1
|
Yu L, Liu F, Ji G, Wang X, Wang H, Chen G, Zhang Y, Yan M, Wang W. Ultra-stable, multimodal, and reversible luminescence switching in 0D Mn(II)-based hybrid halide nanofiber film for photonic applications. J Colloid Interface Sci 2025; 686:192-202. [PMID: 39893969 DOI: 10.1016/j.jcis.2025.01.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
The multifunctional and reversible stimuli-responsive luminescence switching offers significant potential for advanced photonic applications but presents considerable challenges for zero-dimensional (0D) hybrid halides. In this study, we design two 0D Mn(II)-based hybrid halides, (DMAP)2MnCl4·H2O and (DMAP)2MnCl4 (DMAP = protonated 4-dimethylaminopyridine), which demonstrate reversible photoluminescence (PL) and radioluminescence (RL) switching through the removal/insertion of guest H2O and single-crystal to single-crystal (SC-SC) transformation. By employing a one-step electrospinning strategy, the composite nanofiber film benefits from geometric confinement and the superior hydrophobicity of the PVDF matrix, exhibiting excellent reversible PL switching properties, remarkable repeatability (1000 cycles), and rapid response to breath (0.6 s). Notably, the composite nanofiber film achieves a rare triple-mode reversible PL switching, including off-onI (green), color-tunable onI-onII (green-yellow), and onII (yellow)-off modes. This innovative composite holds great potential for novel applications in molecular-level dynamic photonic devices, including data storage, information security, optical logic gates, and flexible X-ray imaging.
Collapse
Affiliation(s)
- Lu Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Guanfeng Ji
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaojia Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Gang Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Yuhai Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Zou X, Han X, Yi G, Zhang Z, Zhan X, Zeng H, Lin Z, Zou G. In Situ Synthesis of Highly Emissive Manganese Halides with Modified Bisphosphonium Cations toward Information Encryption. Inorg Chem 2025; 64:4133-4140. [PMID: 39967015 DOI: 10.1021/acs.inorgchem.4c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Multisite modulation for organic-inorganic hybrid metal halides (OIMHs) plays an important role in the optimization of their photophysical performance. Herein, we proposed an organic cation modification strategy on the phosphorus sites based on 1,2-Bis(diphenylphosphino)ethane (DPPE) by a simple one-pot solvothermal method. Three zero-dimensional (0D) manganese-based OIMHs, two novel MdppeMnCl4·H2O and EdppeMnCl4, as well as the byproduct [Mn(dppeO2)3][MnCl4] were obtained (Mdppe = methyl-coordinated with DPPE; Edppe = ethyl-coordinated with DPPE; and dppeO2 is obtained by oxidation of DPPE). All the samples possess the four-coordinated [MnCl4]2- polyhedron, while [Mn(dppeO2)3][MnCl4] contains another six-coordinated cation [Mn(dppeO2)3]2+ complex. According to the relevant optical measurements, MdppeMnCl4·H2O and EdppeMnCl4 both show bright green emissions with photoluminescence quantum yields of 55.66% and 80.42%, respectively. By contrast, [Mn(dppeO2)3][MnCl4] shows an orange emission that is confirmed to be associated with six-coordinated Mn2+ ions by temperature-dependent PL spectra. Based on the good stability and solution processability of EdppeMnCl4, a luminescent ink was developed and shows potential application in display and information encryption fields. The unique cation modification strategy in this work opens up the ways for designing and developing novel OIMHs and extends the application prospects of manganese-based halides.
