1
|
Kumar M, Sethi P, Shiekmydeen J, Rastogi S, Mahmood S, Chopra S, Thomas S, Kumar D, Bhatia A. A recent review on smart sensor-integrated wound dressings: Real-time monitoring and on-demand therapeutic delivery. Int J Biol Macromol 2025; 313:144251. [PMID: 40381780 DOI: 10.1016/j.ijbiomac.2025.144251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Wound management is a critical aspect of healthcare, necessitating continuous monitoring and timely interventions to ensure optimal healing outcomes. In recent years, the integration of sensor technology into wound dressings has emerged as a transformative approach, enabling real-time monitoring of healing parameters and facilitating on-demand treatment delivery. Sensor-based wound dressings leverage various sensing modalities, including temperature, pH, moisture, oxygen, and other biochemical markers, to provide comprehensive insights into the wound microenvironment. These dressings are equipped with miniaturized sensors capable of transmitting the data wirelessly, facilitating remote monitoring and timely interventions. Moreover, some advanced dressings incorporate responsive drug delivery systems, enabling the on-demand release of therapeutics based on real-time sensor feedback. Additionally, the incorporation of on-demand treatment mechanisms allows targeted delivery of therapeutics based on the specific needs of the wound, further enhancing the efficacy of the healing process. This comprehensive approach improves patient outcomes by promoting faster and more effective wound healing and reducing the burden through streamlined monitoring and treatment protocols. This paper presents an overview of recent advancements in sensor technology applied to wound healing, focusing on their role in monitoring wound parameters and delivering targeted therapy. These sensors leverage temperature, pH, and glucose sensing modalities to provide comprehensive insights into the healing process.
Collapse
Affiliation(s)
- Mohit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Pranshul Sethi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Jailani Shiekmydeen
- Formulation R&D, Alpha Pharma Industries, King Abdullah Economic City (KAEC), Rabigh, Saudi Arabia
| | - Sonali Rastogi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, PathumWan, Bangkok, Thailand
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281 406, U. P., India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
2
|
Zhang W, Azizi-Lalabadi M, Can Karaca A, Abedi-Firoozjah R, Assadpour E, Zhang F, Jafari SM. A review of bio-based dialdehyde polysaccharides as multifunctional building blocks for biomedical and food science applications. Int J Biol Macromol 2025; 309:142964. [PMID: 40210025 DOI: 10.1016/j.ijbiomac.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Food science and biomedical engineering are key disciplines related to human health, with the development of functional materials being an important research direction in both fields. In recent years, dialdehyde polysaccharides (DAPs), as green biopolymers, have become increasingly important in functional materials within food science and biomedical engineering. This work systematically summarizes the sources and properties of various DAPs, introduces their preparation methods and common DAP-based functional biomaterials, including hydrogels, scaffolds, films, coatings, nanoparticles, and nanofibers. Importantly, this work also reviews DAP applications in functional materials for food science and biomedical engineering, such as drug delivery, wound dressings, tissue engineering, food packaging films/edible coatings, food emulsions, antibacterial nanoparticles, and enzyme immobilization. Finally, the work briefly discusses the biosafety of DAPs. To conclude, this study provides a toolkit for developing functional materials in these fields and offers important reference value regarding the broad application of DAPs.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Reza Abedi-Firoozjah
- Student Research committee, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
4
|
Zhen C, Sun H, Ma M, Mu T, Garcia-Vaquero M. Applications of modified lignocellulose and its composites prepared by different pretreatments in biomedicine: A review. Int J Biol Macromol 2025; 301:140347. [PMID: 39870275 DOI: 10.1016/j.ijbiomac.2025.140347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.g. cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), etc., through a variety of physical, chemical and biological methods. The mechanical properties and biocompatibility of these products make them important as vital components in drug delivery agents and tissue engineering materials in the biomedical field. This review offers a comprehensive overview of the underexploited lignocellulosic biomass, the main pretreatment methods for converting it into valuable compounds, and the associated limitations. It also highlights the emerging applications of these compounds in the biomedical field, including sensors, wound dressings, excipients, and artificial skin. In addition, current commercialized products and related regulations are discussed, and future research advancements in this field are also envisaged.
