1
|
Adegoke KA, Okeke ES, Omotola EO, Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO. Porous MIL, ZIF, and UiO metal-organic frameworks for adsorption of pharmaceuticals and personal care products. Adv Colloid Interface Sci 2025; 342:103509. [PMID: 40239420 DOI: 10.1016/j.cis.2025.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Pharmaceuticals and personal care products (PPCPs) are a newly identified category of emerging global pollutants often found in aquatic systems. Efficient removal of these pollutants from the water/wastewater is currently problematic because of their low biodegradability and high hydrophilicity, as well as their distinct physicochemical features and lower concentrations. Materials of Institut Lavoisier (MIL), Zeolitic imidazolate framework (ZIF), and University of Oslo (UiO) are highly engineered metal-organic frameworks (MOFs) composed of unique components necessary for the formation of crystals with exceptional porosity, large surface areas, large pore sizes, crystalline structures, tunable properties, excellent chemical and thermal stability for environmental remediation. This study provides detailed and combined applications of UiOs, MILs, and ZIFs as adsorbents for capturing the new class of emerging pollutants (PPCPs) from the liquid phase. MOFs as ideal candidates for PPCP decontamination were discussed, followed by the MOF porosity and factors that affect MOF stability. Various synthetic approaches for MILs, ZIFs, and UiOs were discussed, as well as their corresponding pros and cons. An in-depth performance of these three MOFs for adsorptive removal of PPCPs from the liquid phase was discussed, assessing the state-of-the-art for specific applications and the effectiveness of UiOs, MILs, and ZIFs as adsorbents for PPCP decontamination . The unique performance garnered from the study provided a way forward/potential for real-life/practical applications of these sorbents and insight into corresponding mechanisms and synergistic relationships. To foster the advancement of the field, viable shortcomings and strengths associated with these novel classes of MOFs, treatment options, and knowledge gaps to explore specific research directives for large-scale or industrial-scale applications were highlighted.
Collapse
Affiliation(s)
- Kayode Adesina Adegoke
- LAUTECH SDG 6 (Clean Water and Sanitation Research Group), Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; School of Pharmacy, Faculty of Sciences, University of Waterloo, 10A Victoria St. S. Kitchener, Ontario, N2G 1C5, Canada
| | | | - Chinemerem Ruth Ohoro
- Department of Environmental Science, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa. Florida 1710, Roodepoort, Gauteng, South Africa
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
2
|
Bhomick P, Ivanovska EH, Mahmoud LAM, Doan HV, Terry LR, Addicoat MA, Rowlandson JL, Rochat S, Ting VP, Nayak S. Iron-Based Metal-Organic Frameworks and Their Polymer Composites for Sustainable Delivery of Herbicides. ACS OMEGA 2025; 10:9051-9061. [PMID: 40092778 PMCID: PMC11904714 DOI: 10.1021/acsomega.4c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Sustainable agriculture will play a key role in ensuring food security for the rising global population. Controlled and precision delivery of agrochemicals, such as herbicides and pesticides, plays a critical role in sustainable agriculture. Recently, porous metal-organic frameworks (MOFs) have shown promising results for controlled agrochemical delivery. Because of their low toxicity and biocompatibility, iron-based metal-organic frameworks (Fe-MOFs) are highly suitable for applications in agriculture over many other MOFs. In this study, two iron-based MOFs, MIL-101(Fe) and NH2-MIL-101(Fe), and their biodegradable polymer composites were studied for controlled herbicide delivery. Two herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA), were postsynthetically loaded into these two Fe-MOFs and incorporated into a biodegradable polycaprolactone (PCL) matrix to form composite membranes for ease of handling and delivery. MIL-101(Fe) showed loading capacities of 18.06 and 21.51 wt %, respectively, for 2,4-D and MCPA, while for NH2-MIL-101(Fe), the loading capacities for the same herbicides were 26.61 and 23.32 wt %. Despite high loading capacity, both MOFs showed a certain degree of degradation during herbicide loading. The release of 2,4-D and MCPA from MIL-101(Fe) and NH2-MIL-101(Fe) and their PCL composites were studied using UV-visible spectroscopy over a nine-day period. NH2-MIL-101(Fe) and its PCL composite demonstrated slower and more controlled release profiles of the herbicides compared to MIL-101(Fe) and its composites. The results were also corroborated by computational studies, which showed stronger interactions of the herbicides with NH2-MIL-101(Fe).
