1
|
Gao K, Xu K. Advancements and Prospects of pH-Responsive Hydrogels in Biomedicine. Gels 2025; 11:293. [PMID: 40277729 PMCID: PMC12026617 DOI: 10.3390/gels11040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
As an intelligent polymer material, pH-sensitive hydrogels exhibit the capability to dynamically sense alterations in ambient pH levels and subsequently initiate corresponding physical or chemical responses, including swelling, contraction, degradation, or ion exchange. Given the significant pH variations inherent in human pathophysiological microenvironments, particularly in tumor tissues, inflammatory lesions, and the gastrointestinal system, these smart materials demonstrate remarkable application potential across diverse domains such as targeted drug delivery systems, regenerative medicine engineering, biosensing, and disease diagnostics. Recent breakthroughs in nanotechnology and precision medicine have substantially propelled advancements in the design and application of pH-responsive hydrogels. This review systematically elaborates on the current research progress and future challenges regarding pH-responsive hydrogels in biomedical applications, with particular emphasis on their stimulus-response mechanisms, fabrication methodologies, multifunctional integration strategies, and application scenarios.
Collapse
Affiliation(s)
- Ke Gao
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ke Xu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Singh A, Bora S, Kumar P, Kukreti R, Kaushik M. Targeted Nanotherapy by Vinblastine-Loaded Chitosan-Coated PLA Nanoparticles to Improve the Chemotherapy via Reactive Oxygen Species to Hamper Hepatocellular Carcinoma. ACS OMEGA 2025; 10:170-180. [PMID: 39829490 PMCID: PMC11739963 DOI: 10.1021/acsomega.4c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 01/22/2025]
Abstract
Liver cancer is a prevalent and significant cause of death in humans. The use of novel biodegradable materials for various biomedical applications is being recently recommended as complementary as well as alternative solution for traditional chemotherapy. This study focuses on the synthesis of biodegradable nanocarriers [chitosan-coated poly(lactic acid) NPs (Cht-PLA NPs)] for the delivery of an anticancer drug vinblastine (Vbx) and to evaluate its therapeutic potential in human hepatocellular carcinoma (HepG2) cells. The Cht-PLA NPs were synthesized using the nanoprecipitation method and characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential techniques. The results showed that the nanoparticle sizes are in the range of 100-200 nm with positive surface charge. The release profile of the synthesized nanoformulation showed controlled release of the Vbx drug for 72 h. The anticancer efficacy of the synthesized nanoformulation was assessed on the HepG2 cell lines. The in vitro cytotoxicity study revealed that the Vbx-loaded Cht-PLA NPs showed higher toxicity with an increase in concentration as compared to the Vbx alone. Additionally, an in vitro cellular uptake study revealed higher internalization as compared to the drug alone due to the chitosan coating. Further, the ability to stimulate the reactive oxygen species (ROS) generation and variation in mitochondrial membrane potential at the IC50 concentration of Vbx-loaded Cht-PLA NPs was confirmed by using 2,7-dichlorodihydrofluorescein diacetate and rhodamine 123 dyes, respectively, and were analyzed under fluorescence microscopy. Hence, the results showed that Vbx-loaded Cht-PLA NPs possess high anticancer activity due to its higher cellular toxicity, cellular uptake, increased ROS production, and disruption in mitochondrial membrane potential. All these properties of the synthesized nanoformulation suggest it's potential applications in drug delivery systems, targeting liver cancer.
Collapse
Affiliation(s)
- Amit Singh
- Nano-bioconjugate
Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Shivangi Bora
- Genomics
and Molecular Medicine Unit, Institute of
Genomics and Integrative Biology (IGIB)-Council of Scientific and
Industrial Research (CSIR), Mall Road, Delhi 110007, India
| | - Pankaj Kumar
- Nano-bioconjugate
Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Ritushree Kukreti
- Genomics
and Molecular Medicine Unit, Institute of
Genomics and Integrative Biology (IGIB)-Council of Scientific and
Industrial Research (CSIR), Mall Road, Delhi 110007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mahima Kaushik
- Nano-bioconjugate
Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Kaniewska K, Mackiewicz M, Smutok O, Gonchar M, Katz E, Karbarz M. Enzymatically Triggered Drug Release from Microgels Controlled by Glucose Concentration. ACS Biomater Sci Eng 2024; 10:6415-6424. [PMID: 39356930 PMCID: PMC11480938 DOI: 10.1021/acsbiomaterials.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.
Collapse
Affiliation(s)
- Klaudia Kaniewska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Marcin Mackiewicz
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Oleh Smutok
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Mykhailo Gonchar
- Institute
of Cell Biology, National Academy of Sciences
of Ukraine, Lviv 79005, Ukraine
| | - Evgeny Katz
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Marcin Karbarz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| |
Collapse
|
4
|
Xu X, Liu Y, Liu Y, Yu Y, Yang M, Lu L, Chan L, Liu B. Functional hydrogels for hepatocellular carcinoma: therapy, imaging, and in vitro model. J Nanobiotechnology 2024; 22:381. [PMID: 38951911 PMCID: PMC11218144 DOI: 10.1186/s12951-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide and is characterized by high rates of morbidity and mortality, posing a serious threat to human health. Interventional embolization therapy is the main treatment against middle- and late-stage liver cancer, but its efficacy is limited by the performance of embolism, hence the new embolic materials have provided hope to the inoperable patients. Especially, hydrogel materials with high embolization strength, appropriate viscosity, reliable security and multifunctionality are widely used as embolic materials, and can improve the efficacy of interventional therapy. In this review, we have described the status of research on hydrogels and challenges in the field of HCC therapy. First, various preparation methods of hydrogels through different cross-linking methods are introduced, then the functions of hydrogels related to HCC are summarized, including different HCC therapies, various imaging techniques, in vitro 3D models, and the shortcomings and prospects of the proposed applications are discussed in relation to HCC. We hope that this review is informative for readers interested in multifunctional hydrogels and will help researchers develop more novel embolic materials for interventional therapy of HCC.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006, Guangzhou, China.
