2 and coulombic efficiency (29.9 %), evidently higher than bare CC (1.29 W/m2, 7.3 %), and the daily chemical oxygen demand (COD) removal amount also increased to 92.6 mg/L/d. This work developed a facile method to optimize the abiotic-biotic interface by introducing 3D conductive and capacitive network, which was proved to be a promising strategy to modify macro-porous electrodes.
Collapse
Affiliation(s)
- Xusen Cheng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yunfeng Qiu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yanxia Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Miao Yu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Jinteng Qi
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Wu DH, Ul Haq M, Zhang L, Feng JJ, Yang F, Wang AJ. Noble metal-free FeCoNiMnV high entropy alloy anchored on N-doped carbon nanotubes with prominent activity and durability for oxygen reduction and zinc-air batteries. J Colloid Interface Sci 2024; 662:149-159. [PMID: 38340514 DOI: 10.1016/j.jcis.2024.02.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Efficient and stable oxygen reduction reaction (ORR) catalysts are essential for constructing reliable energy conversion and storage devices. Herein, we prepared noble metal-free FeCoNiMnV high-entropy alloy supported on nitrogen-doped carbon nanotubes (FeCoNiMnV HEA/N-CNTs) by a one-step pyrolysis at 800 °C, as certificated by a set of characterizations. The graphitization degree of the N-CHTs was optimized by tuning the pyrolysis temperature in the control groups. The resultant catalyst greatly enhanced the ORR characteristics in the alkaline media, showing the positive onset potential (Eonset) of 0.99 V and half-wave potential (E1/2) of 0.85 V. More importantly, the above FeCoNiMnV HEA/N-CNTs assembled Zn-air battery exhibited a greater open-circuit voltage (1.482 V), larger power density (185.12 mW cm-2), and outstanding cycle stability (1698 cycles, 566 h). This study provides some valuable insights on developing sustainable ORR catalysts in Zn-air batteries.
Collapse
Affiliation(s)
- Dong-Hui Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Fa Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
11
|
Chen S, Yao Y, Xu J, Chen J, Wang Z, Li P, Li Y. Hollow CoVO x/Ag nanoprism with tailored electronic structure for high efficiency oxygen evolution reaction. J Colloid Interface Sci 2024; 660:106-113. [PMID: 38241859 DOI: 10.1016/j.jcis.2024.01.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Developing high-active and inexpensive electrocatalysts for oxygen evolution reaction (OER) is very important in the field of water splitting. The catalytic performance of electrocatalysts can be significantly improved by optimizing the electronic structure and designing suitable nanostructure. In this work, we represent the synthesis of hollow CoVOx/Ag-5 for OER. Due to the interaction of CoVOx and Ag nanoparticles, the electronic structure is optimized to improve the intrinsic catalytic activity. Additionally, the extrinsic catalytic activity of CoVOx/Ag is enhanced by the abundant active sites from the hollow structure. As a result, the CoVOx/Ag-5 demonstrates significantly enhanced OER catalytic activity with a low overpotential of 247 mV at 10 mA cm-2. In addition, it also exhibits excellent durability, without obvious attenuation in performance after continuous operation for 60 h. Furthermore, the catalyst can enable full water splitting with appropriate 100 % Faraday efficiency, demonstrating its practical application.
Collapse
Affiliation(s)
- Siru Chen
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Yingying Yao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Junlong Xu
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Junyan Chen
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhuo Wang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Pengyu Li
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| |
Collapse
|
12
|
Rosyara YR, Muthurasu A, Chhetri K, Pathak I, Ko TH, Lohani PC, Acharya D, Kim T, Lee D, Kim HY. Highly Porous Metal-Organic Framework Entrapped by Cobalt Telluride-Manganese Telluride as an Efficient Bifunctional Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10238-10250. [PMID: 38372639 DOI: 10.1021/acsami.3c18654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The electrochemical conversion of oxygen holds great promise in the development of sustainable energy for various applications, such as water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. Oxygen electrocatalysts are needed that are both highly efficient and affordable, since they can serve as alternatives to costly precious-metal-based catalysts. This aspect is particularly significant for their practical implementation on a large scale in the future. Herein, highly porous polyhedron-entrapped metal-organic framework (MOF)-assisted CoTe2/MnTe2 heterostructure one-dimensional nanorods were initially synthesized using a simple hydrothermal strategy and then transformed into ZIF-67 followed by tellurization which was used as a bifunctional electrocatalyst for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The designed MOF CoTe2/MnTe2 nanorod electrocatalyst exhibited superior activity for both OER (η = 220 mV@ 10 mA cm-2) and ORR (E1/2 = 0.81 V vs RHE) and outstanding stability. The exceptional achievement could be primarily credited to the porous structure, interconnected designs, and deliberately created deficiencies that enhanced the electrocatalytic activity for the OER/ORR. This improvement was predominantly due to the enhanced electrochemical surface area and charge transfer inherent in the materials. Therefore, this simple and cost-effective method can be used to produce highly active bifunctional oxygen electrocatalysts.