Collapse
Affiliation(s)
- Cheng Zhen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Mengmei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Song F, Ye A, Jiang L, Lu Y, Feng Y, Huang R, Du S, Dong X, Huang T, Li P, Yang L, Zhang J, Xu M, Cheng L, Xiao J. Photothermal-enhanced silver nanocluster bioactive glass hydrogels for synergistic antimicrobial and promote wound healing. Mater Today Bio 2025; 30:101439. [PMID: 39896978 PMCID: PMC11785576 DOI: 10.1016/j.mtbio.2024.101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Antibacterial hydrogels are promising for combating infections and promoting wound healing. Nevertheless, excessive antibiotics induce resistance, and high metal ion levels cause cytotoxicity, complicating healing. Here, we introduce a hydrogel incorporating polydopamine-coated bioactive glass (BGs@PDA) on reduced graphene oxide (rGO) with photothermal therapy (PTT) and silver nanoclusters (AgNCs) for synergistic antibacterial treatment. This design enables rapid bacterial eradication and controlled release. Near-infrared-assisted heating provides noninvasive, targeted hyperthermia, killing bacteria quickly. Post-PTT addition of low-dose AgNCs reduces toxicity while enhancing antimicrobial efficacy and biocompatibility. BGs@PDA-loaded rGO prevents sedimentation, improves photothermal conversion and conductivity, and stabilizes the hydrogel structure. Constructed from chitosan and hydroxyethyl cellulose, the hydrogel is cross-linked by PDA and rGO, enhancing mechanical strength, adhesion, self-healing, free radical scavenging, and continuous wound exudate absorption. PDA encapsulation facilitates BGs degradation, improving the wound microenvironment. In vivo studies confirm accelerated healing and potent synergistic antibacterial effects, indicating its potential as a low-dose, antibiotic-free alternative for clinical wound infection management.
Collapse
Affiliation(s)
- Fuqiang Song
- Affiliated Cixi Hospital, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Anqi Ye
- Affiliated Cixi Hospital, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linyuan Jiang
- Affiliated Cixi Hospital, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Lu
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanzhen Feng
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rong Huang
- Affiliated Cixi Hospital, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Siting Du
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyu Dong
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ting Huang
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liangliang Yang
- Affiliated Cixi Hospital, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jinjing Zhang
- Affiliated Cixi Hospital, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Mengjia Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Li Cheng
- Affiliated Cixi Hospital, Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
6
|
Arockiasamy FS, Manoharan B, Santhi VM, Prakalathan K, Periasamy D, Dhandapani A, Natarajan V, Krishnasamy S, Thiagamani SMK, Ilyas R. Navigating the nano-world future: Harnessing cellulose nanocrystals from green sources for sustainable innovation. Heliyon 2025; 11:e41188. [PMID: 39811333 PMCID: PMC11730545 DOI: 10.1016/j.heliyon.2024.e41188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Cellulose nanocrystals (CNCs) are a class of materials that have received significant attention in recent years due to their unique properties and potential applications. CNCs are extracted from plant fibers and possess high strength, stiffness, and biocompatibility, making them attractive materials for use in various fields such as biomedical engineering, renewable energy, and nanotechnology. This provides an in-depth discussion of the extraction, characterization, and promising applications of CNCs. Furthermore, it discusses the sources of CNCs and the methods used for their extraction as well as the common techniques used to characterize their properties. This work also highlights various applications of CNCs and their advantages over other materials. The challenges associated with the use of CNCs and the current research efforts to address these challenges were analyzed. In addition, the potential future directions and applications for CNCs were discussed. This review article aims to provide a comprehensive understanding of CNCs and their potential as versatile and sustainable materials.