| |
Collapse
|
5
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
6
|
Liu G, Guo Q, Liu C, Bai J, Wang H, Li J, Liu D, Yu Q, Shi J, Liu C, Zhu C, Li B, Zhang H. Cytomodulin-10 modified GelMA hydrogel with kartogenin for in-situ osteochondral regeneration. Acta Biomater 2023; 169:317-333. [PMID: 37586447 DOI: 10.1016/j.actbio.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The incidence of osteochondral defect is increasing year by year, but there is still no widely accepted method for repairing the defect. Hydrogels loaded with bioactive molecules have provided promising alternatives for in-situ osteochondral regeneration. Kartogenin (KGN) is an effective and steady small molecule with the function of cartilage regeneration and protection which can be further boosted by TGF-β. However, the high cost, instability, and immunogenicity of TGF-β would limit its combined effect with KGN in clinical application. In this study, a composite hydrogel CM-KGN@GelMA, which contained TGF-β1 analog short peptide cytomodulin-10 (CM-10) and KGN, was fabricated. The results indicated that CM-10 modified on GelMA hydrogels exerted an equivalent role in enhancing chondrogenesis as TGF-β1, and this effect was also boosted when combined with KGN. Moreover, it was revealed that CM-10 and KGN had a synergistic effect on promoting the chondrogenesis of BMSCs by up-regulating the expression of RUNX1 and SOX9 at both mRNA and protein levels in vitro. Finally, the composite hydrogel exhibited a satisfactory osteochondral defect repair effect in vivo, showing similar structures close to the native tissue. Taken together, this study has revealed that CM-10 may serve as an alternative for TGF-β1 and can collaborate with KGN to accelerate chondrogenesis, which suggests that the fabricated CM-KGN@GelMA composite hydrogel can be acted as a potential scaffold for osteochondral defect regeneration. STATEMENT OF SIGNIFICANCE: Kartogenin and TGF-β have shown great value in promoting osteochondral defect regeneration, and their combined application can enhance the effect and show great potential for clinical application. Herein, a functional CM-KGN@GelMA hydrogel was fabricated, which was composed of TGF-β1 mimicking peptide CM-10 and KGN. CM-10 in hydrogel retained an activity like TGF-β1 to facilitate BMSC chondrogenesis and exhibited boosting chondrogenesis by up-regulating RUNX1 and SOX9 when being co-applied with KGN. In vivo, the hydrogel promoted cartilage regeneration and subchondral bone reconstruction, showing similar structures as the native tissue, which might be vital in recovering the bio-function of cartilage. Thus, this study developed an effective scaffold and provided a promising way for osteochondral defect repair.
Collapse
Affiliation(s)
- Guoping Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China; Department of Spine Surgery, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Qianping Guo
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Jianzhong Bai
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Jiaying Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Dachuan Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Qifan Yu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Jinhui Shi
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Chengyuan Liu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Caihong Zhu
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Bin Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China; Department of Spinal Surgery, the Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu 213003, China.
| | - Hongtao Zhang
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, the First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
7
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
8
|
Yang Y, Wu S, Zhang Q, Chen Z, Wang C, Jiang S, Zhang Y. A multi-responsive targeting drug delivery system for combination photothermal/chemotherapy of tumor. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:166-183. [PMID: 35943449 DOI: 10.1080/09205063.2022.2112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To achieve efficient delivery and precise release of chemotherapy drugs at tumor sites, an active targeting multi-responsive drug delivery platform was developed. Here, doxorubicin hydrochloride (DOX) was loaded onto polydopamine (PDA), which were coated by the cystamine-modified hyaluronic acid (HA-Cys), designated as DOX@PDA-HA (PDH). The combination of PDA and HA-Cys endowed the nanoplatform photothermal conversion, tumor-targeting, and pH/redox/NIR sensitive drug release capacity. Moreover, HA could be degraded by the excess hyaluronidase (HAase) in the tumor microenvironment (TME), promoting DOX release, and further enhancing the effect of chemotherapy. Experimental results demonstrated PDH good biocompatibility, high loading rate, targeted drug delivery, and efficient tumor cell killing ability. This ingenious strategy based on PDH showed huge potential in photothermal/chemotherapy combination treatment of cancer.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Siqi Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Qinlin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Zhaoxia Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Caixia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Sijing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Yuhong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| |
Collapse
|
9
|
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226:535-553. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has influenced the advancements in biomedical and pharmaceutical fields. The design and formulation of stimuli-responsive nano-drug delivery systems, also called smart drug delivery systems, have attracted significant research worldwide and have been seen as a breakthrough in nanomedicines. The ability of these nanocarriers to respond to external and internal stimuli, such as pH, temperature, redox, electric and magnetic fields, enzymes, etc., has allowed them to deliver the cargo at targeted sites in a controlled fashion. The targeted drug delivery systems limit the harmful side effects on healthy tissue by toxic drugs and furnish spatial and temporal control drug delivery, improved patient compliance, and treatment efficiency. The polymeric nanogels (hydrogel nanoparticles) with stimuli-responsive characteristics have shown great potential in various biomedical, tissue engineering, and pharmaceutical fields. It is primarily because of their small size, biocompatibility, biodegradability, stimuli-triggered drug deliverability, high payload capacity, and tailored functionality. This comprehensive review deals distinctively with polymeric nanogels, their chemical, physical, and biological stimuli, the concepts of nanogels response to different stimuli, and recent advancements. This document will further improve the current understanding of stimuli-responsive materials and drug delivery systems and assist in exploring advanced potential applications of these intelligent materials.
Collapse
Affiliation(s)
- Sachin Bhaladhare
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India.
| | - Sulagna Bhattacharjee
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India
| |
Collapse
|
10
|
Zheng S, Tian Y, Ouyang J, Shen Y, Wang X, Luan J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem 2022; 10:990362. [PMID: 36171994 PMCID: PMC9510755 DOI: 10.3389/fchem.2022.990362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Carbon nanomaterials are some of the state-of-the-art materials used in drug-delivery and tissue-engineering research. Compared with traditional materials, carbon nanomaterials have the advantages of large specific surface areas and unique properties and are more suitable for use in drug delivery and tissue engineering after modification. Their characteristics, such as high drug loading and tissue loading, good biocompatibility, good targeting and long duration of action, indicate their great development potential for biomedical applications. In this paper, the synthesis and application of carbon dots (CDs), carbon nanotubes (CNTs) and graphene in drug delivery and tissue engineering are reviewed in detail. In this review, we discuss the current research focus and existing problems of carbon nanomaterials in order to provide a reference for the safe and effective application of carbon nanomaterials in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shaolie Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Tian
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Ouyang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| |
Collapse
|
11
|
Guo H, Liu F, Liu E, Wei S, Sun W, Liu B, Sun G, Lu L. Dual-responsive nano-prodrug micelles for MRI-guided tumor PDT and immune synergistic therapy. J Mater Chem B 2022; 10:4261-4273. [PMID: 35583206 DOI: 10.1039/d1tb02790e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Micelles as nanocarriers not only offer new opportunities for early diagnosis and treatment of malignant cancers but also encounter numerous barriers in the path of efficient delivery of drugs to diseased areas in the body. To address these issues, we developed a pH/GSH responsive nano-prodrug micelle (NLG919/PGA-Cys-PPA@Gd) with a high drug-loading ratio and controlled drug release performance for MRI-guided tumor photodynamic therapy (PDT) and immune synergistic therapy. Under normal conditions, theranostic nanomicelles remained stable and in a photo-quenched state. Upon accumulation in the tumor site, however, the micelles demonstrated tumor microenvironment (TME) triggered photoactive formed-PPA (a photosensitizer) and NLG919 (an indoleamine 2,3-dioxygenase (IDO) inhibitor) release because the amide bonds of PGA-Cys-PPA and the disulfide linkage of Cys were sensitive to pH and GSH, respectively. More importantly, these micelles could avoid the undesired PPA leakage in blood circulation due to the conjugation between PPA and polymers. Furthermore, the obtained micelles could also enhance the contrast of T1-weighted MRI of tumors by virtue of their high relaxivity (r1 = 29.85 mM-1 s-1). In vitro and in vivo results illustrated that the micelles had good biocompatibility and biosafety. On the basis of the efficient drug delivery strategies in PDT and IDO pathway inhibition, this intelligent dual-drug delivery system could serve as an effective approach for MRI guided combination therapy of cancer.