Collapse
Affiliation(s)
- Parimal
C. Bhomick
- Bristol
Composites Institute, Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, U.K.
- Department
of Chemistry, Nagaland University, Lumami Campus, Lumami, Nagaland 798627, India
- School
of Electrical, Electronic and Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, U.K.
- Research
School of Chemistry, Australian National
University, Canberra, Australian Capital Territory 2601, Australia
| | - Evdokiya H. Ivanovska
- School
of Archaeological and Forensic Sciences, University of Bradford, Bradford BD7 1DP, U.K.
| | | | - Huan V. Doan
- Research
School of Chemistry, Australian National
University, Canberra, Australian Capital Territory 2601, Australia
| | - Lui R. Terry
- Bristol
Composites Institute, Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, U.K.
- School
of Civil, Aerospace and Design Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, U.K.
| | - Matthew A. Addicoat
- School
of Science and Technology, Nottingham Trent
University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Jemma L. Rowlandson
- School
of Electrical, Electronic and Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, U.K.
| | - Sebastien Rochat
- School
of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1TR, U.K.
| | - Valeska P. Ting
- Bristol
Composites Institute, Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, U.K.
- Research
School of Chemistry, Australian National
University, Canberra, Australian Capital Territory 2601, Australia
| | - Sanjit Nayak
- Bristol
Composites Institute, Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, U.K.
- School
of Civil, Aerospace and Design Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, U.K.
| |
Collapse
|
3
|
Li Y, Tang Y, Ding Y, Lyu Y, Su W, Nadeem M, Zhang P, Rui Y. Carboxymethyl Cellulose Surface Modification Alleviates the Toxicity of Fe-MOFs to Rice and Improves Iron Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:336. [PMID: 40072139 PMCID: PMC11901664 DOI: 10.3390/nano15050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Iron-based metal-organic frameworks (Fe-MOFs) are widely used for agricultural chemical delivery due to their high loading capacity, and they also have the potential to provide essential iron for plant growth. Therefore, they hold significant promise for agricultural applications. Evaluating the plant biotoxicity of Fe-MOFs is crucial for optimizing their use in agriculture. In this study, we used the natural biomacromolecule carboxymethyl cellulose (CMC) to encapsulate the Fe-MOF NH2-MIL-101 (Fe) (MIL). Through hydroponic experiments, we investigated the biotoxic effects of Fe-MOFs on rice before and after CMC modification. The results show that the accumulation of iron in rice is dependent on the dose and the exposure concentration of Fe-MOFs. CMC modification (MIL@CMC) can reduce the release rate of Fe ions from Fe-MOFs in aqueous solutions with different pH values (5 and 7). Furthermore, MIL@CMC treatment significantly increases the absorption of iron by both the aboveground and root parts of rice. MIL@CMC significantly alleviated the growth inhibition of rice seedlings and increased the aboveground biomass of rice under medium- to high-exposure conditions. Specifically, in rice roots, MIL induced a more intense oxidative stress response, with significant increases in the activities of related antioxidant enzymes (CAT, POD, and SOD) and MDA content. Our results demonstrated that the encapsulation of NH2-MIL-101(Fe) using CMC effectively alleviated oxidative damage and promoted the uptake and growth of iron in rice. These findings suggest that rational modification can have a positive effect on reducing the potential phytotoxicity of MOFs and improving their biosafety in agricultural applications.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Yanru Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Yaping Lyu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Wenhao Su
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Muhammad Nadeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
4
|
Xie W, Fu Q, Yang LZ, Yan L, Zhang J, Zhao X. Methane Storage and Purification of Natural Gas in Metal-Organic Frameworks. CHEMSUSCHEM 2025; 18:e202401382. [PMID: 39196965 DOI: 10.1002/cssc.202401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Natural gas, primarily composed of methane (CH4), represent an excellent choice for a potentially sustainable renewable energy transition. However, the process of compressing and liquefying CH4 for transport and storage typically results in significant energy losses. In addition, in order to optimize its efficacy as a fuel, the CH4 content of natural gas needs to be increased to a level of at least 97 % to ensure its quality and efficiency in various applications. Metal-organic frameworks (MOFs) represent a novel category of porous materials that possess exceptional capability in modifying pore size and chemical environment, making them ideally suited for the storage of CH4 and the adsorption of propane (C3H8), ethane (C2H6), carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S) to facilitate the purification process of CH4 from natural gas. In this paper, we systematically summarize the mechanism by which MOF materials facilitate the storage of CH4 and the purification of CH4 from natural gas, leveraging the structural characteristics inherent to MOF materials. The focus of further research should also be directed towards the investigation of CH4 storage by flexible MOFs, the resolution of the trade-off dilemma, and the commercial application of MOFs.
