1
|
Zhang Y, Zhao C, Zheng K, Li H, Yang T, Hu F, Zhang J, Huang X, Li Z, Shi J, Guo Z, Gao S, Zou X. Identification and Quantification of Multiple Pathogenic Escherichia coli Strains Based on a Plasmonic Sensor Array. Anal Chem 2025; 97:9848-9857. [PMID: 40145874 DOI: 10.1021/acs.analchem.5c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Pathogenic Escherichia coli (E. coli) is a widespread and clinically significant foodborne pathogen. Due to its high mutation rates and phenotypic diversity, rapid identification of its subtypes remains challenging and prone to false positives when detecting single strains. In this study, we developed a plasmonic sensor array with high-dimensional signal readouts (ζ-potential, dynamic light-scattering (DLS), surface-enhanced Raman scattering (SERS), and ultraviolet-visible (UV-vis) absorption spectra) for the selective discrimination of pathogenic E. coli, integrated with bacterial culture methods. The plasmonic sensor units demonstrated strong encoding capabilities, facilitating the differentiation of subtle variations among various E. coli strains and showing excellent anti-interference performance. The array realized different pathogenic E. coli strains, bacterial mixture identification, and even quantitative detection. Remarkably, the working concentration for the sensor array was notably low, at 104 CFU/mL. Finally, by incorporating bacterial isolation culture, the designed sensor array obtained 100% accuracy in detecting E. coli in real food samples. These findings highlight the sensor array's potential for applications in food safety monitoring and clinical diagnostics, offering a sensitive, rapid, and reliable tool for pathogen detection in complex samples.
Collapse
Affiliation(s)
- Yang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuping Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoran Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianxi Yang
- Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Feng Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Junjun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Heidary O, Ashrafi H, Akhond M, Hemmateenejad B. Array of Manganese-Based Bimetallic Metal-Organic-Framework Nanozymes with Enhanced Oxidase-like Catalytic Activity Can Simultaneously Identify and Measure Antioxidants. Anal Chem 2025; 97:4860-4870. [PMID: 40011249 DOI: 10.1021/acs.analchem.4c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Developing sensitive and highly active nanozymes for antioxidant analysis is of the utmost significance in medical diagnosis and health monitoring due to their essential roles as free reactive oxygen species scavengers. Here, six metal-organic frameworks (MOFs)-based nanozymes are developed as a dual-mode absorbance/image analysis colorimetric sensor array for simultaneous discrimination and determination of various antioxidants with comparable structural or chemical properties. The catalysts exhibit a wide range of highly potent oxidase-like catalytic activities, as verified by kinetic parameters, due to the presence of highly dispersed transition metallic and bimetallic redox nodes. These nanozymes efficiently catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMBox, resulting in noticeable absorption and RGB color changes at 650 nm. Various antioxidants demonstrate different reducing capabilities to TMBox, leading to the generation of fingerprint-like spectral color patterns. The pattern recognition chemometrics methods including principal component analysis (PCA) and linear discriminant analysis (LDA) represent well-separated clustering and discrimination of ascorbic acid, dopamine, uric acid, cysteine, glutathione, thiocyanate, tannic acid, and gallic acid. The colorimetric assay provides a wide linear detection range (0.1-75 μM) and detection limits as low as 30 nM. The sensor array successfully discriminated antioxidants of various concentrations, mixtures, and potent interferences. Furthermore, the sensor's applicability in biologically relevant detection was validated in urine and plasma samples. Overall, the MOF-based nanozyme sensor array offers a promising platform for discriminating and determining a wide range of antioxidants with potential applications.
Collapse
Affiliation(s)
- Oldouz Heidary
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
- Chemometrics and Cheminformatics Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Hossein Ashrafi
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Morteza Akhond
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Bahram Hemmateenejad
- Chemometrics and Cheminformatics Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
3
|
Yang M, Wang R, Xie Y, Zhu L, Huang J, Xu W. Applications of DNA functionalized gold nanozymes in biosensing. Biosens Bioelectron 2025; 271:116987. [PMID: 39637741 DOI: 10.1016/j.bios.2024.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
In recent years, nanozymes have emerged as highly potential substitutes, surpassing the performance of natural enzymes. Among them, gold nanoparticles (AuNPs) and their metal hybrids have become a hot topic in nanozyme research due to their facile synthesis, easy surface modification, high stability, and excellent enzymatic activity. The integration of DNA with AuNPs, by precisely controlling the assembly, arrangement, and functionalization of nanoparticles, greatly facilitates the development of highly sensitive and selective biosensors. This review comprehensively elaborates on three core strategies for the combination of DNA with AuNPs, and deeply analyzes two widely applied enzyme activities in the field of sensing technology and the catalytic principles behind them. On this basis, we systematically summarize various methods for regulating the activity of gold nanozymes by DNA. Following that, we comprehensively review the latest research trends of DNA-Au nanozymes in the field of biosensing, with a particular focus on several crucial application areas such as food safety, environmental monitoring, and disease diagnosis. In the conclusion of the article, we not only discuss the main challenges faced in current research but also look forward to potential future research directions.
