1
|
Hillery K, Hendeniya N, Abtahi S, Chittick C, Chang B. Substrate Neutrality for Obtaining Block Copolymer Vertical Orientation. Polymers (Basel) 2024; 16:1740. [PMID: 38932090 PMCID: PMC11207976 DOI: 10.3390/polym16121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Nanopatterning methods utilizing block copolymer (BCP) self-assembly are attractive for semiconductor fabrication due to their molecular precision and high resolution. Grafted polymer brushes play a crucial role in providing a neutral surface conducive for the orientational control of BCPs. These brushes create a non-preferential substrate, allowing wetting of the distinct chemistries from each block of the BCP. This vertically aligns the BCP self-assembled lattice to create patterns that are useful for semiconductor nanofabrication. In this review, we aim to explore various methods used to tune the substrate and BCP interface toward a neutral template. This review takes a historical perspective on the polymer brush methods developed to achieve substrate neutrality. We divide the approaches into copolymer and blended homopolymer methods. Early attempts to obtain neutral substrates utilized end-grafted random copolymers that consisted of monomers from each block. This evolved into side-group-grafted chains, cross-linked mats, and block cooligomer brushes. Amidst the augmentation of the chain architecture, homopolymer blends were developed as a facile method where polymer chains with each chemistry were mixed and grafted onto the substrate. This was largely believed to be challenging due to the macrophase separation of the chemically incompatible chains. However, innovative methods such as sequential grafting and BCP compatibilizers were utilized to circumvent this problem. The advantages and challenges of each method are discussed in the context of neutrality and feasibility.
Collapse
Affiliation(s)
| | | | | | | | - Boyce Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Hendeniya N, Chittick C, Hillery K, Abtahi S, Mosher C, Chang B. Revealing the Kinetic Phase Behavior of Block Copolymer Complexes Using Solvent Vapor Absorption-Desorption Isotherms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18144-18153. [PMID: 38530201 PMCID: PMC11009910 DOI: 10.1021/acsami.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Controlling the self-assembled morphologies in block copolymers heavily depends on their molecular architecture and processing conditions. Solvent vapor annealing is a versatile processive pathway to obtain highly periodic self-assemblies from high chi (χ) block copolymers (BCPs) and supramolecular BCP complexes. Despite the importance of navigating the energy landscape, controlled solvent vapor annealing (SVA) has not been investigated in BCP complexes, partly due to its intricate multicomponent nature. We introduce characteristic absorption-desorption solvent vapor isotherms as an effective way to understand swelling behavior and follow the morphological evolution of the polystyrene-block-poly(4-vinylpyridine) block copolymer complexed with pentadecylphenol (PS-b-P4VP(PDP)). Using the sorption isotherms, we identify the glass transition points, polymer-solvent interaction parameters, and bulk modulus. These parameters indicate that complexation completely screens the polymer interchain interactions. Furthermore, we established that the sorption isotherm of the homopolymer blocks serves to deconvolute the intricacy of BCP complexes. We applied our findings by developing annealing pathways for grain coarsening while preventing macroscopic film dewetting under SVA. Here, grain coarsening obeyed a power law and the growth exponent revealed a kinetic transition point for rapid self-assembly. Overall, SVA-based sorption isotherms have emerged as a critical method for understanding and developing annealing pathways for BCP complexes.
Collapse
Affiliation(s)
- Nayanathara Hendeniya
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Caden Chittick
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Kaitlyn Hillery
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Shaghayegh Abtahi
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Curtis Mosher
- Roy
J. Carver High-Resolution Microscopy Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50011, United States
| | - Boyce Chang
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
- Micro-Electronics
Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Yu B, Chang BS, Loo WS, Dhuey S, O’Reilly P, Ashby PD, Connolly MD, Tikhomirov G, Zuckermann RN, Ruiz R. Nanopatterned Monolayers of Bioinspired, Sequence-Defined Polypeptoid Brushes for Semiconductor/Bio Interfaces. ACS NANO 2024; 18:7411-7423. [PMID: 38412617 PMCID: PMC10938923 DOI: 10.1021/acsnano.3c10204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.
Collapse
Affiliation(s)
- Beihang Yu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Boyce S. Chang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Prizker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Scott Dhuey
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | | - Paul D. Ashby
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael D. Connolly
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Grigory Tikhomirov
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States
| | - Ronald N. Zuckermann
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ricardo Ruiz
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Hendeniya N, Hillery K, Chang BS. Processive Pathways to Metastability in Block Copolymer Thin Films. Polymers (Basel) 2023; 15:polym15030498. [PMID: 36771799 PMCID: PMC9920306 DOI: 10.3390/polym15030498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Block copolymers (BCPs) self-assemble into intricate nanostructures that enhance a multitude of advanced applications in semiconductor processing, membrane science, nanopatterned coatings, nanocomposites, and battery research. Kinetics and thermodynamics of self-assembly are crucial considerations in controlling the nanostructure of BCP thin films. The equilibrium structure is governed by a molecular architecture and the chemistry of its repeat units. An enormous library of materials has been synthesized and they naturally produce a rich equilibrium phase diagram. Non-equilibrium phases could potentially broaden the structural diversity of BCPs and relax the synthetic burden of creating new molecules. Furthermore, the reliance on synthesis could be complicated by the scalability and the materials compatibility. Non-equilibrium phases in BCPs, however, are less explored, likely due to the challenges in stabilizing the metastable structures. Over the past few decades, a variety of processing techniques were introduced that influence the phase transformation of BCPs to achieve a wide range of morphologies. Nonetheless, there is a knowledge gap on how different processive pathways can induce and control the non-equilibrium phases in BCP thin films. In this review, we focus on different solvent-induced and thermally induced processive pathways, and their potential to control the non-equilibrium phases with regards to their unique aspects and advantages. Furthermore, we elucidate the limitations of these pathways and discuss the potential avenues for future investigations.
Collapse
|