Collapse
Affiliation(s)
- Wenpeng Xie
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiuju Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling-Zhi Yang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuebo Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
5
|
Shao Y, Wang S, Huang L, Ju S, Fan X, Li W. Adsorption and Diffusion of CH 4, N 2, and Their Mixture in MIL-101(Cr): A Molecular Simulation Study. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:4466-4482. [PMID: 39691474 PMCID: PMC11647892 DOI: 10.1021/acs.jced.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 12/19/2024]
Abstract
A comprehensive quantitative grasp of methane (CH4), nitrogen (N2), and their mixture's adsorption and diffusion in MIL-101(Cr) is crucial for wide and important applications, e.g., natural gas upgrading and coal-mine methane capturing. Previous studies often overlook the impact of gas molecular configuration and MIL-101 topology structure on adsorption, lacking quantitative assessment of primary and secondary adsorption sites. Additionally, understanding gas mixture adsorption mechanisms remains a research gap. To bridge this gap and to provide new knowledge, we utilized Monte Carlo and molecular dynamics simulations for computing essential MIL-101 properties, encompassing adsorption isotherms, density profiles, self-diffusion coefficients, radial distribution function (RDF), and CH4/N2 selectivity. Several novel and distinctive findings are revealed by the atomic-level analysis, including (1) the significance of C=C double bond of the benzene ring within MIL-101 for CH4 and N2 adsorption, with Cr and O atoms also exerting notable effects. (2) Density distribution analysis reveals CH4's preference for large and medium cages, while N2 is evenly distributed along pentagonal and triangular window edges and small tetrahedral cages. (3) Calculations of self-diffusion and diffusion activation energies suggest N2's higher mobility within MIL-101 compared to CH4. (4) In the binary mixture, the existence of CH4 can decrease the diffusion coefficient of N2. In summary, this investigation provides valuable microscopic insights into the adsorption and diffusion phenomena occurring in MIL-101, thereby contributing to a comprehensive understanding of its potential for applications, e.g., natural gas upgrading and selective capture of coal-mine methane.
Collapse
Affiliation(s)
- Yimin Shao
- Institute
for Materials and Processes, School of Engineering,
The University of Edinburgh, Edinburgh EH9 3FB, Scotland, U.K.
| | - Shanshan Wang
- College
of Chemical Engineering, International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing, Jiangsu 210037, P.R. China
| | - Liangliang Huang
- School
of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shenghong Ju
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Xianfeng Fan
- Institute
for Materials and Processes, School of Engineering,
The University of Edinburgh, Edinburgh EH9 3FB, Scotland, U.K.
| | - Wei Li
- Institute
for Materials and Processes, School of Engineering,
The University of Edinburgh, Edinburgh EH9 3FB, Scotland, U.K.