Collapse
Affiliation(s)
- Xuan Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Xiangyu Han
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Gangji Yi
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Xize Zhan
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Xie J, Yue C, Chen S, Jiang Z, Wu S, Yang W, Zhang K, Chen T, Wang Y, Lu W. Electrothermally powered synergistic fluorescence-colour/3D-shape changeable polymer gel systems for rewritable and programmable information display. MATERIALS HORIZONS 2025; 12:487-498. [PMID: 39480658 DOI: 10.1039/d4mh01172d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Intelligent luminescent materials for rewritable and programmable information display have long been expected to be used to address potential environmental concerns stemming from the extensive use of disposable displays. However, most reported luminescence-colour changeable examples are chemically responsive and not well programmed to sequentially deliver different information within a single system. Additionally, they may suffer from residual chemical accumulation caused by the repeated addition of chemical inks and usually have poor rewritability. Herein, we draw inspiration from the bioelectricity-triggered information display mechanism of chameleon skin to report a robust electrothermally powered polymer gel actuator consisting of one soft conductive graphene/PDMS film and one humidity-responsive fluorescence-colour changeable CD-functionalized polymer (PAHCDs) gel layer. Owing to the good electrocaloric effect of the bottom graphene film and excellent hygroscopicity of the top PAHCDs gel layer, the as-designed actuator could be facilely controlled to exhibit reversible and synergistic 3D-shape/fluorescence-colour changeable behaviours in response to alternating electricity and humidity stimuli. On this basis, robust rewritable information display systems are fabricated, which enable not only on-demand delivery of written information, but also facile rewriting of lots of different information by the synergization of electroheat/humidity-triggered local 3D-deformation and fluorescence-colour changes. This work opens new avenues of research into rewritable information display and potentially inspires the future development of intelligent luminescent materials.
Collapse
Affiliation(s)
- Junni Xie
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Chaojun Yue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Shaohuang Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Zhenyi Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Weiqing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yunan Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, People's Republic of China.
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
4
|
Wu Y, Zhang X, Zhao D, Zhao JW, Zhen XM, Zhang B. Strategic engineering of cationic systems for spatial & temporal anti-counterfeiting applications in zero-dimensional Mn(II) halides. J Colloid Interface Sci 2025; 678:430-440. [PMID: 39303561 DOI: 10.1016/j.jcis.2024.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
While spatial and time-resolved anti-counterfeiting technologies have gained increasing attention owing to their excellent tunable photoluminescence, achieving high-security-level anti-counterfeiting remains a challenge. Herein, we developed a spatial-time-dual-resolved anti-counterfeiting system using zero-dimensional (0D) organic-inorganic Mn(II) metal halides: (EMMZ)2MnBr4 (named M-1, EMMZ=1-Ethyl-3-Methylimidazolium Bromide) and (EDMMZ)2MnBr4 (named M-2, EDMMZ=1-Ethyl-2,3-Dimethylimidazolium Bromide). M-1 shows a bright green emission with a quantum yield of 78 %. It undergoes a phase transformation from the crystalline to molten state with phosphorescence quenching at 350 K. Reversible phase and luminescent conversion was observed after cooling down for 15 s. Notably, M-2 exhibits green light emission similar to M-1 but undergoes phase conversion and phosphorescence quenching at 390 K, with reversible conversion observed after cooling down for 5 s. The photoluminescence switching mode of on(green)-off-on(green) can be achieved by temperature control, demonstrating excellent performance with short response times and ultra-high cyclic reversibility. By leveraging the different quenching temperatures and reversible PL conversion times of M-1 and M-2, we propose a spatial-time-dual-resolved photoluminescence (PL) switching system that combines M-1 and M-2. This system enables multi-fold tuning of the PL switch for encryption and decryption through cationic engineering strategies by modulating temperature and cooling time. This work presents a novel and feasible design strategy for advanced-level anti-counterfeiting technology based on a spatial-time-dual-resolved system.
Collapse
Affiliation(s)
- Yue Wu
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Xin Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Di Zhao
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Wei Zhao
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiao-Meng Zhen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Bo Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
5
|
Yang YK, Geng XY, Liu T, Ma YJ, Han SD, Xue ZZ, Pan J. Dual-Template-Directed Zero-Dimensional Bismuth Chlorides: Structures, Luminescence, Photoinduced Chromism, and Enhanced Proton Conductivity. Inorg Chem 2024; 63:18865-18876. [PMID: 39303061 DOI: 10.1021/acs.inorgchem.4c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Zero-dimensional (0D) hybrid organic-inorganic bismuth halides have attracted immense scientific interest as promising candidates for lead-free materials. Here, by using a typical solvothermal method, two mixed-cation-phase 0D hybrid bismuth chlorides of [HPDA][H2PDA]BiCl6 (1) and [Hbzim][H2PA]BiCl6 (2) (PDA = bis(4-pyridyl)amine, bzim = benzimidazole, PA = 2-picolylamine) have been assembled based on a series of organic amine guests. Both compounds exhibit interesting photoluminescence phenomena, in which compound 1 exhibits a double emission property of blue fluorescence and yellow-green phosphorescence simultaneously, while compound 2 exhibits wide-band yellow-green emission under visible light excitation. The luminescence mechanism is explained by experiments and theoretical calculations. In view of the fact that halometallate units and the conjugated nitrogen heterocyclic systems can act as electron donors and electron acceptors, respectively, both compounds exhibit free radical-driven photochromism induced by electron transfer under xenon lamp irradiation at room temperature. In addition, benefiting from abundant hydrogen bond networks in structures, the two compounds show significant temperature-dependent proton conduction behavior in the range of 298-343 K, and the proton conductivity of both compounds is significantly improved after light irradiation. Our study demonstrates two novel hybrid mixed-cation-phase 0D hybrid bismuth halides with photoluminescence, photochromism, and photomodulated proton conduction properties, which enriches the dual-template-directed metal halide system and provides a feasible scheme for the synthesis of photoresponsive smart materials.