Collapse
Affiliation(s)
- Felix Sahayaraj Arockiasamy
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, 641402, India
| | - Bharathi Manoharan
- Department of Aeronautical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, 641402, India
| | - Vivek Mariappan Santhi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - K. Prakalathan
- Department of Plastic Technology, Central Institute of Petrochemicals Engineering & Technology, Chennai, 600 032, Tamil Nadu, India
| | - Diwahar Periasamy
- Department of Plastic Technology, Central Institute of Petrochemicals Engineering & Technology, Chennai, 600 032, Tamil Nadu, India
| | - Aravind Dhandapani
- University Science Instrumentation Centre, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Varagunapandiyan Natarajan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamil Nadu, India
| | - Senthil Muthu Kumar Thiagamani
- Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia
- Department of Mechanical Engineering, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - R.A. Ilyas
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, 81310, Malaysia
| |
Collapse
|
7
|
Kumawat A, Dave S, Varghese S, Patel B, Ghoroi C. Iron Nano Biocomposite-Infused Biopolymeric Films: A Multifunctional Approach for Robust Skin Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30819-30832. [PMID: 38845592 DOI: 10.1021/acsami.4c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Sodium alginate (SA) biopolymeric films have various limitations such as poor mechanical properties, high vapor permeability, lack of antibacterial activity, excessive burst release, and weak cell adhesion. To overcome these limitations, a strategy involving the integration of nanofillers into an SA film matrix is explored. In this context, a cost-effective iron-containing carbon nano biocomposite (FeCNB) nanofiller is developed using a solvent-free technique. This nanocomposite is successfully incorporated into the alginate film matrix at varying concentrations (0.05, 0.1, and 0.15%) aimed at enhancing its physicochemical and biological properties for biomedical applications. Characterization through FESEM and BET analyses confirms the porous nature of the FeCNB. EDX shows the FeCNB's uniform distribution upon its integration into the film matrix, albeit without strong chemical interaction with SA. Instead, hydrogen bonding interactions become apparent in the FTIR spectra. By incorporating the FeCNB, the mechanical attributes of the films are improved and the water vapor permeability approaches the desired range (2000-2500 g/m2day). The film's swelling ratio reduction contributes to a decrease in water permeability. The antibacterial activity and sustained release property of the FeCNB-incorporated film are established using tetracycline hydrochloride (TCl), a model drug. The drug release profile resembled Korsmeyer-Peppas's release pattern. In vitro assessments via the MTT assay and scratch assay on NIH-3T3 cells reveal that FeCNB has no adverse effects on the biocompatibility of alginate films. The cell proliferation and adhesion to the SA film are significantly enhanced after infusion of the FeCNB. The in vivo study performed on the rat model demonstrates improved wound healing by FeCNB-impregnated films. Based on the comprehensive findings, the proposed FeCNB-incorporated alginate films prove to be a promising candidate for robust skin repair.
Collapse
Affiliation(s)
- Akshant Kumawat
- DryProTech Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Srusti Dave
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat 382007, India
| | - Sophia Varghese
- DryProTech Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Bhoomika Patel
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat 382007, India
| | - Chinmay Ghoroi
- DryProTech Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
8
|
Yaron JR, Gosangi M, Pallod S, Rege K. In situ light-activated materials for skin wound healing and repair: A narrative review. Bioeng Transl Med 2024; 9:e10637. [PMID: 38818119 PMCID: PMC11135152 DOI: 10.1002/btm2.10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 06/01/2024] Open
Abstract