| |
Collapse
|
6
|
Wang T, Zhang Y, Zheng W, Lin E, Deng C, Geng S, Chen Y, Cheng P, Zhang Z. Fabricating a Robust Ultramicroporous Metal-Organic Framework for Purifying Natural Gas and Coal Mine Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407701. [PMID: 39422047 DOI: 10.1002/smll.202407701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Purifying methane (CH4) from natural gas and coal mine methane (CMM) is of great significance but challenging in the chemical industry. Herein, a robust ultramicroporous metal-organic framework (MOF) is reported, which can be synthesized on a gram scale by stirring under room temperature. Single-component adsorption isotherms of gases (CH4, ethane (C2H6), propane (C3H8), nitrogen (N2)) and breakthrough experiments indicate that the MOF can separate CH4 efficiently from CH4/C2H6/C3H8 ternary mixture, with super high purity-CH4 production of 154.7 cm3 g-1. Additionally, the MOF shows higher CH4 capacity than N2, resulting in excellent separation performance for the CH4/N2 mixture. Notably, the binding sites of gases can be precisely determined by single-crystal X-ray data, further confirmed by molecular simulation. It is found that there are multiple hydrogen bonds and C─H···π interactions between the gases and the framework. This work offers an excellent candidate material for CH4 purification with both high capacity and separation efficiency.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Wenqi Zheng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - En Lin
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Chenghua Deng
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois, 60637, USA
| | - Shubo Geng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yao Chen
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Zhou Y, Zhu Y, Song D, Ji Z, Chen C, Wu M. Robust Two-Dimensional Hydrogen-Bonded Organic Framework for Efficient Separation of C1-C3 Alkanes. CHEM & BIO ENGINEERING 2024; 1:846-854. [PMID: 39974578 PMCID: PMC11835276 DOI: 10.1021/cbe.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 02/21/2025]
Abstract
Separating natural gas to obtain high-quality C1-C3 alkanes is an imperative process for supplying clean energy sources and high valued petrochemical feedstocks. However, developing adsorbents which can efficiently distinguish CH4, C2H6, and C3H8 molecules remains challenging. We herein report an ultra-stable layered hydrogen-bonded framework (HOF-NBDA), which features differential affinities and adsorption capacities for CH4, C2H6, and C3H8 molecules, respectively. Breakthrough experiments on ternary component gas mixture show that HOF-NBDA can achieve efficient separation of CH4/C2H6/C3H8 (v/v/v, 85/7.5/7.5). More importantly, HOF-NBDA can realize efficient C3H8 recovery from ternary CH4/C2H6/C3H8 gas mixture. After one cycle of breakthrough, 70.9 L·kg-1 of high-purity (≥ 99.95%) CH4 and 54.2 L·kg-1 of C3H8 (purity ≥99.5%) could be obtained. Furthermore, excellent separation performance under different flow rates, temperatures, and humidities could endow HOF-NBDA an ideal adsorbent for the future natural gas purification.