Collapse
Affiliation(s)
- Hui Guo
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Fangzhe Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Enqi Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Baoqiang Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| |
Collapse
|
12
|
Zhang X, Wei P, Wang Z, Zhao Y, Xiao W, Bian Y, Liang D, Lin Q, Song W, Jiang W, Wang H. Herceptin-Conjugated DOX-Fe 3O 4/P(NIPAM-AA-MAPEG) Nanogel System for HER2-Targeted Breast Cancer Treatment and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15956-15969. [PMID: 35378977 DOI: 10.1021/acsami.1c24770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is essential to synthesize a "diagnosis and therapy" integration nanocarrier for magnetic resonance imaging-guided breast cancer-targeted chemotherapy. Here, we report Fe3O4/P(NIPAM-AA-MAPEG) nanogels (MNLs) based on in situ loading of doxorubicin (DOX) by miniemulsion polymerization. Especially, propyl acrylic acid (AA) moieties were introduced to absorb DOX by electrostatic interactions and conjugated with the antibody herceptin (HER) through the amino-carboxyl coupling reaction. The size and morphology of MNLs could be adjusted by varying the polymerization parameters, such as the monomer feeding ratio, ferrofluid content, and cross-linker content. The MNLs showed superior stability in a physiological environment, but their structures were destroyed in an acidic environment to accelerate DOX release. The dissociation of the HER-DOX-MNLs accelerated the delivery of DOX and enhanced the therapeutic effects. The studies exhibited that the HER-DOX-MNLs could inhibit the tumor growth. In addition, the MNLs with a high magnetic content had the potential advantages in magnetic resonance imaging (MRI) of breast cancer diagnosis. The dual-targeted pH-responsive nanogels were successfully designed as a multifunctional nanocarrier for realizing HER2-positive breast cancer chemotherapy and diagnostics.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Pengfei Wei
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Yuan Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Wenke Xiao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- College of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dong Liang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Wenli Song
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huan Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
| |
Collapse
|
13
|
Zhang Y, Wang Y, Xin Q, Li M, Yu P, Luo J, Xu X, Chen X, Li J. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): a general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J Mater Chem B 2022; 10:2497-2503. [PMID: 35019930 DOI: 10.1039/d1tb02493k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erythrocyte membrane nanosystems have become one of the important research directions of disease treatment, especially for tumor treatment, and can enhance the long circulation time of anti-cancer drugs in vivo, and penetrate and accumulate in the tumor site effectively. However, erythrocyte membranes lack targeting properties and it is necessary to provide tumor-targeting function by modifying erythrocyte membranes. In this study, we report on a novel modification method of an erythrocyte membrane nanosystem to target tumors. Specifically, the tumor-targeting molecule folate-poly (ethylene glycol) (FA-PEG) was modified with a zwitterionic 2-(methyl acryloyoxy) ethyl choline phosphate (MCP) by the Michael addition reaction to obtain MCP-modified FA-PEG (MCP-PEG-FA). Based on the strong "N-P" tetravalent electrostatic interaction between MCP and phosphatidyl choline on the erythrocyte membranes, MCP-PEG-FA can be modified on the erythrocyte membrane encapsulated doxorubicin (DOX) loaded poly(lactic-co-glycolic acid) (PLGA) nanosystem to form a tumor-targeting erythrocyte membrane nanosystem (FA-RBC@PLGA-DOX). The results show that MCP-PEG-FA was synthesized and successfully bonded to the erythrocyte membrane nanosystem, and the FA-RBC@PLGA-DOX nanosystem had a better tumor-targeting function and tumor killing effect compared with those of the nanosystems without FA ligand modification. The universal modification method of erythrocyte membranes is successfully provided and can be applied to the treatment of various diseases.
Collapse
Affiliation(s)
- Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Mingjing Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China. .,College of Medicine, Southwest Jiaotong University, Chengdu, 610003, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
14
|
Zhou S, Cui P, Sheng J, Zhang X, Jiang P, Ni X, Cao K, Qiu L. A novel assay for the determination of PreScission protease by capillary electrophoresis. Biophys Chem 2022; 281:106696. [PMID: 34954553 DOI: 10.1016/j.bpc.2021.106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The detection of protease activity in the body plays a significant role in the early diagnosis of diseases. However, enzymes inevitably come into contact with various complex biological fluids in the body during the flow, which greatly increases the detection difficulty. Therefore, protease detection in vivo has great challenges. Herein, we report a new assay for detecting protease using capillary electrophoresis inside a capillary with semicircular bends. We first designed a peptide substrate, and then the peptide was self-assembled with quantum dots to form a QDs-peptide substrate. The capillary was bent to semicircular-shaped turns and served as a micro-reactor to allow protease and substrate react in it. Due to the different electrophoretic velocity, the protease and the substrate were mixed inside the bent capillary with sequential injections and the cleavage of the substrate can be detected using capillary electrophoresis combined with Förster resonance energy transfer technology. This novel assay will greatly expand the detection of enzyme activity in vivo.
Collapse
Affiliation(s)
- Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China; The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China; The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China
| | - Jingyu Sheng
- Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, PR China; The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, Jiangsu, PR China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, PR China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China.
| | - Kai Cao
- Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, PR China; The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, Jiangsu, PR China.
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China.
| |
Collapse
|
15
|
Xu P, Wang L, Zhang X, Yan J, Liu W. High-Performance Smart Hydrogels with Redox-Responsive Properties Inspired by Scallop Byssus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:214-224. [PMID: 34935338 DOI: 10.1021/acsami.1c18610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.
