1
|
Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022; 23:6802. [PMID: 35743245 PMCID: PMC9224565 DOI: 10.3390/ijms23126802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Functionalized graphene oxide (GO) nanoparticles are being increasingly employed for designing modern drug delivery systems because of their high degree of functionalization, high surface area with exceptional loading capacity, and tunable dimensions. With intelligent controlled release and gene silencing capability, GO is an effective nanocarrier that permits the targeted delivery of small drug molecules, antibodies, nucleic acids, and peptides to the liquid or solid tumor sites. However, the toxicity and biocompatibility of GO-based formulations should be evaluated, as these nanomaterials may introduce aggregations or may accumulate in normal tissues while targeting tumors or malignant cells. These side effects may potentially be impacted by the dosage, exposure time, flake size, shape, functional groups, and surface charges. In this review, the strategies to deliver the nucleic acid via the functionalization of GO flakes are summarized to describe the specific targeting of liquid and solid breast tumors. In addition, we describe the current approaches aimed at optimizing the controlled release towards a reduction in GO accumulation in non-specific tissues in terms of the cytotoxicity while maximizing the drug efficacy. Finally, the challenges and future research perspectives are briefly discussed.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Parisa Hajimohammadi Gohari
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Schouw HM, Huisman LA, Janssen YF, Slart RHJA, Borra RJH, Willemsen ATM, Brouwers AH, van Dijl JM, Dierckx RA, van Dam GM, Szymanski W, Boersma HH, Kruijff S. Targeted optical fluorescence imaging: a meta-narrative review and future perspectives. Eur J Nucl Med Mol Imaging 2021; 48:4272-4292. [PMID: 34633509 PMCID: PMC8566445 DOI: 10.1007/s00259-021-05504-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022]
Abstract
Purpose The aim of this review is to give an overview of the current status of targeted optical fluorescence imaging in the field of oncology, cardiovascular, infectious and inflammatory diseases to further promote clinical translation. Methods A meta-narrative approach was taken to systematically describe the relevant literature. Consecutively, each field was assigned a developmental stage regarding the clinical implementation of optical fluorescence imaging. Results Optical fluorescence imaging is leaning towards clinical implementation in gastrointestinal and head and neck cancers, closely followed by pulmonary, neuro, breast and gynaecological oncology. In cardiovascular and infectious disease, optical imaging is in a less advanced/proof of concept stage. Conclusion Targeted optical fluorescence imaging is rapidly evolving and expanding into the clinic, especially in the field of oncology. However, the imaging modality still has to overcome some major challenges before it can be part of the standard of care in the clinic, such as the provision of pivotal trial data. Intensive multidisciplinary (pre-)clinical joined forces are essential to overcome the delivery of such compelling phase III registration trial data and subsequent regulatory approval and reimbursement hurdles to advance clinical implementation of targeted optical fluorescence imaging as part of standard practice. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05504-y.
Collapse
Affiliation(s)
- H M Schouw
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - L A Huisman
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Y F Janssen
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - R H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - R J H Borra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Radiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - A T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - A H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - J M van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - R A Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
| | - G M van Dam
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,AxelaRx/TRACER Europe BV, Groningen, The Netherlands
| | - W Szymanski
- Department of Radiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - H H Boersma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre of Groningen, Groningen, The Netherlands
| | - S Kruijff
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands. .,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
4
|
Cheng Z, Xigong L, Weiyi D, Jingen H, Shuo W, Xiangjin L, Junsong W. Potential use of 3D-printed graphene oxide scaffold for construction of the cartilage layer. J Nanobiotechnology 2020; 18:97. [PMID: 32664992 PMCID: PMC7362511 DOI: 10.1186/s12951-020-00655-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background Three-dimensional (3D) printing involves the layering of seed cells, biologically compatible scaffolds, and biological activity factors to precisely recapitulate a biological tissue. Graphene oxide (GO), a type of micro material, has been utilized as a small molecule-transport vehicle. With the proliferation of GO, the biocompatibility of chondrocytes in a microenvironment constructed by 3D printed scaffolds and GO is innovative. Accordingly, we speculate that, as a type of micro material, GO can be used with 3D scaffolds for a uniform distribution in the cartilage layer. Results A qualitative analysis of the chondrocyte-proliferation potential revealed that the culture of 3D printing with a 10% GO scaffold was higher than that of the other groups. Meanwhile, the progress of cell apoptosis was activated. Through scanning electron microscopy, immunofluorescence, and in vivo research, we observed that the newborn cartilage matrix extended along the border of the cartilage and scaffold and matured. After an analysis with immunohistochemical staining with aggrecan and collagen I, the cartilage following the 3D-printed scaffold was thinner than that of the 3D-printed GO scaffold. Furthermore, the collagen I of the cartilage expression in treatment with the GO scaffold was significant from week 2 to 6. Conclusions The findings indicate that a 3D-printed GO scaffold can potentially be utilized for the construction of a cartilage matrix. However, the optimum concentration of GO requires further research and discussion.