Collapse
Affiliation(s)
- Yagya Raj Rosyara
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Alagan Muthurasu
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ishwor Pathak
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Tae Hoon Ko
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | | | - Debendra Acharya
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Taewoo Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Daewoo Lee
- Department of Carbon Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
13
|
Yu S, Liu D, Wang C, Li J, Yu R, Wang Y, Yin J, Wang X, Du Y. Nanosheet-assembled transition metal sulfides nanoflowers derived from CoMo-MOF for efficient oxygen evolution reaction. J Colloid Interface Sci 2024; 653:1464-1477. [PMID: 37804615 DOI: 10.1016/j.jcis.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Oxygen evolution reaction (OER) is a multi-electron transfer process, whose intrinsic sluggish dynamic restricts the whole process of overall water splitting (OWS). To address this issue, a porous transition metal sulfide (TMS) catalyst with rich heterojunctions was prepared by vulcanization and trace Fe doping of CoMo-based metal-organic framework (MOF). In this work, the nanoflower composed of ultrathin 2D nanosheets anchored on a nickel foam presents a layered interface that contributes to the exposure of active regions. The resulting electrode denoted as Fe@CoMo2S4/Ni3S2/NF required a low overpotential (η10 = 167 mV @ 10 mA cm-2, η50 = 260 mV @ 50 mA cm-2) in 1.0 M KOH for OER and a small cell voltage (E = 1.513 V @ 10 mA cm-2) to power OWS when coupled with commercial Pt/C. It also exhibited splendid morphological and chemical stability with virtually invariant polarization curve and flower-like appearance after 1000 CV cycles, as well as long-term durability over 100 h with a constant current density of 10 mA cm-2. This work revealed the multi-anionic regulation mechanism in the surface reconstruction of sulfide electrocatalysts, and verified that Co/Mo/Ni-based oxysulfide was the true active substance of OER, which inspired the understanding and design of multi-anionic regulated electrocatalysts.
Collapse
Affiliation(s)
- Shudi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| | - Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
14
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
15
|
Mesoporous Surface-Sulfurized Fe-Co 3O 4 Nanosheets Integrated with N/S Co-Doped Graphene as a Robust Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. Molecules 2023; 28:molecules28052221. [PMID: 36903464 PMCID: PMC10005318 DOI: 10.3390/molecules28052221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Playing a significant role in electrochemical energy conversion and storage systems, heteroatom-doped transition metal oxides are key materials for oxygen-involving reactions. Herein, mesoporous surface-sulfurized Fe-Co3O4 nanosheets integrated with N/S co-doped graphene (Fe-Co3O4-S/NSG) were designed as composite bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Compared with the Co3O4-S/NSG catalyst, it exhibited superior activity in the alkaline electrolytes by delivering an OER overpotential of 289 mV at 10 mA cm-2 and an ORR half-wave potential of 0.77 V vs. RHE. Additionally, Fe-Co3O4-S/NSG kept stable at 4.2 mA cm-2 for 12 h without significant attenuation to render robust durability. This work not only demonstrates the satisfactory effect of the transition-metal cationic modification represented by iron doping on the electrocatalytic performance of Co3O4, but it also provides a new insight on the design of OER/ORR bifunctional electrocatalysts for efficient energy conversion.
Collapse
|