Collapse
Affiliation(s)
- Yu-Kun Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Xue-Yun Geng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Tong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Yu-Juan Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
6
|
Zhang W, Zheng W, Li L, Huang P, Xu J, Zhang W, Shao Z, Chen X. Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408777. [PMID: 39101296 DOI: 10.1002/adma.202408777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Organic-inorganic hybrid manganese(II) halides (OIMnHs) have garnered tremendous interest across a wide array of research fields owing to their outstanding optical properties, abundant structural diversity, low-cost solution processibility, and low toxicity, which make them extremely suitable for use as a new class of luminescent materials for various optoelectronic applications. Over the past years, a plethora of OIMnHs with different structural dimensionalities and multifunctionalities such as efficient photoluminescence (PL), radioluminescence, circularly polarized luminescence, and mechanoluminescence have been newly created by judicious screening of the organic cations and inorganic Mn(II) polyhedra. Specifically, through precise molecular and structural engineering, a series of OIMnHs with near-unity PL quantum yields, high anti-thermal quenching properties, and excellent stability in harsh conditions have been devised and explored for applications in light-emitting diodes (LEDs), X-ray scintillators, multimodal anti-counterfeiting, and fluorescent sensing. In this review, the latest advancements in the development of OIMnHs as efficient light-emitting materials are summarized, which covers from their fundamental physicochemical properties to advanced optoelectronic applications, with an emphasis on the structural and functionality design especially for LEDs and X-ray detection and imaging. Current challenges and future efforts to unlock the potentials of these promising materials are also envisioned.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ping Huang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiqing Shao
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
7
|
Li JW, Niu M, Feng W, Dong W, Liu Y, Yang J, Wang C, Zhang H, Song WW. Synthesis, structure and red-light emission of a manganese halide directed by a methyldiphenylphosphine oxide complex. Acta Crystallogr C Struct Chem 2024; 80:412-418. [PMID: 38995666 DOI: 10.1107/s2053229624006405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Controlling the optical activity of halide perovskite materials through modulation of the coordination configurations of the metal ions is important. Herein, a novel manganese-based halide, specifically diaquatetrakis(methyldiphenylphosphine oxide)manganese(II) tetrachloridomanganate(II), [Mn(C13H13OP)4(H2O)2][MnCl4] or [Mn(MDPPO)4(H2O)2][MnCl4] (MDPPO is methyldiphenylphosphine oxide), was synthesized through the solvothermal reaction of MnCl2 with the neutral molecule MDPPO. In this compound, [Mn(MDPPO)4(H2O)2]2+ acts as the cation, while [MnCl4]2- serves as the anion, enabling the co-existence of tetrahedral and octahedral structures within the same system. Remarkably, the compound exhibits efficient red-light emission at 662 nm, distinct from the green-light emission typically observed in MnX4-based halides. Theoretical calculations show that the red emission comes from the charge transfer from the MDPPO to the Mn2+ of [MnCl4]2-. This work provides a new perspective for the design and synthesis of red-light-emitting manganese-based halides with unique structures.