Dermal wounds are a major global health burden made worse by common comorbidities such as diabetes and infection. Appropriate wound closure relies on a highly coordinated series of cellular events, ultimately bridging tissue gaps and regenerating normal physiological structures. Wound dressings are an important component of wound care management, providing a barrier against external insults while preserving the active reparative processes underway within the wound bed. The development of wound dressings with biomaterial constituents has become an attractive design strategy due to the varied functions intrinsic in biological polymers, such as cell instructiveness, growth factor binding, antimicrobial properties, and tissue integration. Using photosensitive agents to generate crosslinked or photopolymerized dressings in situ provides an opportunity to develop dressings rapidly within the wound bed, facilitating robust adhesion to the wound bed for greater barrier protection and adaptation to irregular wound shapes. Despite the popularity of this fabrication approach, relatively few experimental wound dressings have undergone preclinical translation into animal models, limiting the overall integrity of assessing their potential as effective wound dressings. Here, we provide an up-to-date narrative review of reported photoinitiator- and wavelength-guided design strategies for in situ light activation of biomaterial dressings that have been evaluated in preclinical wound healing models.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
| | - Mallikarjun Gosangi
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Shubham Pallod
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
- Chemical Engineering, Arizona State UniversityTempeArizonaUSA
| |
Collapse
|
9
|
Zhang J, Wang M, Yuan H, Zeng XF, Wang JX, Le Y. Accelerated Wound Healing by Electrospun Multifunctional Fibers with Self-Powered Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9134-9143. [PMID: 38636482 DOI: 10.1021/acs.langmuir.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Wound healing has been a persistent clinical challenge for a long time. Electrical stimulation is an effective therapy with the potential to accelerate wound healing. In this work, the self-powered electrospun nanofiber membranes (triples) were constructed as multifunctional wound dressings with electrical stimulation and biochemical capabilities. Triple was composed of a hydrolyzable inner layer with antiseptic and hemostatic chitosan, a hydrophilic core layer loaded with conductive AgNWs, and a hydrophobic outer layer fabricated by self-powered PVDF. Triple exhibited presentable wettability and acceptable moisture permeability. Electrical performance tests indicated that triple can transmit electrical signals formed by the piezoelectric effect to the wound. High antibacterial activities were observed for triple against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, with inhibition rates of 96.52, 98.63, and 97.26%, respectively. In vitro cell assays demonstrated that triple cells showed satisfactory proliferation and mobility. A whole blood clotting test showed that triple can enhance hemostasis. The innovative self-powered multifunctional fibers presented in this work offer a promising approach to addressing complications and expediting the promotion of chronic wound healing.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Manting Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hua Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
10
|
Wang W, Yu Q, Shao Z, Guo Y, Wang Y, Yang Y, Zhao W, Zhao C. Exudate-Induced Gelatinizable Nanofiber Membrane with High Exudate Absorption and Super Bactericidal Capacity for Bacteria-Infected Wound Management. Adv Healthc Mater 2024; 13:e2303293. [PMID: 38060135 DOI: 10.1002/adhm.202303293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Invasion of bacteria and continuous oozing of exudate are significant causes of interference with the healing of infected wounds. Therefore, an exudate-induced gelatinizable and near-infrared (NIR)-responsive nanofiber membrane composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMC), and Fe-doped phosphomolybdic acid (Fe-PMA) with exceptional exudate absorption capacity and potent bactericidal efficacy is developed and denoted as the PVA-FP-CMC membrane. After absorbing exudate, the fiber membrane can transform into a hydrogel membrane, forming coordination bonds between the Fe-PMA and CMC. The unique exudate-induced gelation process imparts the membrane with high exudate absorption and retention capability, and the formed hydrogel also traps the bacteria that thrive in the exudate. Moreover, it is discovered for the first time that the Fe-PMA exhibits an enhanced photothermal conversion capability and photocatalytic activity compared to the PMA. Therefore, the presence of Fe-PMA provides the membrane with a photothermal and photodynamic therapeutic effect for killing bacteria. The PVA-FP-CMC membrane is proven with a liquid absorption ratio of 520.7%, a light-heat conversion efficiency of 41.9%, high-level generation of hydroxyl radical (•OH) and singlet oxygen (1O2), and a bacterial killing ratio of 100% for S. aureus and 99.6% for E. coli. The treatment of infected wounds on the backs of rats further confirms the promotion of wound healing by the PVA-FP-CMC membrane with NIR irradiation. Overall, this novel functional dressing for the synergistic management of bacteria-infected wounds presents a promising therapeutic strategy for tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ye Yang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Hao X, Tang Y, Zhang R, Wang Z, Gao M, Wei R, Zhao Y, Mu X, Lu Y, Zhou X. Cationized orthogonal triad as a photosensitizer with enhanced synergistic antimicrobial activity. Acta Biomater 2024; 178:287-295. [PMID: 38395101 DOI: 10.1016/j.actbio.