Collapse
Affiliation(s)
- Zhong Cheng
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China.,The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Li Xigong
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Diao Weiyi
- The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Hu Jingen
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Wang Shuo
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Lin Xiangjin
- The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Wu Junsong
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China. .,The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
5
|
Yang Z, Yang D, Zeng K, Li D, Qin L, Cai Y, Jin J. Simultaneous Delivery of antimiR-21 and Doxorubicin by Graphene Oxide for Reducing Toxicity in Cancer Therapy. ACS OMEGA 2020; 5:14437-14443. [PMID: 32596581 PMCID: PMC7315576 DOI: 10.1021/acsomega.0c01010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/28/2020] [Indexed: 05/12/2023]
Abstract
Graphene oxide (GO) has been studied by many researchers for its potential drug-delivery value. In order to reduce the side effects of anticancer drugs by decreasing the dosage and maintain the therapeutic effects, a dual drug-delivery system that used GO as a carrier and simultaneously loaded with antitumor drugs and antimir-21 was rationally designed for the cooperative treatment of tumors. Results obtained from our studies have found that MDA-MB-231 cells were inhibited in low Dox dose. The outcomes of confocal microscopy indicated that Dox and antimiR-21 could be released rapidly in cancer cells, which is good for killing cancer cells. In addition, qRT-PCR further demonstrated that miR-21 was silenced by antimiR-21. Consequently, GO has a great potential to codeliver chemotherapeutic drugs and gene drugs in cancer combination therapy for reducing toxicity.
Collapse
Affiliation(s)
- Zhaoqi Yang
- . Phone: +86-510-85918219. Fax: +86-510-85918219
| | | | | | | | | | | | | |
Collapse
|
6
|
Yamada N, Noguchi H, Orimoto Y, Kuwahara Y, Takafuji M, Pathan S, Oda R, Mahammadali Rahimli A, Ahmed Ramazanov M, Ihara H. Emission-Color Control in Polymer Films by Memorized Fluorescence Solvatochromism in a New Class of Totally Organic Fluorescent Nanogel Particles. Chemistry 2019; 25:10141-10148. [PMID: 31095789 DOI: 10.1002/chem.201901239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/06/2019] [Indexed: 01/18/2023]
Abstract
In this work, a new class of totally organic fluorescent nanogel particles and their exceptionally specific behaviors based on their unique structures are introduced, which draws a sharp line from conventional fluorophore-doped and fluorophore-branched-type particles. The nanogel particles, the diameter of which could be controlled by adjusting reaction conditions, such as the solvent system, were spontaneously fabricated with a spherical shape by direct polymerization of non-heterocyclic aromatic compounds, such as 2,6-dihydroxyanthracene, 2,6-dihydroxynaphthalene, and 9,9-bis(4-hydroxyphenyl)fluorene with triazinane as the cross-linker. A fluorophoric moiety formed from a polymer main chain was realized in the particle, and consequently, the resultant content of the fluorophoric moiety was around 70-80 wt % per particle. The uniqueness and versatility of the particles can be emphasized by their good compatibility with various solvents due to their amphiphilic and ampholytic swelling properties, but also by their remarkable fluorescent solvatochromism in the dispersion state. Furthermore, these behaviors were preserved even in their polymer composite system. This study also demonstrates that various fluorescent polymer films can be fabricated with emission color control due to memorization of the solvatochromism phenomenon of the dispersed fluorescent nanoparticles.