Collapse
Affiliation(s)
- Jia Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Mengyuan Niu
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Wei Feng
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Wenke Dong
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Yanjie Liu
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Jingjing Yang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Chunjie Wang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Hui Zhang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Wei Wu Song
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| |
Collapse
|
8
|
Zhang J, Ren MP, Xu M, Zhang Z, An M, Lu Y, Lei XW, Gong Z, Yue CY. Ultrafast Visual Detection of a Trace Amount of Water by Highly Efficient Hybrid Manganese Halides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33780-33788. [PMID: 38961579 DOI: 10.1021/acsami.4c05411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A quantitative water detection method is urgently needed in storage facilities, space exploration, and the chemical industry. Although numerous physical techniques have been widely utilized to determine the water content, they still suffer from many disadvantages such as highly expensive special instruments, complicated analysis processes, etc. Hence, a convenient, rapid, and sensitive water analysis method is highly desirable. Herein, we developed a visual fluorescence sensing technology for water detection based on reversible PL off-on switching of organic-inorganic hybrid zero-dimensional (0D) manganese halides. In this work, a family of hybrid manganese halides were synthesized through a facile solution method, namely, [NH4(18-Crown-6)]2MnBr4, [Ca(18-Crown-6)·3H2O](18-Crown-6)MnBr4, [NH4(dibenzo-18-Crown-6)]2MnBr4, and [Ca(dibenzo-18-Crown-6)·2H2O]MnBr4. Excited by UV light, these highly crystalline manganese halides exhibit strong green light emissions from the d-d electron transition of Mn2+ with near-unity photoluminescence quantum yield and submillisecond lifetime. Benefiting from the dynamic and weak ionic bonding interactions, these 0D manganese halides display reversible water-response on/off luminescence switching but fail in any other aprotic solvents. Therefore, these 0D hybrid manganese halides can be explored as ultrafast visual fluorescence probes to detect the trace amount of water in organic solvents with multiple superiorities of rapid response time (< 2 s), ultralow detection limit (9.71 ppm), excellent repeatability, etc. The reversible water-response luminescent on/off switching also provides a binary optical gate with advanced applications in anticounterfeiting and information security, etc.
Collapse
Affiliation(s)
- Jie Zhang
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Meng-Ping Ren
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Man Xu
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Zhonghui Zhang
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Mingxue An
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yang Lu
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Zhongliang Gong
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
9
|
Wei Y, Chen Y, Hu L, Gao Y, Cai H, Wu C, Yang Y. Unveiling the Potential of Highly Porous Covalent Organic Frameworks for Water-Jet Rewritable Papers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22248-22255. [PMID: 38626353 DOI: 10.1021/acsami.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The massive use of paper has resulted in significant negative impacts on the environment. Fortunately, recent progress has been made in the field of rewritable paper, which has great potential in solving the increasing demand for paper while minimizing its environmental footprint. In this work, we report a green and economic strategy to develop ink-free rewritable paper by introducing hydrochromic covalent organic frameworks (COFs) in paper and using water as the sole trigger. When exposed to water or acidic solvents, two kinds of imino COFs change their colors reversibly from red to black. Additionally, a new visible absorption band appears, indicating that it can be transformed into another structure reversibly. This reversibility may be due to the isomerization from the diiminol to an iminol/cisketoenamine and its inability to doubly tautomerize to a diketoenamine. Specifically, we prepared the rewritable paper by loading these two COFs onto filter paper by using the decompression filtration method. When exposed to water, the paper undergoes a color change from red to black, which shows promising potential for applications in water-jet printing. Additionally, there is no significant performance degradation after 20 uses and 10 days between, further highlighting their potential as rewritable papers. To further improve its uniformity, we take the interface polymerization strategy to yield highly crystalline and more compact membranes, which are then transferred to paper to prepare writable papers. Our research has opened up a way for the application of COFs as a water-based printing material.
Collapse
Affiliation(s)
- Youhao Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yilong Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Leilei Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyang Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haitao Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Conghao Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhui Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312451, China
| |
Collapse
|
10
|
Zhao Z, Dong D, Yu S, Xia S, Duan Y, Liu H, Cheng F, Wang L, Zhu H, He H. A time-multiplexed self-erasing nanopaper for water induced information transmission. J Colloid Interface Sci 2024; 659:127-138. [PMID: 38159489 DOI: 10.1016/j.jcis.2023.12.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The progressive presentation of multilevel information enhances the security level of information storage and transmission. Here, a time-multiplexed self-erasing nanopaper was developed by integrating cellulose nanofiber (CNF)-stabilized gold nanoclusters and CNF-modified long afterglow materials. The orange fluorescence of gold nanoclusters on nanopaper was regulated by the reversible swelling and shrinking of CNF induced by water solution, while the cyan fluorescence of micron-long afterglow remained stable and acted as the background signal. It was noteworthy that the fluorescence colour and intensity of the nanopaper could be freely adjusted between orange and cyan on the time scale. Therefore, the array information on the nanopaper could be encoded by a water solution, iterated variation as the step-by-step solvent volatilized on the time scale measured by the time of the afterglow duration. This work provides a new approach for constructing time-multiplexed self-erasing nanopaper for confidential information storage and transmission.