Collapse
Affiliation(s)
- Pingping Xu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lulu Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaokang Zhang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jicheng Yan
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Weizhi Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
16
|
Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54621-54647. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the distinctive constituents of tumor tissue from those healthy organs, nanomedicine strategies show significant potentials in smart drug delivery. Nowadays, stimuli-responsive nanogels are playing increasingly important roles in the application of cancer therapy because of their sensitivity to various internal or external physicochemical stimuli, which exhibit site-specific and markedly enhanced drug release. Besides, nanogels are promising as drug carriers because of their porous structures, good biocompatibility, large surface area, and excellent capability with drugs. Taking advantage of multiresponsiveness, recent years have witnessed the rapid evolution of stimulus-responsive nanogels from monoresponsive to multiresponsive systems; however, there lacks a comprehensive review summarizing these reports. In this Review, we discuss the properties, synthesis, and characterization of nanogels. Moreover, tumor microenvironment and corresponding designing strategies for stimuli-response nanogels, both exogenous (temperature, magnetic field, light) and endogenous (pH, biomolecular, redox, ROS, pressure, hypoxia) are summarized on the basis of the recent advances in multistimuli-responsive nanogel systems. Nanogel and two-dimensional material composites show excellent performance in the field of constructing multistimulus-responsive nanoparticles and precise intelligent drug release integrated system for multimodal cancer diagnosis and therapy. Finally, potential progresses and suggestions are provided for the further design of hybrid nanogels based on emerging two-dimensional materials.
Collapse
Affiliation(s)
- Hao Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Cangqian, Yuhang District, Hangzhou 311121, China
| | - Taojian Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Chen Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Zhong Y, Zhang L, Sun S, Zhou Z, Ma Y, Hong H, Yang D. Sequential drug delivery by injectable macroporous hydrogels for combined photodynamic-chemotherapy. J Nanobiotechnology 2021; 19:333. [PMID: 34688292 PMCID: PMC8542336 DOI: 10.1186/s12951-021-01066-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
With hollow mesoporous silica (hMSN) and injectable macroporous hydrogel (Gel) used as the internal and external drug-loading material respectively, a sequential drug delivery system DOX-CA4P@Gel was constructed, in which combretastatin A4 phosphate (CA4P) and doxorubicin (DOX) were both loaded. The anti-angiogenic drug, CA4P was initially released due to the degradation of Gel, followed by the anti-cell proliferative drug, DOX, released from hMSN in tumor microenvironment. Results showed that CA4P was mainly released at the early stage. At 48 h, CA4P release reached 71.08%, while DOX was only 24.39%. At 144 h, CA4P was 78.20%, while DOX release significantly increased to 61.60%, showing an obvious sequential release behavior. Photodynamic properties of porphyrin endow hydrogel (ϕΔ(Gel) = 0.91) with enhanced tumor therapy effect. In vitro and in vivo experiments showed that dual drugs treated groups have better tumor inhibition than solo drug under near infrared laser irradiation, indicating the effectivity of combined photodynamic-chemotherapy.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shian Sun
- Xuzhou Air Force College, Xuzhou, 221000, Jiangsu, China
| | - Zhenghao Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yunsu Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hao Hong
- Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
18
|
Du W, Lu Q, Zhang M, Cao H, Zhang S. Synthesis and Characterization of Folate-Modified Cell Membrane Mimetic Copolymer Micelles for Effective Tumor Cell Internalization. ACS APPLIED BIO MATERIALS 2021; 4:3246-3255. [PMID: 35014411 DOI: 10.1021/acsabm.0c01612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inefficient targeting and phagocytic clearance of nanodrug delivery systems are two major obstacles in cancer therapy. Here, inspired by the special properties of zwitterionic polymers and folic acid (FA), a partly biodegradable copolymer of FA-modified poly(ε-caprolactone) block poly(2-methacryloxoethyl phosphorylcholine), PCL-b-PMPC-FA, was synthesized via atom transfer radical polymerization (ATRP) and click reaction. Non-FA-modified copolymer PCL-b-PMPC was also synthesized as a control. The hydrodynamic diameter of the PCL-b-PMPC-FA micelles is 158 nm (PDI 0.261), slightly larger than that of the PCL-b-PMPC micelles (139 nm, PDI 0.242). The drug doxorubicin (DOX) could be entrapped in the micelles, and as the pH decreased from 7.4 to 5.0, DOX release (in vitro) was accelerated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that both the PCL-b-PMPC and the PCL-b-PMPC-FA micelles showed low toxicity to L929, HeLa, and MCF-7 cells. In addition, the DOX-loaded micelles, PCL-b-PMPC/DOX and PCL-b-PMPC-FA/DOX micelles, exhibited low toxicity to L929 cells but high toxicity to HeLa and MCF-7 cells, especially the PCL-b-PMPC-FA/DOX micelles. HeLa and MCF-7 cell uptakes of the PCL-b-PMPC-FA/DOX micelles were 4.8 and 4.5 times higher than that of the PCL-b-PMPC/DOX micelles, respectively. Therefore, PCL-b-PMPC-FA micelles have great potential for developing drug delivery systems with extended circulation times and tumor-targeting properties.
Collapse
Affiliation(s)
- Wei Du
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P.R. China
| | - Qian Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P.R. China
| | - Mengchen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P.R. China
| | - Haimei Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P.R. China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P.R. China
| |
Collapse
|
19
|
Yu L, Kong L, Xie J, Wang W, Chang C, Che H, Liu M. Reduction-sensitive N, N'-Bis(acryloyl) cystinamide-polymerized Nanohydrogel as a Potential Nanocarrier for Paclitaxel Delivery. Des Monomers Polym 2021; 24:98-105. [PMID: 33967595 PMCID: PMC8079002 DOI: 10.1080/15685551.2021.1914398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
Novel monomer, N, N'-bis(acryloyl) cystinamide (NBACA), was designed and synthesized with L-cystine as row material. By using this NBACA both as the monomer and crosslinker, reduction-sensitive nanohydrogel was prepared in ethanol via distillation-precipitation polymerization. The obtained nanohydrogel can provide a relatively hydrophobic environment and hydrogen-bonding sites inside the gel; therefore, it is suitable for loading hydrophobic drug. When paclitaxel that possess poor water-solubility was used as a model drug, the nanohydrogel represented a high drug-loading capacity, and dispersed well in aqueous solutions. Furthermore, the disulfide-group-containing nanohydrogel exhibited good reduction-sensitive drug-release behavior. The nanohydrogel biodegraded rapidly in a reducing environment, and released approximately 80% of the PTX within 24 h. Cytotoxicity assays showed that the PTX-loaded nanohydrogel exhibited high cytotoxicity against MCF-7 breast cancer cells, while blank nanohydrogels displayed a negligible cytotoxicity.