Collapse
Affiliation(s)
- Yunzhe Zhou
- State
Key Laboratory of Structure Chemistry, Fujian
Institute of Research on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian
College, University of Chinese Academy of
Sciences, Fuzhou, Fujian 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongqin Zhu
- State
Key Laboratory of Structure Chemistry, Fujian
Institute of Research on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Danhua Song
- State
Key Laboratory of Structure Chemistry, Fujian
Institute of Research on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Zhenyu Ji
- State
Key Laboratory of Structure Chemistry, Fujian
Institute of Research on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Cheng Chen
- State
Key Laboratory of Structure Chemistry, Fujian
Institute of Research on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Mingyan Wu
- State
Key Laboratory of Structure Chemistry, Fujian
Institute of Research on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian
College, University of Chinese Academy of
Sciences, Fuzhou, Fujian 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Li SY, Xue YY, Wang JW, Li HP, Lei J, Lv HJ, Bu X, Zhang P, Wang Y, Yuan WY, Zhai QG. Metal-organic frameworks with two different-sized aromatic ring-confined nanotraps for benchmark natural gas upgrade. Chem Sci 2024; 15:d4sc04387a. [PMID: 39381130 PMCID: PMC11457257 DOI: 10.1039/d4sc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Recovery of light alkanes from natural gas is of great significance in petrochemical production. Herein, a promising strategy utilizing two types of size-complementary aromatic ring-confined nanotraps (called bi-nanotraps here) is proposed to efficiently trap ethane (C2H6) and propane (C3H8) selectively at their respective sites. Two isostructural metal-organic frameworks (MOFs, SNNU-185/186), each containing bi-nanotraps decorated with six aromatic rings, are selected to demonstrate the feasibility of this method. The smaller nanotrap acts as adsorption sites tailored for C2H6 while the larger one is optimized in size for C3H8. The separation is further facilitated by the large channels, which serve as mass transfer pathways. These advanced features give rise to multiple C-H⋯π interactions and size/shape-selective interaction sites, enabling SNNU-185/186 to achieve high C2H6 adsorption enthalpy (43.5/48.8 kJ mol-1) and a very large thermodynamic interaction difference between C2H6 and CH4. Benefiting from the bi-nanotrap effect, SNNU-185/186 exhibits benchmark experimental natural gas upgrade performance with top-level CH4 productivity (6.85/6.10 mmol g-1), ultra-high purity and first-class capture capacity for C2H6 (1.23/0.90 mmol g-1) and C3H8 (2.33/2.15 mmol g-1).
Collapse
Affiliation(s)
- Shu-Yi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying-Ying Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Jia-Wen Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hai-Peng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Jiao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hong-Juan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach California 90840 USA
| | - Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Wen-Yu Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Quan-Guo Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| |
Collapse
|
9
|
Yang Y, Liu Y, Shen F, Hai G, Liu B, Zhang Z, Yang Q, Ren Q, Bao Z. Isoreticular Metal-Organic Frameworks with Aromatic Pores and Dimethylammonium Cations Enable Separation of Light Hydrocarbons and Xenon/Krypton. Inorg Chem 2024; 63:16807-16814. [PMID: 39189338 DOI: 10.1021/acs.inorgchem.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The separation of C2-C3 hydrocarbons from methane in natural gas and xenon/krypton purification are crucial yet challenging industrial processes. Herein, we report two isoreticular metal-organic frameworks, ZJU-89 and ZJU-90, featuring aromatic pore environments and dimethylammonium cations, that synergistically enhance the separation of these industrially relevant gas mixtures. ZJU-90 exhibits an exceptional separation performance, achieving C3H8/CH4 and C2H6/CH4 ideal adsorbed solution theory (IAST) selectivities of 1065 and 48, respectively, at ambient conditions, outperforming most reported adsorbent materials. Remarkably, ZJU-90 enables the recovery of >99.95% purity methane from a C3H8/C2H6/CH4 mixture in a single adsorption step. The material also demonstrates the efficient separation of xenon from krypton, even at low concentrations. The superior performance stems from the aromatic rings decorating the pore walls and the free dimethylammonium cations in the channels, which provide an ideal chemical environment for the selective binding of C2H6, C3H8, and Xe through multiple C-H···π interactions and van der Waals forces, as elucidated by theoretical calculations. This work highlights the power of reticular chemistry in designing materials with synergistic pore environments for efficient separations.