Collapse
Affiliation(s)
- Zihan Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Die Dong
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shanshan Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Siyuan Xia
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yujie Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hui Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Fei Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
11
|
Chen H, Wang D, Hou R, Sun D, Meng L, Wu K, Wang J, Shen C. Efficient Single-Phase Tunable Dual-Color Luminescence with High Quantum Yield Greater than 100% for Information Encryption and LED Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10325-10334. [PMID: 38358397 DOI: 10.1021/acsami.3c17012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In modern society, the investigation of highly efficient photoluminescent bulk materials with excitation-induced tunable multicolor luminescence and multiexciton generation (MEG) is of great significance to information security and the application of optoelectronic devices. In this study, two bulk Cu-based halide crystals of (C4H10NO)4Cu2Br5·Br and (C4H10NO)4Cu2I5·I·H2O, respectively, with one-dimensional structures were grown by a solvent evaporation method. Unexpectedly, (C4H10NO)4Cu2I5·I·H2O displayed excitation-induced tunable dual-color luminescence; one band is a brilliant green-yellow emission centered at 547 nm with a high photoluminescence quantum yield (PLQY) of up to 169.67%, and the other is a red emission at 695 nm with a PLQY of 75.76%. Just as importantly, (C4H10NO)4Cu2Br5·Br exhibits a strong broadband green-yellow emission at 561 nm under broad band excitation ranging from 252 to 350 nm, a long PL decay lifetime of 106.9 μs, and an ultrahigh PLQY of 198.22%. These materials represent the first two examples of 1D bulk crystals and Cu(I)-based halides that have a PLQY exceeding 100%. Combining the unusual luminescence characteristics with theoretical calculations reveals that MEG contributes to the green-yellow emission with ultrahigh PLQY > 100%, and that the red emission can be ascribed to [Cu2I5]3- cluster-centered emission. Additionally, an information encryption method was designed based on the Morse Code. The high luminescence characteristics of LED devices fabricated using the (C4H10NO)4Cu2Br5·Br and (C4H10NO)4Cu2I5·I·H2O crystals appear to lead to promising applications in solid-state lighting. This work extends the catalog of high-performance luminescent materials and also promotes application prospects of low-dimensional copper-based halides in optoelectronics.
Collapse
Affiliation(s)
- Hanzhang Chen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, PR China
| | - Duanliang Wang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, PR China
| | - Ruoxian Hou
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, PR China
| | - Defu Sun
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, PR China
| | - Lingqiang Meng
- School of Advanced Material Peking University, Shenzhen Graduate School Peking University, Shenzhen 518055, PR China
| | - Kui Wu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Chuanying Shen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
12
|
Zhang J, Wang X, Wang WQ, Deng X, Yue CY, Lei XW, Gong Z. Near-Unity Green Luminescent Hybrid Manganese Halides as X-ray Scintillators. Inorg Chem 2024; 63:2647-2654. [PMID: 38262040 DOI: 10.1021/acs.inorgchem.3c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The increasing demands in optoelectronic applications have driven the advancement of organic-inorganic hybrid metal halides (OIMHs), owing to their exceptional optical and scintillation properties. Among them, zero-dimensional (0D) low-toxic manganese-based scintillators have garnered significant interest due to their exceptional optical transparency and elevated photoluminescence quantum yields (PLQYs), making them promising for colorful light-emitting diodes and X-ray imaging applications. In this study, two OIMH single crystals of (Br-PrTPP)2MnBr4 (Br-PrTPP = (3-bromopropyl) triphenylphosphonium) and (Br-BuTPP)2MnBr4 (Br-BuTPP = (4-bromobutyl) triphenylphosphonium) were prepared via a facile saturated crystallization method. Benefiting from the tetrahedrally coordinated [MnBr4]2- polyhedron, both of them exhibited strong green emissions peaked at 517 nm owing to the d-d electron transition of Mn2+ with near-unity PLQYs of 99.33 and 86.85%, respectively. Moreover, benefiting from the high optical transparencies and remarkable luminescence properties, these manganese halides also exhibit excellent radioluminescent performance with the highest light yield of up to 68,000 photons MeV-1, negligible afterglow (0.4 ms), and linear response to X-ray dose rate with the lowest detection limit of 45 nGyair s-1. In X-ray imaging, the flexible film made by the composite of (Br-PrTPP)2MnBr4 and PDMS shows an ultrahigh spatial resolution of 12.78 lp mm-1, which provides a potential visualization tool for X-ray radiography.