Collapse
Affiliation(s)
- Linna Yu
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang, P. R. China
- Department of Organic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Lingping Kong
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang, P. R. China
- Department of Organic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Junpeng Xie
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang, P. R. China
- Department of Organic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Wei Wang
- Precedo Pharmaceuticals Co. Ltd., Hefei, P. R. China
| | - Chen Chang
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang, P. R. China
- Department of Organic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Hongli Che
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang, P. R. China
- Department of Organic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Mingzhe Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang, P. R. China
- Department of Organic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P. R. China
| |
Collapse
|
20
|
Wang X, Wu D. Reduction‐Responsive Disulfide‐Containing Polymers for Biomedical Applications. SULFUR‐CONTAINING POLYMERS 2021:393-428. [DOI: 10.1002/9783527823819.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Yin Y, Li Y, Wang S, Dong Z, Liang C, Sun J, Wang C, Chai R, Fei W, Zhang J, Qi M, Feng L, Zhang Q. MSCs-engineered biomimetic PMAA nanomedicines for multiple bioimaging-guided and photothermal-enhanced radiotherapy of NSCLC. J Nanobiotechnology 2021; 19:80. [PMID: 33743720 PMCID: PMC7981797 DOI: 10.1186/s12951-021-00823-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
Background The recently developed biomimetic strategy is one of the mostly effective strategies for improving the theranostic efficacy of diverse nanomedicines, because nanoparticles coated with cell membranes can disguise as “self”, evade the surveillance of the immune system, and accumulate to the tumor sites actively. Results Herein, we utilized mesenchymal stem cell memabranes (MSCs) to coat polymethacrylic acid (PMAA) nanoparticles loaded with Fe(III) and cypate—an derivative of indocyanine green to fabricate Cyp-PMAA-Fe@MSCs, which featured high stability, desirable tumor-accumulation and intriguing photothermal conversion efficiency both in vitro and in vivo for the treatment of lung cancer. After intravenous administration of Cyp-PMAA-Fe@MSCs and Cyp-PMAA-Fe@RBCs (RBCs, red blood cell membranes) separately into tumor-bearing mice, the fluorescence signal in the MSCs group was 21% stronger than that in the RBCs group at the tumor sites in an in vivo fluorescence imaging system. Correspondingly, the T1-weighted magnetic resonance imaging (MRI) signal at the tumor site decreased 30% after intravenous injection of Cyp-PMAA-Fe@MSCs. Importantly, the constructed Cyp-PMAA-Fe@MSCs exhibited strong photothermal hyperthermia effect both in vitro and in vivo when exposed to 808 nm laser irradiation, thus it could be used for photothermal therapy. Furthermore, tumors on mice treated with phototermal therapy and radiotherapy shrank 32% more than those treated with only radiotherapy. Conclusions These results proved that Cyp-PMAA-Fe@MSCs could realize fluorescence/MRI bimodal imaging, while be used in phototermal-therapy-enhanced radiotherapy, providing desirable nanoplatforms for tumor diagnosis and precise treatment of non-small cell lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00823-6.
Collapse
Affiliation(s)
- Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Ziliang Dong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Chao Liang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Rong Chai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Weiwei Fei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Ming Qi
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, 200433, P. R. China
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
22
|
Zhan Y, Wang H, Su M, Sun Z, Zhang Y, He P. Mesoporous silica and polymer hybrid nanogels for multistage delivery of an anticancer drug. JOURNAL OF MATERIALS SCIENCE 2021; 56:4830-4842. [DOI: 10.1007/s10853-020-05576-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2025]
|
23
|
Fatima S, Quadri SN, Parveen S, Beg S, Rahman M, Ahmad FJ, Abdin M. Polymeric nanoparticles for potential drug delivery applications in cancer. NANOFORMULATION STRATEGIES FOR CANCER TREATMENT 2021:65-88. [DOI: 10.1016/b978-0-12-821095-6.00009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Verma N, Thapa K, Dua K. Material and strategies used in oncology drug delivery. ADVANCED DRUG DELIVERY SYSTEMS IN THE MANAGEMENT OF CANCER 2021:47-62. [DOI: 10.1016/b978-0-323-85503-7.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Abstract
Compared to normal tissue, solid tumors exhibit a lower pH value. Such pH gradient can be used to design pH-sensitive nanogels for selective drug delivery. The acid-sensitive elements in the nanogel cause it to swell/degrade rapidly, followed by rapid drug release.
Collapse
Affiliation(s)
- Zhen Li
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR. China
| | - Jun Huang
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR. China
- The Seventh Affiliated Hospital of Sun Yat-Sen University
| | - Jun Wu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR. China
| |
Collapse
|
26
|
Jiang G, Wang N, Jia L, Che H, Wang L, Yang J, Xu H, Wu C, Liu M. Multi-functional DNA-conjugated nanohydrogels for aptamer-directed breast cancer cell targeting. NEW J CHEM 2021. [DOI: 10.1039/d1nj04152e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A multi-functional DNA-conjugated nanohydrogel was prepared through the direct copolymerization method for aptamer-directed cancer cell targeting.
Collapse
Affiliation(s)
- Gangfeng Jiang
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Nannan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Hongli Che
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Mingzhe Liu
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, 117004, China
| |
Collapse
|
27
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
28
|
MUC-1 aptamer conjugated InP/ZnS quantum dots/nanohydrogel fluorescent composite for mitochondria-mediated apoptosis in MCF-7 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111469. [PMID: 33255050 DOI: 10.1016/j.msec.2020.111469] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
The combined use of nanohydrogels (NHGs) and quantum dots (QDs) has resulted in the development of a nanoscaled drug delivery system (DDS) with fluorescence imaging potential. NHG-QDs composite loaded with anti-cancer drugs could be applied as an effective theranostics for simultaneous diagnosis and therapy of cancer cells. Here, we report on the synthesis of NHG-QDs nanosystem (NS) conjugated with an amino-modified MUC-1 aptamer (Ap) and loaded with hydrophobic paclitaxel (PTX). To effectively target and eradicate breast cancer MCF-7 cells, the nanocomposite was further loaded with the inhibitor of lactate dehydrogenase (LDH), sodium oxamate (SO) (Ap-NHG-QDs-PTX-SO) to inhibit the conversion of pyruvate to lactate via LDH and disrupting glycolysis. Results obtained from in vitro analysis (MTT assay, apoptosis/necrosis assessment, evaluation of mitochondria targeting, and gene expression profiling) revealed that Ap-NHG-QDs-PTX-SO NS could significantly target and inhibit MCF-7 cells and also induce mitochondria-mediated apoptosis. Collectively, the Ap-NHG-QDs-PTX-SO NS is proposed to serve as a robust theranostics for simultaneous imaging and therapy of breast cancer and other types of solid tumors.