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Single-molecule-based synergistic phototherapy holds great potential for antimicrobial treatment. Herein, we report an orthogonal molecular cationization strategy to improve the reactive oxygen species (ROS) and hyperthermia generation of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Cationic pyridine (Py) is introduced at the meso‑position of the asymmetric Cy7 with intramolecular charge transfer (ICT) to construct an atypical electron-transfer triad, which reduces ΔES1-S0, circumvents rapid charge recombination, and simultaneously enhances intersystem crossing (ISC) based on spin-orbit charge-transfer ISC (SOCT-ISC) mechanism. This unique molecular construction produces anti-Stokes luminescence (ASL) because the rotatable CN bond enriched in high vibrational-rotational energy levels improves hot-band absorption (HBA) efficiency. The obtained triad exhibits higher singlet oxygen quantum yield and photothermal conversion efficiency compared to indocyanine green (ICG) under irradiation above 800 nm. Cationization with Py enables the triad to target bacteria via intense electrostatic attractions, as well as biocidal property against a broad spectrum of bacteria in the dark. Moreover, the triad under irradiation can enhance biofilm eradication performance in vitro and statistically improve healing efficacy of MRSA-infected wound in mice. Thus, this work provides a simple but effective strategy to design small-molecule photosensitizers for synergistic phototherapy of bacterial infections. STATEMENT OF SIGNIFICANCE: We developed an orthogonal molecular cationization strategy to enhance the reactive oxygen species and thermal effects of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Specifically, cationic pyridine (Py) was introduced at the meso‑position of the asymmetric Cy7 to construct an atypical electron-transfer triad, which reduced ΔES1-S0, circumvented rapid charge recombination, and simultaneously enhanced intersystem crossing (ISC). This triad, with a rotatable CN bond, produced anti-Stokes luminescence due to hot-band absorption. The triad enhanced antimicrobial performance and statistically improved the healing efficacy of MRSA-infected wounds in mice. This site-specific cationization strategy may provide insights into the design of small molecule-based photosensitizers for synergistic phototherapy of bacterial infections.
Collapse
Affiliation(s)
- Xiaoying Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, PR China
| | - Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ran Wei
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yongxian Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
12
|
Li Y, Han Y, Li H, Niu X, Zhang D, Wang K. Antimicrobial Hydrogels: Potential Materials for Medical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304047. [PMID: 37752779 DOI: 10.1002/smll.202304047] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Microbial infections based on drug-resistant pathogenic organisms following surgery or trauma and uncontrolled bleeding are the main causes of increased mortality from trauma worldwide. The prevalence of drug-resistant pathogens has led to a significant increase in medical costs and poses a great threat to the normal life of people. This is an important issue in the field of biomedicine, and the emergence of new antimicrobial materials hydrogels holds great promise for solving this problem. Hydrogel is an important material with good biocompatibility, water absorption, oxygen permeability, adhesion, degradation, self-healing, corrosion resistance, and controlled release of drugs as well as structural diversity. Bacteria-disturbing hydrogels have important applications in the direction of surgical treatment, wound dressing, medical device coating, and tissue engineering. This paper reviews the classification of antimicrobial hydrogels, the current status of research, and the potential of antimicrobial hydrogels for one application in biomedicine, and analyzes the current research of hydrogels in biomedical applications from five aspects: metal-loaded hydrogels, drug-loaded hydrogels, carbon-material-loaded hydrogels, hydrogels with fixed antimicrobial activity and biological antimicrobial hydrogels, and provides an outlook on the high antimicrobial activity, biodegradability, biocompatibility, injectability, clinical applicability and future development prospects of hydrogels in this field.