Collapse
Affiliation(s)
- Yisi Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Fuxing Shen
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Guangtong Hai
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Baojian Liu
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| |
Collapse
|
10
|
Ercakir G, Aksu GO, Keskin S. High-throughput computational screening of MOF adsorbents for efficient propane capture from air and natural gas mixtures. J Chem Phys 2024; 160:084706. [PMID: 38415834 DOI: 10.1063/5.0189493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
In this study, we used a high-throughput computational screening approach to examine the potential of metal-organic frameworks (MOFs) for capturing propane (C3H8) from different gas mixtures. We focused on Quantum MOF (QMOF) database composed of both synthesized and hypothetical MOFs and performed Grand Canonical Monte Carlo (GCMC) simulations to compute C3H8/N2/O2/Ar and C3H8/C2H6/CH4 mixture adsorption properties of MOFs. The separation of C3H8 from air mixture and the simultaneous separation of C3H8 and C2H6 from CH4 were studied for six different adsorption-based processes at various temperatures and pressures, including vacuum-swing adsorption (VSA), pressure-swing adsorption (PSA), vacuum-temperature swing adsorption (VTSA), and pressure-temperature swing adsorption (PTSA). The results of molecular simulations were used to evaluate the MOF adsorbents and the type of separation processes based on selectivity, working capacity, adsorbent performance score, and regenerability. Our results showed that VTSA is the most effective process since many MOFs offer high regenerability (>90%) combined with high C3H8 selectivity (>7 × 103) and high C2H6 + C3H8 selectivity (>100) for C3H8 capture from air and natural gas mixtures, respectively. Analysis of the top MOFs revealed that materials with narrow pores (<10 Å) and low porosities (<0.7), having aromatic ring linkers, alumina or zinc metal nodes, typically exhibit a superior C3H8 separation performance. The top MOFs were shown to outperform commercial zeolite, MFI for C3H8 capture from air, and several well-known MOFs for C3H8 capture from natural gas stream. These results will direct the experimental efforts to the most efficient C3H8 capture processes by providing key molecular insights into selecting the most useful adsorbents.
Collapse
Affiliation(s)
- Goktug Ercakir
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
11
|
Yan L, Zheng HT, Song L, Wei ZW, Jiang JJ, Su CY. Microporous Fluorinated MOF with Multiple Adsorption Sites for Efficient Recovery of C 2H 6 and C 3H 8 from Natural Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6579-6588. [PMID: 38275141 DOI: 10.1021/acsami.3c15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Purifying C2H6/C3H8 from a ternary natural gas mixture through adsorption separation is an important but challenging process in the petrochemical industry. To address this challenge, the industry is exploring effective strategies for designing high-performance adsorbents. In this study, we present two metal-organic frameworks (MOFs), DMOF-TF and DMOF-(CF3)2, which have fluorinated pores obtained by substituting linker ligands in the host material. This pore engineering strategy not only provides suitable pore confinement but also enhances the adsorption capacities for C2H6/C3H8 by providing additional binding sites. Theoretical calculations and transient breakthrough experiments show that the introduction of F atoms not only improves the efficiency of natural gas separation but also provides multiple adsorption sites for C2H6/C3H8-framework interactions.
Collapse
Affiliation(s)
- Le Yan
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui-Ting Zheng
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang Song
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang-Wen Wei
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ji-Jun Jiang
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Xiao C, Tian J, Chen Q, Hong M. Water-stable metal-organic frameworks (MOFs): rational construction and carbon dioxide capture. Chem Sci 2024; 15:1570-1610. [PMID: 38303941 PMCID: PMC10829030 DOI: 10.1039/d3sc06076d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are considered to be a promising porous material due to their excellent porosity and chemical tailorability. However, due to the relatively weak strength of coordination bonds, the stability (e.g., water stability) of MOFs is usually poor, which severely inhibits their practical applications. To prepare water-stable MOFs, several important strategies such as increasing the bonding strength of building units and introducing hydrophobic units have been proposed, and many MOFs with excellent water stability have been prepared. Carbon dioxide not only causes a range of climate and health problems but also is a by-product of some important chemicals (e.g., natural gas). Due to their excellent adsorption performances, MOFs are considered as a promising adsorbent that can capture carbon dioxide efficiently and energetically, and many water-stable MOFs have been used to capture carbon dioxide in various scenarios, including flue gas decarbonization, direct air capture, and purified crude natural gas. In this review, we first introduce the design and synthesis of water-stable MOFs and then describe their applications in carbon dioxide capture, and finally provide some personal comments on the challenges facing these areas.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jindou Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