Collapse
|
29
|
He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15:416-448. [PMID: 32952667 PMCID: PMC7486519 DOI: 10.1016/j.ajps.2019.08.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional tumor-targeted drug delivery systems (DDSs) face challenges, such as unsatisfied systemic circulation, low targeting efficiency, poor tumoral penetration, and uncontrolled drug release. Recently, tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas. With the introduction of several additional functionalities, the properties of these smart DDSs including size, surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting, and eventually achieve desired drug release for an optimized therapeutic efficiency. This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery. Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli, including pH, glutathione, adenosine-triphosphate, reactive oxygen species, enzyme and inflammatory factors are summarized. Special emphasis of this review is placed on their responsive mechanisms, drug loading models, drawbacks and merits. Several typical multi-stimuli responsive DDSs are listed. And the main challenges and potential future development are discussed.
Collapse
Affiliation(s)
- Qunye He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dongming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
30
|
Park KH, Jung J, Yim S, Kang MJ, Kwon G, Hwang DY, Yang SY, Seo S. Mussel‐Inspired Surface Acrylation on Graphene Oxide Using Acrylic Surface Primers and Its Hydrogel‐Based Applications: Sustained Drug Release and Tissue Scaffolds. ChemistrySelect 2020. [DOI: 10.1002/slct.202000205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kyu Ha Park
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Jaewon Jung
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Sang‐Gu Yim
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Mi Ju Kang
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering University of Kansas Lawrence Kansas 66045 United States
| | - Dae Youn Hwang
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| |
Collapse
|
31
|
Phan QT, Patil MP, Tu TT, Le CM, Kim GD, Lim KT. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Cui MR, Chen LX, Li XL, Xu JJ, Chen HY. NIR Remote-Controlled "Lock-Unlock" Nanosystem for Imaging Potassium Ions in Living Cells. Anal Chem 2020; 92:4558-4565. [PMID: 32066238 DOI: 10.1021/acs.analchem.9b05820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite great achievements in sensitive and selective detection of important biomolecules in living cells, it is still challenging to develop smart and controllable sensing nanodevices for cellular studies that can be activated at desired time in target sites. To address this issue, we have constructed a remote-controlled "lock-unlock" nanosystem for visual analysis of endogenous potassium ions (K+), which employed a dual-stranded aptamer precursor (DSAP) as recognition molecules, SiO2 based gold nanoshells (AuNS) as nanocarriers, and near-infrared ray (NIR) as the remotely applied stimulus. With the well-designed and activatable DSAP-AuNS, the deficiencies of traditional aptamer-based sensors have been successfully overcome, and the undesired response during transport has been avoided, especially in complex physiological microenvironments. While triggered by NIR, the increased local temperature of AuNS induced the dehybridiztion of DSAP, realized the "lock-unlock" switch of the DSAP-AuNS nanosystem, activated the binding capability of aptamer, and then monitored intracellular K+ via the change of fluorescence signal. This DSAP-AuNS nanosystem not only allows us to visualize endogenous ions in living cells at a desired time but also paves the way for fabricating temporal controllable nanodevices for cellular studies.
Collapse
Affiliation(s)
- Mei-Rong Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Li-Xian Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China.,College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
33
|
Mackiewicz M, Stojek Z, Karbarz M. Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190981. [PMID: 31827839 PMCID: PMC6894567 DOI: 10.1098/rsos.190981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/04/2019] [Indexed: 05/30/2023]
Abstract
For the first time, by using precipitation polymerization in an aqueous solution, a cross-linked poly(acrylic acid)-(pAA) nanogel was synthesized. pAA was synthesized and cross-linked with N,N'-methylenebisacrylamide (BIS) at 70°C in an acidified environment (pH 2) and containing 0.7 M NaCl using potassium persulfate as the initiator. Ionized pAA was soluble in water. The use of sodium chloride at low pH caused a decrease in the solubility of pAA and led to its precipitation and formation of cross-linked pAA nanogel. By using electron microscopies and light scattering techniques, the morphology, pH sensitivity and zeta potential of the obtained p(AA-BIS) nanogel were evaluated. The polymerization in an aqueous environment resulted in a very big swelling/shrinking coefficient (of approx. 4000) in response to pH and exhibited an unusually high negative zeta potential (of approx. -130 mV). These properties make the nanogel a very interesting sorbent and a construction material.
Collapse
Affiliation(s)
| | | | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Avenue, 02-089 Warsaw, Poland
| |
Collapse
|
34
|
Wang Y, Wang J, Yang L, Wei W, Sun B, Na K, Song Y, Zhang H, He Z, Sun J, Wang Y. Redox dual-responsive paclitaxel-doxorubicin heterodimeric prodrug self-delivery nanoaggregates for more effective breast cancer synergistic combination chemotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102066. [DOI: 10.1016/j.nano.2019.102066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
|
35
|
Biswas A, Shukla A, Maiti P. Biomaterials for Interfacing Cell Imaging and Drug Delivery: An Overview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12285-12305. [PMID: 31125238 DOI: 10.1021/acs.langmuir.9b00419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This feature article provides an overview of different kinds of futuristic biomaterials which have the potential to be used for fluorescent imaging and drug delivery, often simultaneously. The synthesis route or preparation process, fluorescence property, release profile, biocompatibility, bioimaging, and mechanistic approaches are vividly discussed. These include bioimaging with fluorescently doped quantum dots, mesoporous silica, noble metals, metal clusters, hydrophilic/hydrophobic polymers, semiconducting polymer dots, carbon/graphene dots, dendrimers, fluorescent proteins, and other nanobiomaterials. Another section discusses the controlled and targeted drug, gene, or biologically active material delivery using various vehicles such as micelles, 2D nanomaterials, organic nanoparticles, polymeric nanohybrids, and chemically modified polymers. In the last section, we discuss biomaterials, which can deliver biologically active molecules, and imaging the cell/tissue.