Collapse
Affiliation(s)
- Yanni Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
13
|
Zhi H, Wang F, Zhang X, Cai Q, Chen M, Shi Y, Feng L. Green, pH-Sensitive, Highly Stretchable, and Hydrogen Bond-Dominated Ionogel for Wound Healing Activity. ACS APPLIED BIO MATERIALS 2024; 7:498-507. [PMID: 38149601 DOI: 10.1021/acsabm.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Traditional hydrogel dressings generally have poor mechanical properties and stability when subjected to external stress due to the undesirable chain entanglement structure of their single valence bond compositions. Therefore, it is particularly important to develop a type of gel dressing with good mechanical strength, stability, and environment-friendly monitoring. In this work, a transparent, pH-sensitive, highly stretchable, and biocompatible anthocyanidin ionogel dressing was prepared, realizing green and accurate detection. Attributed to the antibacterial activity of the ionic liquid, the biocompatibility of the pectin, and the ability to scavenge free radicals of the anthocyanidin, the ionogel dressing exhibited excellent re-epithelialization in the 14 day wound healing process. Besides, changes in pH values monitoring of the ionogel over 3 days coincided with normal wound exudate. The obtained ionogel also showed good water retention, swelling properties, mechanical stretchability, and 5 week stability, illustrating great potential in wound dressings.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qinxin Cai
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Meng Chen
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yushu Shi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
14
|
Chang R, Zhao D, Zhang C, Liu K, He Y, Guan F, Yao M. PMN-incorporated multifunctional chitosan hydrogel for postoperative synergistic photothermal melanoma therapy and skin regeneration. Int J Biol Macromol 2023; 253:126854. [PMID: 37729986 DOI: 10.1016/j.ijbiomac.2023.126854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Melanoma excision surgery is usually accompanied by neoplasm residual, tissue defect, and bacterial infection, resulting in high tumor recurrence and chronic wound. Nanocomposite hydrogels can satisfy the twin requirements of avoiding tumor recurrence and skin wound healing following skin melanoma surgery due to their photothermal anti-tumor and anti-bacterial activities. In this study, carboxymethyl chitosan, oxidized fucoidan and polyphenol-metal nanoparticle (PMN) of tannic acid capped gold nanoparticles were used to fabricate multifunctional nanocomposite hydrogels through Schiff base reaction. The prepared hydrogel demonstrated outstanding photothermal effect, and the controlled high temperature will rapidly kill melanoma cells as well as bacteria within 10 min. Good injectability, self-healing and adhesion combined with high reactive oxygen species (ROS) scavenging capacity, hemostasis and biocompatibility made this hydrogel platform perfect for the postoperative treatment of melanoma and promoting wound healing. With the assistance of NIR irradiance, hydrogel can inhibit tumor tissue proliferation and promote tumor cell apoptosis, thereby helping to prevent melanoma recurrence after surgical removal of tumors. Simultaneously, the irradiance heat and polyphenol component kill bacteria on the wound surface, eliminate ROS, inhibit inflammatory responses, and promote angiogenesis, collagen deposition, and skin regeneration, all of which help to speed up wound healing.
Collapse
Affiliation(s)
- Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Donghui Zhao
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Gao Q, Chen Z, Yang X. A Temperature and pH Dual-Sensitive Multifunctional Polyurethane with Bacteria-Triggered Antibacterial Activity. Macromol Rapid Commun 2023; 44:e2300453. [PMID: 37800610 DOI: 10.1002/marc.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
An effective and practical antibacterial strategy is to design multifunctional and stimuli-responsive materials that exhibit antibacterial activity in response to bacterial triggers. In this study, because the metabolism of Staphylococcus aureus (S. aureus) can acidify the surrounding environment and pH level can affect the lower critical solution temperature of temperature/pH dual-sensitive polymers, a monomer containing a temperature-sensitive N-isopropyl amide derivative and pH-sensitive tertiary amine groups is first synthesized. Then, the monomer is copolymerized with a polyurethane chain, and partial tertiary amine groups are quaternized to obtain bactericidal activity. The modified polyurethane exhibits temperature/pH sensitivity, antibacterial adhesion activity, bactericidal activity, and good cytocompatibility. An in situ investigation of bacterial behavior and pH changes in the bacterial suspension during the process confirms that the temperature/pH dual-sensitive polyurethane successfully achieves antibacterial activity though the metabolic activity of S. aureus without external intervention. This design concept provides a new perspective for antibacterial material design.