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xin Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Wen-Qi Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiangyuan Deng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Zhongliang Gong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
13
|
Lun MM, Ni HF, Zhang ZX, Li JY, Jia QQ, Zhang Y, Zhang Y, Fu DW. Unusual Thermal Quenching of Photoluminescence from an Organic-Inorganic Hybrid [MnBr 4 ] 2- -based Halide Mediated by Crystalline-Crystalline Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202313590. [PMID: 37814153 DOI: 10.1002/anie.202313590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The ability to generate and manipulate photoluminescence (PL) behavior has been of primary importance for applications in information security. Excavating novel optical effects to create more possibilities for information encoding has become a continuous challenge. Herein, we present an unprecedented PL temporary quenching that highly couples with thermodynamic phase transition in a hybrid crystal (DMML)2 MnBr4 (DMML=N,N-dimethylmorpholinium). Such unusual PL behavior originates from the anomalous variation of [MnBr4 ]2- tetrahedrons that leads to non-radiation recombination near the phase transition temperature of 340 K. Remarkably, the suitable detectable temperature, narrow response window, high sensitivity, and good cyclability of this PL temporary quenching will endow encryption applications with high concealment, operational flexibility, durability, and commercial popularization. Profited from these attributes, a fire-new optical encryption model is devised to demonstrate high confidential information security. This unprecedented optical effect would provide new insights and paradigms for the development of luminescent materials to enlighten future information encryption.
Collapse
Affiliation(s)
- Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jun-Yi Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
14
|
Hou R, Shen C, Chen H, Meng L, Xu L, Wang J, Wang D. Temperature-Induced Reversible Photoluminescence Switching and Ultraviolet-Pumped Light-Emitting Diode Applications of a Perovskite (C 6H 10N 2) 2MnCl 6·2H 2O Crystal. Inorg Chem 2024; 63:803-811. [PMID: 38113036 DOI: 10.1021/acs.inorgchem.3c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Zero-dimensional (0D) organic-inorganic hybrid halides present many fascinating photophysical properties for promising optoelectronic applications such as light-emitting diodes (LEDs), X-ray imaging, photodetectors, and anticounterfeiting. Herein, a centimeter-sized single crystal (C6H10N2)2MnCl6·2H2O with a 0D perovskite structure was obtained via a solvent evaporation method. A bright red emission at 618 nm with a larger Stokes shift of more than 300 nm and a long fluorescence lifetime of 6.21 ms were measured. Notably, a reversible PL switching from red emission to nonluminescence has been presented in the cycles of heating-cooling processes from RT to 100 °C. Furthermore, the temperature-induced luminescence shows a quick recovery after 20 conversion cycles, exhibiting excellent stability and temperature sensing. According to the structural and theoretical analyses, the temperature-induced luminescence is primarily due to hydrogen-bonding interactions between (MnCl6)4- and H2O molecules. Particularly, a temperature anticounterfeiting application has been designed based on its reversible temperature-dependent PL switching. Importantly, the ultraviolet-pumped LEDs fabricated by (C6H10N2)2MnCl6·2H2O single crystals are perfectly achieved. Anyway, this work clearly demonstrates that 0D Mn-based perovskite with temperature-dependent PL switching greatly extends its potential applications in electro-optical display, temperature sensing, and anticounterfeiting devices.