Collapse
Affiliation(s)
- Min Yang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Ran Wang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yushi Xie
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing, 100073, China
| | - Jiaqiang Huang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Beijing Laboratory for Food Quality and Safety, Key Laboratory of Safety Assessment of Genetically, Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing, 100073, China.
| |
Collapse
|
4
|
Cao J, Ma Q, Shi J, Wang X, Ye D, Liang J, Zou J. Cariogenic Microbiota and Emerging Antibacterial Materials to Combat Dental Caries: A Literature Review. Pathogens 2025; 14:111. [PMID: 40005488 PMCID: PMC11858515 DOI: 10.3390/pathogens14020111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Dental caries is the most common oral disease in the world and a chronic infectious disease. The cariogenic microbiome plays an important role in the process of caries. The ecological imbalance of microbiota leads to low pH, which causes caries. Therefore, antibacterial materials have always been a hot topic. Traditional antibacterial materials such as cationic antibacterial agents, metal ion antibacterial agents, and some natural extract antibacterial agents have good antibacterial effects. However, they can cause bacterial resistance and have poor biological safety when used for long-term purposes. Intelligent antibacterial materials, such as pH-responsive materials, nanozymes, photoresponsive materials, piezoelectric materials, and living materials are emerging antibacterial nano-strategies that can respond to the caries microenvironment or other specific stimuli to exert antibacterial effects. Compared with traditional antibacterial materials, these materials are less prone to bacterial resistanceand have good biological safety. This review summarizes the characteristics of cariogenic microbiota and some traditional or emerging antibacterial materials. These emerging antibacterial materials can accurately act on the caries microenvironment, showing intelligent antibacterial effects and providing new ideas for caries management.
Collapse
Affiliation(s)
- Jingwei Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingwei Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Xu K, Huang R, Li X, Jin L, Ko CN, Li M, Wong HM, Leung KCF. Nanomaterial-based synergistic strategies for combating dental caries: progress and perspectives. NANOSCALE 2025; 17:1874-1888. [PMID: 39704082 DOI: 10.1039/d4nr04515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Dental caries, as the predominant global oral disease, remains a critical public health issue worldwide, particularly in socioeconomically disadvantaged communities. However, common caries prevention approaches (e.g., oral health education, mechanical plaque removal, and delivery of fluoride agents) are still insufficient for optimal caries management, and therefore, alternative regimens that can supplement existing strategies are highly warranted. Nanomaterials exhibit considerable potential in combating cariogenic pathogens and biofilms owing to their promising antimicrobial capacity, improved penetration into biofilms, targeted precision delivery, and versatile physicochemical properties. As unifunctional materials are limited in caries management, this review underscores the latest advancement in multifunctional anti-caries nanomaterials/nanomedicines. It highlights the cutting-edge materials developed or engineered to (i) incorporate diagnostic capabilities to prevent caries at an early stage, thus enhancing treatment efficiency, (ii) integrate mechanical "brushing" with anti-caries approaches to mechanochemically eradicate biofilms, (iii) exert antimicrobial/antibiofilm effects while preserving dental hard tissue. The current work also outlines future directions for optimizing nanosystems in the management of dental caries while emphasizing the need for innovative solutions to improve preventive and therapeutic efficacies.
Collapse
Affiliation(s)
- Ke Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
6
|
Wang X, Tang X, Ji C, Wu L, Zhu Y. Advances and Future Trends in Nanozyme-Based SERS Sensors for Food Safety, Environmental and Biomedical Applications. Int J Mol Sci 2025; 26:709. [PMID: 39859423 PMCID: PMC11765993 DOI: 10.3390/ijms26020709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers. This review provides an overview of recent advancements in the synthesis and surface modification of nanozymes, highlighting their ability to mimic multiple enzymes and enhance catalytic performance. In addition, we explore the development and applications of nanozyme-based SERS sensors in food contaminants, environmental pollutants, and biomedical markers. The review concludes with perspectives and challenges facing the field, involving the need for deeper understanding of nanozyme principles and mechanisms, development of standardized systems for characterization, and the engineering of nanozymes with tailored properties for specific applications. Finally, we discuss the potential for integrating various techniques with nanozymes to create multi-modal detection platforms, paving the way for the next generation of analytical tools in the fields of food safety, environmental monitoring, and biomedical diagnostics.