Collapse
Affiliation(s)
- Nobuo Yamada
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hiroki Noguchi
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yoshifumi Orimoto
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Shaheen Pathan
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Chemistry and Biology of Membranes and Nano-objects, (UMR5248 CBMN), CNRS-Université de Bordeaux-Bordeaux INP, 2 rue Robert Escarpit, Pessac, 33607, France
| | - Reiko Oda
- Institute of Chemistry and Biology of Membranes and Nano-objects, (UMR5248 CBMN), CNRS-Université de Bordeaux-Bordeaux INP, 2 rue Robert Escarpit, Pessac, 33607, France
| | | | | | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
7
|
Prasad R, Yadav AS, Gorain M, Chauhan DS, Kundu GC, Srivastava R, Selvaraj K. Graphene Oxide Supported Liposomes as Red Emissive Theranostics for Phototriggered Tissue Visualization and Tumor Regression. ACS APPLIED BIO MATERIALS 2019; 2:3312-3320. [DOI: 10.1021/acsabm.9b00335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rajendra Prasad
- Nano and Computational Materials Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), National Chemical Laboratory, Pune 411008, India
| | - Amit S. Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune, India
| | - Deepak S. Chauhan
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Gopal C. Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Kaliaperumal Selvaraj
- Nano and Computational Materials Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
8
|
Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine. Curr Drug Deliv 2019; 16:195-214. [DOI: 10.2174/1567201815666181031162208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Graphene in nano form has proven to be one of the most remarkable materials. It has a single
atom thick molecular structure and it possesses exceptional physical strength, electrical and electronic
properties. Applications of the Graphene Family of Nanomaterials (GFNs) in different fields of therapy
have emerged, including for targeted drug delivery in cancer, gene delivery, antimicrobial therapy, tissue
engineering and more recently in more diseases including HIV. This review seeks to analyze current
advances of potential applications of graphene and its family of nano-materials for drug delivery and
other major biomedical purposes. Moreover, safety and toxicity are the major roadblocks preventing the
use of GFNs in therapeutics. This review intends to analyze the safety and biocompatibility of GFNs
along with the discussion on the latest techniques developed for toxicity reduction and biocompatibility
enhancement of GFNs. This review seeks to evaluate how GFNs in future will serve as biocompatible
and useful biomaterials in therapeutics.
Collapse
Affiliation(s)
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | | | | | | | | |
Collapse
|
9
|
Cheng W, Chen H, Ji C, Yang R, Yin M. A perylenediimide-based nanocarrier monitors curcumin release with an “off–on” fluorescence switch. Polym Chem 2019. [DOI: 10.1039/c9py00132h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A perylenediimide-based nanocarrier (PPL-B) is constructed and used for monitoring curcumin release through an “off–on” fluorescence switch.
Collapse
Affiliation(s)
- Wenyu Cheng
- Beijing Laboratory of Biomedical Materials
- Key Laboratory of Biomedical Materials of Natural Macromolecules
- Ministry of Education
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- BAIC-SM
| | - Hongtao Chen
- Beijing Laboratory of Biomedical Materials
- Key Laboratory of Biomedical Materials of Natural Macromolecules
- Ministry of Education
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- BAIC-SM
| | - Chendong Ji
- Beijing Laboratory of Biomedical Materials
- Key Laboratory of Biomedical Materials of Natural Macromolecules
- Ministry of Education
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- BAIC-SM
| | - Ru Yang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Meizhen Yin
- Beijing Laboratory of Biomedical Materials
- Key Laboratory of Biomedical Materials of Natural Macromolecules
- Ministry of Education
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- BAIC-SM
| |
Collapse
|
10
|
|
11
|
Silicon nanodot-based aptasensor for fluorescence turn-on detection of mucin 1 and targeted cancer cell imaging. Anal Chim Acta 2018; 1035:154-160. [PMID: 30224134 DOI: 10.1016/j.aca.2018.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/22/2023]
Abstract
We report herein a new dual-color fluorescent aptasensor for detection of tumor marker mucin 1 (MUC1) and targeted imaging of MCF-7 cancer cells based on the specific interaction between MUC1 and its aptamer S2.2. The aptasensor was prepared by covalent attachment of the cyanine (Cy5)-tagged aptamer S2.2 to fluorescent silicon nanodot (SiND). The fluorescence of S2.2-Cy5 could be quenched by the SiND carrier in the absence of MUC1, and its fluorescence was restored in the presence of MUC1 due to structure switching of S2.2. This aptasensor exhibits specificity for MUC1-possitive MCF-7 cells rather than MUC1-negative MCF-10A cells and Vero cells. The SiND plays multiple roles in this fluorescence assay, making the method easier compared with other approaches. The limit of detection and precision of this method for MUC1 was 1.52 nM and 3.6% (10 nM, n = 7), respectively. The linear range was 3.33-250 nM, and the recoveries in spiked human serum were in the range of 87-108%. This is a simple, selective, sensitive and reliable method, which can well achieve not only quantitative analysis of tumor marker but also dual-color visualization of single cancer cells.