13
|
Deng C, Zhao L, Gao MY, Darwish S, Song BQ, Sensharma D, Lusi M, Peng YL, Mukherjee S, Zaworotko MJ. Ultramicroporous Lonsdaleite Topology MOF with High Propane Uptake and Propane/Methane Selectivity for Propane Capture from Simulated Natural Gas. ACS MATERIALS LETTERS 2024; 6:56-65. [PMID: 38178981 PMCID: PMC10762655 DOI: 10.1021/acsmaterialslett.3c01157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Chenghua Deng
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Li Zhao
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mei-Yan Gao
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shaza Darwish
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bai-Qiao Song
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Debobroto Sensharma
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matteo Lusi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Yun-Lei Peng
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Soumya Mukherjee
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
14
|
Song Z, Zheng Y, Chen Y, Cai Y, Wei RJ, Gao J. Halogen-modified metal-organic frameworks for efficient separation of alkane from natural gas. Dalton Trans 2023; 52:15462-15466. [PMID: 37477392 DOI: 10.1039/d3dt01554h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
As a rich green energy source, natural gas is widely used in many fields such as the chemical industry, automobile energy, and daily life. However, it is very challenging to separate and recover C2H6 and C3H8 from natural gas. Metal-organic frameworks (MOFs) as an emerging type of multi-pore porous materials show huge potential in gas adsorption separation. Herein, we report pillar-layered MOFs, Ni (BDC)(DABCO)0.5 (DMOF-X), modified by halogen atoms (F, Cl, Br), and investigate their CH4/C2H6/C3H8 separation performance. The experimental results show that DMOF-Cl exhibited a extremely high adsorption capacity for C3H8 and C2H6. Under the conditions of 298 K and 100 kPa, the adsorption capacities for C3H8 and C2H6 on DMOF-Cl are as high as 6.23 and 4.94 mmol g-1, which are superior to the values for most of the porous materials that have been reported. In addition, DMOF-Cl also shows high C3H8/CH4 (5: 85, V/V) and C2H6/CH4 (10: 85, V/V) separation selectivities, with values of 130.9 and 12.5, respectively. Finally, DMOF-Cl also demonstrated great potential as an adsorbent for separating C3H8/C2H6/CH4.
Collapse
Affiliation(s)
- Zhirong Song
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yanchun Zheng
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yiqi Chen
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Youlie Cai
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Grigoletto S, Dos Santos AG, de Lima GF, De Abreu HA. Dynamical and electronic properties of anion-pillared metal-organic frameworks for natural gas separation. Phys Chem Chem Phys 2023; 25:27532-27541. [PMID: 37801025 DOI: 10.1039/d3cp02368k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The increasing demand for natural gas as a clean energy source has emphasized the need for efficient gas separation technologies. Metal-organic frameworks (MOFs) have emerged as a promising class of materials for gas separation, with anion-pillared MOFs (APMOFs) gaining attention for their fine-tuned pore design and shape/size selectivity. In this study, we investigate the dynamical and electronic properties of three APMOFs, SIFSIX-3-Cu, SIFSIX-2-Cu-i, and SIFSIX-2-Cu, for the separation of methane from ethane, ethene, propane, propene, and N using computational simulations. Our simulations employ Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) techniques combined with Density Functional Theory (DFT) calculations. We find that that all three APMOFs exhibit promising separation capabilities for methane from propane and propene based on both thermodynamics and kinetics parameters. In addition, we use Noncovalent Interaction (NCI) analysis to investigate intermolecular interactions and find that the fluorine atoms in the MOF can polarize gas molecules and establish electrostatic interactions with hydrogen atoms in the molecule. Finally, we show that SIFSIX-2-Cu-i is a potential candidate for separating N2/CH4 due to its interpenetration.
Collapse
Affiliation(s)
- Sabrina Grigoletto
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Arthur Gomes Dos Santos
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Guilherme Ferreira de Lima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Heitor Avelino De Abreu
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
16
|
Yan J, Tong S, Sun H, Guo S. Highly Efficient Separation of C1−C3 Alkanes and CO2 in Carbazole-Based Nanoporous Organic Polymers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|