Collapse
Affiliation(s)
- Xingyu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Xuemei Tang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chengzhen Ji
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Long Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
7
|
Park YS, Park BU, Jeon HJ. Advances in machine learning-enhanced nanozymes. Front Chem 2024; 12:1483986. [PMID: 39483853 PMCID: PMC11524833 DOI: 10.3389/fchem.2024.1483986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Nanozymes, synthetic nanomaterials that mimic the catalytic functions of natural enzymes, have emerged as transformative technologies for biosensing, diagnostics, and environmental monitoring. Since their introduction, nanozymes have rapidly evolved with significant advancements in their design and applications, particularly through the integration of machine learning (ML). Machine learning (ML) has optimized nanozyme efficiency by predicting ideal size, shape, and surface chemistry, reducing experimental time and resources. This review explores the rapid advancements in nanozyme technology, highlighting the role of ML in improving performance across various bioapplications, including real-time monitoring and the development of chemiluminescent, electrochemical and colorimetric sensors. We discuss the evolution of different types of nanozymes, their catalytic mechanisms, and the impact of ML on their property optimization. Furthermore, this review addresses challenges related to data quality, scalability, and standardization, while highlighting future directions for ML-driven nanozyme development. By examining recent innovations, this review highlights the potential of combining nanozymes with ML to drive the development of next-generation diagnostic and detection technologies.
Collapse
Affiliation(s)
- Yeong-Seo Park
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Byeong Uk Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee-Jae Jeon
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Veseli E, Behluli E, Breznica E, Veseli A. Artificial tongue: a promising solution for early detection and treatment of oral bacterial infections. Eur Arch Paediatr Dent 2024; 25:603-604. [PMID: 38602646 DOI: 10.1007/s40368-024-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Affiliation(s)
- E Veseli
- Department of Prosthodontics, Dental School, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - E Behluli
- Department of Periodontology and Oral Medicine, Dental School, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | | | - A Veseli
- School of Dental Medicine, Dental Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Lv J, Huang R, Zeng K, Zhang Z. Magnetic Immunoassay Based on Au Pt Bimetallic Nanoparticles/Carbon Nanotube Hybrids for Sensitive Detection of Tetracycline Antibiotics. BIOSENSORS 2024; 14:342. [PMID: 39056618 PMCID: PMC11274607 DOI: 10.3390/bios14070342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Misusage of tetracycline (TC) antibiotics residue in animal food has posed a significant threat to human health. Therefore, there is an urgent need to develop highly sensitive and robust assays for detecting TC. In the current study, gold and platinum nanoparticles were deposited on carbon nanotubes (CNTs) through the superposition method (Au@Pt/CNTs-s) and one-pot method (Au@Pt/CNTs-o). Au@Pt/CNTs-s displayed higher enzyme-like activity than Au@Pt/CNTs-o, which were utilized for the development of sensitive magnetic immunoassays. Under the optimized conditions, the limits of detection (LODs) of magnetic immunoassays assisted by Au@Pt/CNTs-s and Au@Pt/CNTs-o against TCs could reach 0.74 ng/mL and 1.74 ng/m, respectively, which were improved 6-fold and 2.5-fold in comparison with conventional magnetic immunoassay. In addition, the measurement of TC-family antibiotics was implemented by this assay, and ascribed to the antibody used that could recognize TC, oxytetracycline, chlortetracycline, and doxycycline with high cross-reactivity. Furthermore, the method showed good accuracy (recoveries, 92.1-114.5% for milk; 88.6-92.4% for pork samples), which also were applied for determination of the targets in real samples. This study provides novel insights into the rapid detection of targets based on high-performance nanocatalysts.
Collapse
Affiliation(s)
- Jianxia Lv
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China;
| | - Rui Huang
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (R.H.); (Z.Z.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Wang L, Wen Y, Li L, Yang X, Li W, Cao M, Tao Q, Sun X, Liu G. Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis. BIOSENSORS 2024; 14:170. [PMID: 38667163 PMCID: PMC11048167 DOI: 10.3390/bios14040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The discrimination and recognition of biological targets, such as proteins, cells, and bacteria, are of utmost importance in various fields of biological research and production. These include areas like biological medicine, clinical diagnosis, and microbiology analysis. In order to efficiently and cost-effectively identify a specific target from a wide range of possibilities, researchers have developed a technique called differential sensing. Unlike traditional "lock-and-key" sensors that rely on specific interactions between receptors and analytes, differential sensing makes use of cross-reactive receptors. These sensors offer less specificity but can cross-react with a wide range of analytes to produce a large amount of data. Many pattern recognition strategies have been developed and have shown promising results in identifying complex analytes. To create advanced sensor arrays for higher analysis efficiency and larger recognizing range, various nanomaterials have been utilized as sensing probes. These nanomaterials possess distinct molecular affinities, optical/electrical properties, and biological compatibility, and are conveniently functionalized. In this review, our focus is on recently reported optical sensor arrays that utilize nanomaterials to discriminate bioanalytes, including proteins, cells, and bacteria.
Collapse
Affiliation(s)
| | - Yanli Wen
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| | | | | | | | | | | | | | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| |
Collapse
|
11
|
'Artificial tongue' detects and inactivates common mouth bacteria. Br Dent J 2024; 236:437. [PMID: 38519667 DOI: 10.1038/s41415-024-7253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
|