Collapse
|
12
|
Albert K, Huang XC, Hsu HY. Bio-templated silica composites for next-generation biomedical applications. Adv Colloid Interface Sci 2017; 249:272-289. [PMID: 28499603 DOI: 10.1016/j.cis.2017.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Silica-based materials have extensive biomedical applications owing to their unique physical, chemical, and biological properties. Recently, increasing studies have examined the mechanisms involved in biosilicification to develop novel, fine-tunable, eco-friendly materials and/or technologies. In this review, we focus on recent developments in bio-templated silica synthesis and relevant applications in drug delivery systems, tissue engineering, and biosensing.
Collapse
Affiliation(s)
- Karunya Albert
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Xin-Chun Huang
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
13
|
Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:696-716. [PMID: 26762467 PMCID: PMC4945487 DOI: 10.1002/wnan.1389] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/27/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Parham Sahandi-Zangabad
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Fereshteh Mirab
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Negar Farajisafiloo
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Shafaei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Deepanjan Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical science, Tehran, Iran
| | - Mahnaz Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - Fariba Dashkhaneh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical Science, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Liu J, Liu Q, Yang C, Sun Y, Zhang Y, Huang P, Zhou J, Liu Q, Chu L, Huang F, Deng L, Dong A, Liu J. cRGD-Modified Benzimidazole-based pH-Responsive Nanoparticles for Enhanced Tumor Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10726-10736. [PMID: 27058429 DOI: 10.1021/acsami.6b01501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Finding a smart cancer drug delivery carrier with long blood circulation, enhanced cancer targeting, and quick drug release in tumors is critical for efficient cancer chemotherapy. Herein, we design a cRGD-polycarboxybetaine methacrylate-b-polybenzimidazole methacrylate (cRGD-PCB-b-PBBMZ) copolymer to self-assemble into smart drug-loaded nanoparticles (cRGD-PCM NPs) which can target αvβ3 integrin overexpressed cancer tissue by cRGD peptide unit and release drug quickly in cancer cells by protonation of benzimidazole groups. The outer PCB layer can resist protein adhesion, and there are only about 10% of proteins in mouse serum adhered to the surface of PCM NPs. With the pKa value of 5.08 of the benzimidazole units, DOX can be released from NPs in pH 5.0 PBS. cRGD-PCM NPs can bring more DOX into HepG2 cells than nontargeting PCM NPs, and there has high DOX release rate in HepG2 cells because of the protonation of benzimidazole groups in endosome and lysosome. MTT assay verifies that higher cellular uptake of DOX causes higher cytotoxicity. Furthermore, the results of ex vivo imaging studies confirm that cRGD-PCM/DOX NPs can successfully deliver DOX into tumor tissue from the injection site. Therefore, the multifunctional cRGD-PCM NPs show great potential as novel nanocarriers for targeting cancer chemotherapy.
Collapse
Affiliation(s)
- Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | | | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Yu Sun
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Pingsheng Huang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| |
Collapse
|
15
|
Abstract
Graphene has attracted much attention of scientific community due to its enormous potential in different fields, including medical sciences, agriculture, food safety, cancer research, and tissue engineering. The potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene family nanomaterials (GFNs). Due to their unique chemical and physical properties, graphene and its derivatives have found important places in their respective application fields, yet they are being found to have cytotoxic and genotoxic effects too. Since the discovery of graphene, a number of researches are being conducted to find out the toxic potential of GFNs to different cell and animal models, finding their suitability for being used in new and varied innovative fields. This paper presents a systematic review of the research done on GFNs and gives an insight into the mode and action of these nanosized moieties. The paper also emphasizes on the recent and up-to-date developments in research on GFNs and their nanocomposites for their toxic effects.
Collapse
Affiliation(s)
- Zorawar Singh
- Department of Zoology, Khalsa College, Amritsar, Punjab, India
| |
Collapse
|
16
|
Zhou B, Huang Y, Yang F, Zheng W, Chen T. Dual-Functional Nanographene Oxide as Cancer-Targeted Drug-Delivery System to Selectively Induce Cancer-Cell Apoptosis. Chem Asian J 2016; 11:1008-19. [DOI: 10.1002/asia.201501277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Binwei Zhou
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Yanyu Huang
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Fang Yang
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Wenjie Zheng
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| |
Collapse
|
17
|
|