Collapse
Affiliation(s)
- Ruoxian Hou
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Chuanying Shen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Hanzhang Chen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Lingqiang Meng
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Longyun Xu
- School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Duanliang Wang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
15
|
Yun X, Nie J, Hu H, Zhong H, Xu D, Shi Y, Li H. Zero-Dimensional Tellurium-Based Organic-Inorganic Hybrid Halide Single Crystal with Yellow-Orange Emission from Self-Trapped Excitons. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:46. [PMID: 38202501 PMCID: PMC10780417 DOI: 10.3390/nano14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Organic-inorganic hybrid halides and their analogs that exhibit efficient broadband emission from self-trapped excitons (STEs) offers an unique pathway towards realization of highly efficient white light sources for lighting applications. An appropriate dilution of ns2 ions into a halide host is essential to produce auxiliary emissions. However, the realization of ns2 cation-based halides phosphor that can be excited by blue light-emitting diode (LED) is still rarely reported. In this study, a zero-dimensional Te-based single crystal (C8H20N)2TeCl6 was synthesized, which exhibits a yellow-orange emission centered at 600 nm with a full width at half maximum of 130 nm upon excitation under 437 nm. Intense electron-phonon coupling was confirmed in the (C8H20N)2TeCl6 single crystal and the light emitting mechanism is comprehensively discussed. The results of this study are pertinent to the emissive mechanism of Te-based hybrid halides and can facilitate discovery of unidentified metal halides with broadband excitation features.
Collapse
Affiliation(s)
- Xiangyan Yun
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jingheng Nie
- Guangdong Rare Earth Photofunctional Materials Engineering Technology Research Center, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Denghui Xu
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
| | - Yumeng Shi
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
16
|
Song Z, Chen D, Yu B, Liu G, Li H, Wei Y, Wang S, Meng L, Dang Y. Thermal/Water-Induced Phase Transformation and Photoluminescence of Hybrid Manganese(II)-Based Chloride Single Crystals. Inorg Chem 2023; 62:17931-17939. [PMID: 37831425 DOI: 10.1021/acs.inorgchem.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Mn(II)-based hybrid halides have attracted great attention from the optoelectronic fields due to their nontoxicity, special luminescent properties, and structural diversity. Here, two novel organic-inorganic hybrid Mn(II)-based halide single crystals (1-mpip)MnCl4·3H2O and (1-mpip)2MnCl6 (1-mpip = 1-methylpiperazinium, C5H14N2+) were grown by a slow evaporation method in ambient atmosphere. Interestingly, (1-mpip)2MnCl6 single crystals exhibit the green emission with a PL peak at 522 nm and photoluminescence quantum yields (PLQYs) of ≈5.4%, whereas (1-mpip)MnCl4·3H2O single crystals exhibit no emission characteristics. More importantly, there exists a thermal-induced phase transformation from (1-mpip)MnCl4·3H2O to emissive (1-mpip)2MnCl6 at 372 K. Moreover, a reversible luminescent conversion between (1-mpip)MnCl4·3H2O and (1-mpip)2MnCl6 was simply achieved when heated to 383 K and placed in a humid environment or sprayed with water. This work not only deepens the understanding of the thermal-induced phase transformation and humidity-sensitive luminescent conversion of hybrid Mn(II)-based halides, but also provides a guidance for thermal and humidity sensing and anticounterfeiting applications of these hybrid materials.
Collapse
Affiliation(s)
- Zhexin Song
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Danping Chen
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Binyin Yu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Hongyu Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Shenghao Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Lingqiang Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Yangyang Dang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
17
|
Ma W, Qian Q, Qaid SMH, Zhao S, Liang D, Cai W, Zang Z. Water-Molecule-Induced Reversible Fluorescence in a One-Dimensional Mn-Based Hybrid Halide for Anticounterfeiting and Digital Encryption-Decryption. NANO LETTERS 2023; 23:8932-8939. [PMID: 37724871 DOI: 10.1021/acs.nanolett.3c02356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Hybrid metal halides with reversible transformation of structure and luminescence properties have attracted significant attention in anticounterfeiting. However, their long transition time and slow response rate may hinder the rapid identification of confidential information. Here, a one-dimensional hybrid manganese-based halide, i.e., (C5H11N3)MnCl2Br2·H2O, is prepared and demonstrates the phenomenon of water-molecule-induced reversible photoluminescence transformation. Heating for <40 s induces a dynamic transfer of red-emissive (C5H11N3)MnCl2Br2·H2O to green-emissive (C5H11N3)MnCl2Br2. In addition, the green emission can gradually revert to red emission during a cooling process in a moist environment, demonstrating excellent reversibility. It is found that the water molecule acts as an external stimulus to realize the reversible transition between red and green emission, which also exhibits remarkable stability during repeated cycles. Furthermore, with the assistance of heating and cooling, a complex digital encryption-decryption and an optical "AND" logical gate are achieved, facilitating the development of anticounterfeiting information security.