Collapse
Affiliation(s)
- Arpan Biswas
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Aparna Shukla
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| | - Pralay Maiti
- School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005 , India
| |
Collapse
|
36
|
Shang Y, Guo L, Wang Z. Tetraphenylsilane‐Cored Star‐Shaped Amphiphilic Block Copolymers for pH‐Responsive Anticancer Drug Delivery. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingqi Shang
- Department of Polymer Science and MaterialsSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Lingxiao Guo
- Department of Polymer Science and MaterialsSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Zhonggang Wang
- Department of Polymer Science and MaterialsSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| |
Collapse
|
37
|
Ma J, Han J, Sun J, Fan L, Bai S, Jiao Y. pH-sensitive controlled release in vitro and pharmacokinetics of ibuprofen from hybrid nanocomposite using amine-modified bimodal mesopores silica as core and poly(methylacrylic acid) as shell. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1655747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- JiaYu Ma
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Jing Han
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - JiHong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - ShiYang Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, China
| | - YuWen Jiao
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
38
|
Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1581. [PMID: 31429208 DOI: 10.1002/wnan.1581] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| |
Collapse
|
39
|
Mackiewicz M, Romanski J, Drabczyk K, Waleka E, Stojek Z, Karbarz M. Degradable, thermo-, pH- and redox-sensitive hydrogel microcapsules for burst and sustained release of drugs. Int J Pharm 2019; 569:118589. [PMID: 31386880 DOI: 10.1016/j.ijpharm.2019.118589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
Abstract
Polymer microcapsules offer a possibility of storing increased amounts of drugs. Appropriate design and composition of the microcapsules allow tuning of the drug-release process. In this paper, we report on synthesis of hydrogel microcapsules sensitive to temperature and pH and degradable by glutathione and hydrogen peroxide. Microcapsules were based on thermo-responsive poly(N-isopropylacrylamide) and degradable cystine crosslinker, and were synthesized by applying precipitation polymerization. Such way of polymerization was appropriately modified to limit the crosslinking in the microcapsule center. This led to a possibility of washing out the pNIPA core at room temperature and the formation of a capsule. Microcapsules revealed rather high drug-loading capacity of ca. 17%. The degradation of the microcapsules by the reducing agent (GSH) and the oxidizing agent (H2O2) was confirmed by using the DLS, UV-Vis, SEM and TEM techniques. Depending on pH and concentration of the reducing/oxidizing agents a fast or slow degradation of the microcapsules and a burst or long-term release of doxorubicin (DOX) were observed. The DOX loaded microcapsules appeared to be cytotoxic against A2780 cancer cells similarly to DOX alone, while unloaded microcapsules did not inhibit proliferation of the cells.
Collapse
Affiliation(s)
- Marcin Mackiewicz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Jan Romanski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Kinga Drabczyk
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Ewelina Waleka
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Av., PL 00-664 Warsaw, Poland
| | - Zbigniew Stojek
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland.
| |
Collapse
|
40
|
Zhu Y, Liu R, Huang H, Zhu Q. Vinblastine-Loaded Nanoparticles with Enhanced Tumor-Targeting Efficiency and Decreasing Toxicity: Developed by One-Step Molecular Imprinting Process. Mol Pharm 2019; 16:2675-2689. [PMID: 31050894 DOI: 10.1021/acs.molpharmaceut.9b00243] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecularly imprinted polymers have exhibited good performance as carriers on drug loading and sustained release. In this paper, vinblastine (VBL)-loaded polymeric nanoparticles (VBL-NPs) were prepared by a one-step molecular imprinting process, avoiding the waste and incomplete removal of the template, and evaluated as targeting carriers for VBL delivery after modification. Using acryloyl amino acid comonomers and disulfide cross-linkers, VBL-NPs were synthesized and then conjugated with poly(ethylene glycol)-folate. The dynamic size of the obtained VBL-NPs-PEG-FA was 258.3 nm (PDI = 0.250), and the encapsulation efficiency was 45.82 ± 1.45%. The nanoparticles of VBL-NPs-PEG-FA were able to completely release VBL during 48 h under a mimic tumor intracellular condition (pH 4.5, 10 mM glutathione (GSH)), displaying significant redox responsiveness, whereas the release rates were much slower in the mimic body liquid (pH 7.4, 2 μM GSH) and tumor extracellular environment (pH 6.5, 2 μM GSH). Furthermore, the carriers NPs-PEG-FA, prepared without VBL, showed satisfactory intrinsic hemocompatibility, cellular compatibility, and tumor-targeting properties: they could rapidly and efficiently accumulate to folate receptor positive Hela cells and then internalized via receptor-mediated endocytosis, and the retention in tumor tissues could last for over 48 h. Interestingly, VBL-NPs-PEG-FA could evidently increase the accumulation of VBL in tumor tissues while decreasing the distribution of VBL in organs, exert similar anticancer efficacy against Hela tumors in the xenograft model of nude mice to VBL injection, and significantly improve the abnormality of liver and spleen observed in VBL injection. VBL-NPs-PEG-FA has the potential to be the delivery carrier for VBL by enhancing the tumor-targeting efficacy of VBL and decreasing toxicity to normal tissues.
Collapse
Affiliation(s)
- Yongyan Zhu
- School of Traditional Chinese Medicine , Southern Medical University , Guangzhou 510515 , China
| | - Ruixuan Liu
- School of Traditional Chinese Medicine , Southern Medical University , Guangzhou 510515 , China
| | - Haoji Huang
- School of Traditional Chinese Medicine , Southern Medical University , Guangzhou 510515 , China
| | - Quanhong Zhu
- School of Traditional Chinese Medicine , Southern Medical University , Guangzhou 510515 , China
| |
Collapse
|
41
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
42
|
Nurunnabi M, Khatun Z, Badruddoza AZM, McCarthy JR, Lee YK, Huh KM. Biomaterials and Bioengineering Approaches for Mitochondria and Nuclear Targeting Drug Delivery. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Md Nurunnabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Zehedina Khatun
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 United States
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219 United States
| | - Jason R. McCarthy
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-706, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
43
|
Ding K, Li R, Ma Y, Li N, Zhang T, Cheng-Mei X, Jiang HT, Gong YK. Folate Ligand Orientation Optimized during Cell Membrane Mimetic Micelle Formation for Enhanced Tumor Cell Targeting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1257-1265. [PMID: 29936846 DOI: 10.1021/acs.langmuir.8b00744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocarriers with strong tumor cell targeting ability have been expected to overcome limitations of cancer chemotherapy. Herein, cell membrane mimetic micelles were prepared from a random copolymer (PMNCF) containing cell membrane phosphorylcholine zwitterion, cholesterol, and tumor cell targeting folic acid (FA) at the side chain ends. Surface orientation of the FA ligand was optimized during PMNCF micelle preparation by controlling solvent solubility for FA. The out-oriented ligands on the micelles were immobilized by the strongly associated hydration layer around the closely packed phosphorylcholine zwitterions. The doxorubicin (DOX) loaded PMNCF micelles were demonstrated to reduce normal cell toxicity to less than 20%. More significantly, HeLa and MCF-7 tumor cell killing efficacy of the optimized formulation was enhanced to 160% compared with that of free DOX. The excellent performances of the drug loaded PMNCF micelles on both tumor cell killing and normal cell toxicity reducing efficacies reveal great potential for developing advanced drug delivery system.