Collapse
Affiliation(s)
- Qinwei Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zhaobin Chen
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
16
|
Falsafi SR, Topuz F, Rostamabadi H. Dialdehyde carbohydrates - Advanced functional materials for biomedical applications. Carbohydr Polym 2023; 321:121276. [PMID: 37739495 DOI: 10.1016/j.carbpol.2023.121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Dialdehyde carbohydrates (DCs) have found applications in a wide range of biomedical field due to their great versatility, biocompatibility/biodegradability, biological properties, and controllable chemical/physical characteristics. The presence of dialdehyde groups in carbohydrate structure allows cross-linking of DCs to form versatile architectures serving as interesting matrices for biomedical applications (e.g., drug delivery, tissue engineering, and regenerative medicine). Recently, DCs have noticeably contributed to the development of diverse physical forms of advanced functional biomaterials i.e., bulk architectures (hydrogels, films/coatings, or scaffolds) and nano/-micro formulations. We underline here the current scientific knowledge on DCs, and demonstrate their potential and newly developed biomedical applications. Specifically, an update on the synthesis approach and functional/bioactive attributes is provided, and the selected in vitro/in vivo studies are reviewed comprehensively as examples of the latest progress in the field. Moreover, safety concerns, challenges, and perspectives towards the application of DCs are deliberated.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
17
|
Tang X, Wang Z, Wang M, Zhou S, Chen J, Xu S. Nanoarchitectonics of cellulose nanocrystal conjugated with a tetrasaccharide-glycoprobe for targeting oligodendrocyte precursor cells. Carbohydr Polym 2023; 317:121086. [PMID: 37364956 DOI: 10.1016/j.carbpol.2023.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Demyelination is a serious complication of neurological disorders, which can be reversed by oligodendrocyte precursor cell (OPC) as the available source of myelination. Chondroitin sulfate (CS) plays key roles in neurological disorders, which still attracted less attention on how CS modulates the fate of OPCs. Nanoparticle coupled with glycoprobe is a potential strategy for investigating the carbohydrate-protein interaction. However, there is lack of CS-based glycoprobe with enough chain length that interact with protein effectively. Herein, we designed a responsive delivery system, in which CS was the target molecule, and cellulose nanocrystal (CNC) was the penetrative nanocarrier. A coumarin derivative (B) was conjugated at the reducing end of an unanimal-sourced chondroitin tetrasaccharide (4mer). This glycoprobe (4B) was grafted to the surface of a rod-like nanocarrier, which had a crystalline core and a poly(ethylene glycol) shell. This glycosylated nanoparticle (N4B-P) displayed a uniform size, improved water-solubility, and responsive release of glycoprobe. N4B-P displayed strong green fluorescence and good cell-compatibility, which imaged well the neural cells including astrocytes and OPCs. Interestingly, both of glycoprobe and N4B-P were internalized selectively by OPCs when they were incubated in astrocytes/OPCs mixtures. This rod-like nanoparticle would be a potential probe for studying carbohydrate-protein interaction in OPCs.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhuqun Wang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Maosen Wang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Shuyu Zhou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinghua Chen
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Shuqin Xu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
18
|
El-Sayed NS, Hashem AH, Khattab TA, Kamel S. New antibacterial hydrogels based on sodium alginate. Int J Biol Macromol 2023; 248:125872. [PMID: 37482158 DOI: 10.1016/j.ijbiomac.2023.125872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Nowadays, the combined knowledge and experience in biomedical research and material sciences results in the innovation of smart materials that could efficiently overcome the problems of microbial contaminations. Herein, a new drug delivery platform prepared by grafting sodium alginate with β-carboxyethyl acrylate and acrylamide was described and characterized. 9-Aminoacridine (9-AA), and kanamycin sulfate (KS) were separately loaded into the hydrogel in situ during graft polymerization. The grafting efficiency for the resulting hydrogels was 70.01-78.08 %. The chemical structure of the hydrogels, thermogravimetric analysis, and morphological features were investigated. The swelling study revealed that the hydrogel without drugs achieved a superior swelling rate compared to drug-loaded hydrogels. The hydrogel tuned the drug-release rate in a pH-dependent manner. Furthermore, the antibacterial study suggested that the hydrogels encapsulating 9-AA (88.6 %) or KS (89.3 %) exhibited comparable antibacterial activity against Gram-positive and Gram-negative bacterial strains. Finally, the cytocompatibility study conducted on normal lung cell line (Vero cells) demonstrated neglectable to tolerable toxicity for the drug-loaded hydrogel. More interestingly, the cell viability for the blank hydrogel was 92.5 %, implying its suitability for biomedical applications.