Collapse
Affiliation(s)
- Wen Ma
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Qingkai Qian
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shuangyi Zhao
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Dehai Liang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Wu LK, Zou QH, Yao HQ, Ye HY, Li JR. Zero-dimensional organic-inorganic hybrid manganese bromide with coexistence of dielectric-thermal double switches and efficient photoluminescence. Dalton Trans 2023; 52:11558-11564. [PMID: 37545469 DOI: 10.1039/d3dt01823g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Zero-dimensional (0D) hybrid metal halides have attracted much attention due to their rich composition, excellent optical stability, large exciton binding energy, etc. Photoelectric switchable multifunctional materials can integrate multiple physical properties (e.g., ferroelectricity, photoluminescence, magnetic, etc.) into one device and are widely used in many fields such as smart switches, sensors, etc. However, multifunctional materials with thermal energy storage, stimulant dielectric response, and light-emitting properties are rarely reported. Here, we synthesized a new organic-inorganic hybrid metal halide single crystal [TEMA]2MnBr4 (1) (TEMA+ = triethylmethylammonium). Compound 1 undergoes a reversible phase transition at a high temperature of 344/316 K, having a large thermal hysteresis of 28 K and exhibits high stability dielectric switching characteristics near the phase transition temperature. The single crystal exhibits green emission at 513 nm under UV excitation, originating from the 4T1g(G) → 6A1g(S) transition of Mn2+ ions. Excitingly, this single crystal's photoluminescence quantum yield (PLQY) is as high as 80.78%. This work provides a strategy for the development of organic-inorganic hybrid optoelectronic multifunctional materials with high-efficient light emission and switchable dielectric properties.
Collapse
Affiliation(s)
- Ling-Kun Wu
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Qing-Hua Zou
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Hai-Quan Yao
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
19
|
Patel M, Patel R, Park C, Cho K, Kumar P, Park C, Koh WG. Water-stable, biocompatible, and highly luminescent perovskite nanocrystals-embedded fiber-based paper for anti-counterfeiting applications. NANO CONVERGENCE 2023; 10:21. [PMID: 37133613 PMCID: PMC10156878 DOI: 10.1186/s40580-023-00366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
In this study, we present a promising and facile approach toward the fabrication of non-toxic, water-stable, and eco-friendly luminescent fiber paper composed of polycaprolactone (PCL) polymer and CsPbBr3@SiO2 core-shell perovskite nanocrystals. PCL-perovskite fiber paper was fabricated using a conventional electrospinning process. Transmission electron microscopy (TEM) clearly revealed incorporation of CsPbBr3@SiO2 nanocrystals in the fibers, while scanning electron microscopy (SEM) demonstrated that incorporation of CsPbBr3@SiO2 nanocrystals did not affect the surface and diameter of the PCL-perovskite fibers. In addition, thermogravimetric analysis (TGA) and contact angle measurements have demonstrated that the PCL-perovskite fibers exhibit excellent thermal and water stability. The fabricated PCL-perovskite fiber paper exhibited a bright green emission centered at 520 nm upon excitation by ultra-violet (UV) light (374 nm). We have demonstrated that fluorescent PCL-perovskite fiber paper is a promising candidate for anti-counterfeiting applications because various patterns can be printed on the paper, which only become visible after exposure to UV light at 365 nm. Cell proliferation tests revealed that the PCL-perovskite fibers are cytocompatibility. Consequently, they may be suitable for biocompatible anti-counterfeiting. The present study reveals that PCL-perovskite fibers may pave way toward next generation biomedical probe and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon, 21983, South Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea
| | - Kanghee Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea
| | - Pawan Kumar
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea.
- Institute National de La Recherche Scientifique-Centre Énergie Materiaux Télecommunications (INRS-EMT), Varennes, QC, Canada.
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea.
| |
Collapse
|