Collapse
|
44
|
Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019; 296:93-106. [PMID: 30664976 DOI: 10.1016/j.jconrel.2019.01.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
At present, chemotherapy remains to be one of the most important therapeutic approaches for malignant tumors. The tumor microenvironment(TME)-responsive intelligent drug delivery systems are still the hot research topics in delivering chemotherapeutic drugs. Camptothecin (CPT) possesses very strong antitumor activities, but its clinical application is hindered by its poor water-solubility and serious toxic side effects. Herein, a new intelligent and TME-responsive P(CPT-MAA) prodrug nanogel was developed for delivering CPT and reducing its side effects. P(CPT-MAA) prodrug nanogels were prepared with methacrylic acid (MAA), CPT monomer (CPTM) and N,N'-methylenebisacrylamide (Bis) via distillation-precipitation polymerization, in which CPT was covalently conjugated into the nanogels via redox-responsive disulfide linker. The as-prepared nanogels were spherical shapes with uniform size and narrow size distribution. With the help of redox-responsive property of disulfide linker and pH-responsive property of PMAA, the release of CPT from prodrug nanogels was redox/pH-dual dependent and could be accelerated by the increased concentration of GSH and the decreased pH value, which were favorable to realize the "on-demand" drug release in tumor cell and tumor tissue microenvironment. Furthermore, P(CPT-MAA) prodrug nanogels exhibited superior antitumor activity both in vitro and in vivo without observed side effects. Hence, the prepared P(CPT-MAA) prodrug nanogels may be a promise delivery system for chemotherapeutic agents.
Collapse
|
45
|
Lu Q, Yi M, Zhang M, Shi Z, Zhang S. Folate-Conjugated Cell Membrane Mimetic Polymer Micelles for Tumor-Cell-Targeted Delivery of Doxorubicin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:504-512. [PMID: 30567432 DOI: 10.1021/acs.langmuir.8b03693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tumor-targeting nano-drug-delivery systems hold great potential to improve the therapeutic efficacy and alleviate the side effects of cancer treatments. Herein, folic acid (FA)-decorated amphiphilic copolymer of FA-P(MPC- co-MaPCL) (MPC: 2-methacryloxoethyl phosphorylcholine, MaPCL: poly(ε-caprolactone) macromonomer) is synthesized and its micelles are fabricated for doxorubicin (DOX) delivery. And non-FA-decorated P(MPC- co-MaPCL) micelles are used as the control. Dynamic light scattering and scanning electron microscopy measurements reveal that FA-P(MPC- co-MaPCL) and P(MPC- co-MaPCL) micelles are spherical with average diameters of 140 and 90 nm, respectively. The evaluation in vitro demonstrates that the blank micelles are nontoxic, while DOX-loaded FA-P(MPC- co-MaPCL) micelles show significant cytotoxicity to HeLa cells and slight cytotoxicity to L929 cells. Moreover, the cellular uptake of DOX-loaded FA-P(MPC- co-MaPCL) micelles in HeLa cells are 4.3-fold and 1.7-fold higher than that of DOX-loaded P(MPC- co-MaPCL) micelles and free DOX after 6 h of incubation, respectively. These results indicate the great potential of this system in anticancer target drug-delivery applications.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Mengchen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Zhangyu Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| |
Collapse
|
46
|
Liu T, Qiao Z, Wang J, Zhang P, Zhang Z, Guo DS, Yang X. Molecular imprinted S-nitrosothiols nanoparticles for nitric oxide control release as cancer target chemotherapy. Colloids Surf B Biointerfaces 2019; 173:356-365. [DOI: 10.1016/j.colsurfb.2018.09.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/16/2018] [Accepted: 09/29/2018] [Indexed: 12/14/2022]
|
47
|
Zhao Y, Wu Y, Xue B, Jin X, Zhu X. Novel target NIR-fluorescent polymer for living tumor cell imaging. Polym Chem 2019. [DOI: 10.1039/c8py01442f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel NIR-diblock copolymer, PMMA-b-P(GATH-co-BOD), with efficient cancer targeting abilities and excellent biocompatibility was synthesized in this study.
Collapse
Affiliation(s)
- Yanjie Zhao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yan Wu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bai Xue
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
48
|
Liu P. Redox- and pH-responsive polymeric nanocarriers. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:3-36. [DOI: 10.1016/b978-0-08-101995-5.00001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Yang WJ, Liang L, Wang X, Cao Y, Xu W, Chang D, Gao Y, Wang L. Versatile functionalization of surface-tailorable polymer nanohydrogels for drug delivery systems. Biomater Sci 2018; 7:247-261. [PMID: 30465554 DOI: 10.1039/c8bm01093e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Surface decoration of nanohydrogels with functional molecules as well as nanomaterials offers a facile approach for developing multifunctional drug nanocarriers. Herein, the surface-tailorable polymer nanohydrogels, with the catechol groups as a universal anchor, were prepared by simple reflux-precipitation polymerization for versatile functionalization as drug delivery systems. The resultant polymer nanohydrogels were not only capable of delivering doxorubicin (DOX) through electrostatic interactions, but also exhibited facile conjugation with magnetic Fe3O4 nanoparticles and anticancer drug bortezomib (BTZ) via the versatile catechol-based coupling chemistry. The DOX and Fe3O4 loaded nanohydrogels (DOX-Fe3O4@NG) exhibited high DOX loading capability and triggered drug release behaviors in the acidic and redox environment. Furthermore, the DOX-Fe3O4@NG achieved improved cellular uptake in the presence of external magnetic field due to the active magnetic targeting properties. As for the dual drug delivery system (DOX-BTZ@NG), the DOX-BTZ@NG also released the drugs in response to the external stimuli including low pH and GSH presence, indicating their intelligent drug delivery properties. In particular, the DOX-BTZ@NG showed higher antiproliferation efficacy to cancer cells in comparison with the single drug loaded nanohydrogels, suggesting a synergistic effect of the dual drug combination therapy. The degradable poly(AA-co-DMA) nanohydrogels with surface-tailorable functionalities are thus a promising versatile platform for conjugation with both nanomaterials and drug molecules.
Collapse
Affiliation(s)
- Wen Jing Yang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensor, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|