Collapse
Affiliation(s)
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, P.O. 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo, P.O. 12622, Egypt
| |
Collapse
|
19
|
Wang X, Jia J, Niu M, Li W, Zhao Y. Living Chinese Herbal Scaffolds from Microfluidic Bioprinting for Wound Healing. RESEARCH (WASHINGTON, D.C.) 2023; 6:0138. [PMID: 37228634 PMCID: PMC10204746 DOI: 10.34133/research.0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Biological scaffolds have been widely employed in wound healing applications, while their practical efficiency is compromised by insufficient oxygen delivery to the 3-dimensional constructs and inadequate nutrient supply for the long-term healing process. Here, we present an innovative living Chinese herbal scaffold to provide a sustainable oxygen and nutrient supply for promoting wound healing. Through a facile microfluidic bioprinting strategy, a traditional Chinese herbal medicine (Panax notoginseng saponins [PNS]) and a living autotrophic microorganism (microalgae Chlorella pyrenoidosa [MA]) were successfully encapsulated into the scaffolds. The encapsulated PNS could be gradually released from the scaffolds, which promoted cell adhesion, proliferation, migration, and tube formation in vitro. In addition, benefiting from the photosynthetic oxygenation of the alive MA, the obtained scaffolds would produce sustainable oxygen under light illumination, exerting a protective effect against hypoxia-induced cell death. Based on these features, we have demonstrated through in vivo experiments that these living Chinese herbal scaffolds could efficiently alleviate local hypoxia, enhance angiogenesis, and thereby accelerate wound closure in diabetic mice, indicating their great potential in wound healing and other tissue repair applications.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health),
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jinxuan Jia
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health),
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Mengying Niu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health),
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Wenzhao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health),
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health),
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center,
Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Han Z, Yuan M, Liu L, Zhang K, Zhao B, He B, Liang Y, Li F. pH-Responsive wound dressings: advances and prospects. NANOSCALE HORIZONS 2023; 8:422-440. [PMID: 36852666 DOI: 10.1039/d2nh00574c] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wound healing is a complex and dynamic process, in which the pH value plays an important role in reflecting the wound status. Wound dressings are materials that are able to accelerate the healing process. Among the multifunctional advanced wound dressings developed in recent years, pH-responsive wound dressings, especially hydrogels, show great potential owing to their unique properties of adjusting their functions according to the wound conditions, thereby allowing the wound to heal in a regulated manner. However, a comprehensive review of pH-responsive wound dressings is lacking. This review summarizes the design strategies and advanced functions of pH-responsive hydrogel wound dressings, including their excellent antibacterial properties and significant pro-healing abilities. Other advanced pH-responsive materials, such as nanofibers, composite films, nanoparticle clusters, and microneedles, are also classified and discussed. Next, the pH-monitoring functions of pH-responsive wound dressings and the related pH indicators are summarized in detail. Finally, the achievements, challenges, and future development trends of pH-responsive wound dressings are discussed.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Lubin Liu
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Kaiyue Zhang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266000, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| |
Collapse
|