1
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Liu S, Sun X, Wang Y, Liu K, Liu R, Zhang Y, Ni Z, Tang W, Zhang S, Mu X, Wang H, Zhang XD, Ming D. A nanowell-based MoS 2 neuroelectrode for high-sensitivity neural recording. iScience 2024; 27:110949. [PMID: 39391733 PMCID: PMC11465046 DOI: 10.1016/j.isci.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Implantable neural electrodes are crucial in neurological diagnosis and therapy because of their ultra-high spatial resolution, but they are constrained by high impedance and insufficient charge injection capacity, resulting in noise that often obscures valuable signals. Emerging nanotechnologies are powerful tools to improve sensitivity and biocompatibility. Herein, we developed quantized 2D MoS2 electrodes by incorporating bioactive MoS2 nanosheets onto bare electrodes, achieving sensitive, compatible recording. The 2D materials can create tiny nanowells, which behaved as quantized charge storage units and thus improved sensitivity. The key sensitivity indicators, impedance and cathode charge storage capacity, showed a multifold increase. The 17.7-fold improvement in catalytic activity of MoS2 electrodes facilitated effective current transmission and reduced inflammatory response. In vivo recording showed that the sensitivity of local field potentials increased throughout frequency range and peaked at a 4.7-fold in β rhythm. This work provides a general strategy for achieving effective diagnoses of neurological disorders.
Collapse
Affiliation(s)
- Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyu Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kaijin Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Renpeng Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuqin Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Ni
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Wanyu Tang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Dong Ming
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Shao Z, Zhao H, Dunham KE, Cao Q, Lavrik NV, Venton BJ. 3D-Printed Carbon Nanoneedle Electrodes for Dopamine Detection in Drosophila. Angew Chem Int Ed Engl 2024; 63:e202405634. [PMID: 38742923 PMCID: PMC11250930 DOI: 10.1002/anie.202405634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 μm and length varied from 50.5 μm to 146 μm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.
Collapse
Affiliation(s)
- Zijun Shao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - He Zhao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | - Nickolay V Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
4
|
Yang S, Baeg E, Kim K, Kim D, Xu D, Ahn JH, Yang S. Neurodiagnostic and neurotherapeutic potential of graphene nanomaterials. Biosens Bioelectron 2024; 247:115906. [PMID: 38101185 DOI: 10.1016/j.bios.2023.115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Graphene has emerged as a highly promising nanomaterial for a variety of advanced technologies, including batteries, energy, electronics, and biotechnologies. Its recent contribution to neurotechnology is particularly noteworthy because its superior conductivity, chemical resilience, biocompatibility, thermal stability, and scalable nature make it well-suited for measuring brain activity and plasticity in health and disease. Graphene-mediated compounds are microfabricated in two central methods: chemical processes with natural graphite and chemical vapor deposition of graphene in a film form. They are widely used as biosensors and bioelectronics for neurodiagnostic and neurotherapeutic purposes in several brain disorders, such as Parkinson's disease, stroke, glioma, epilepsy, tinnitus, and Alzheimer's disease. This review provides an overview of studies that have demonstrated the technical advances of graphene nanomaterials in neuroscientific and clinical applications. We also discuss current limitations and future demands in relation to the clinical application of graphene, highlighting its potential technological and clinical significance for treating brain disorders. Our review underscores the potential of graphene nanomaterials as powerful tools for advancing the understanding of the brain and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sunggu Yang
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea; gBrain Inc., Incheon, 21984, Republic of Korea.
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kyungtae Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Donggue Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Duo Xu
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Mo F, Kong F, Yang G, Xu Z, Liang W, Liu J, Zhang K, Liu Y, Lv S, Han M, Wang Y, Song Y, Wang M, Wu Y, Cai X. Integrated Three-Electrode Dual-Mode Detection Chip for Place Cell Analysis: Dopamine Facilitates the Role of Place Cells in Encoding Spatial Locations of Novel Environments and Rewards. ACS Sens 2023; 8:4765-4773. [PMID: 38015643 DOI: 10.1021/acssensors.3c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The functioning of place cells requires the involvement of multiple neurotransmitters, with dopamine playing a critical role in hippocampal place cell activity. However, the exact mechanisms through which dopamine influences place cell activity remain largely unknown. Herein, we present the development of the integrated three-electrode dual-mode detection chip (ITDDC), which enables simultaneous recording of the place cell activity and dopamine concentration fluctuation. The working electrode, reference electrode, and counter electrode are all integrated within the ITDDC in electrochemical detection, enabling the real-time in situ monitoring of dopamine concentrations in animals in motion. The reference, working, and counter electrodes are surface-modified using PtNPs and polypyrrole, PtNPs and PEDOT:PSS, and PtNPs, respectively. This modification allows for the detection of dopamine concentrations as low as 20 nM. We conducted dual-mode testing on mice in a novel environment and an environment with food rewards. We found distinct dopamine concentration variations along different paths within a novel environment, implying that different dopamine levels may contribute to spatial memory. Moreover, environmental food rewards elevate dopamine significantly, followed by the intense firing of reward place cells, suggesting a crucial role of dopamine in facilitating the encoding of reward-associated locations in animals. The real-time and in situ recording capabilities of ITDDC offer new opportunities to investigate the interplay between electrophysiology and dopamine during animal exploration and reward-based memory and provide a novel glimpse into the correlation between dopamine levels and place cell activity.
Collapse
Affiliation(s)
- Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiqi Han
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
7
|
Li SY, Tseng HY, Chen BW, Lo YC, Shao HH, Wu YT, Li SJ, Chang CW, Liu TC, Hsieh FY, Yang Y, Lai YB, Chen PC, Chen YY. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. BIOSENSORS 2023; 13:280. [PMID: 36832046 PMCID: PMC9953957 DOI: 10.3390/bios13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Increasing requirements for neural implantation are helping to expand our understanding of nervous systems and generate new developmental approaches. It is thanks to advanced semiconductor technologies that we can achieve the high-density complementary metal-oxide-semiconductor electrode array for the improvement of the quantity and quality of neural recordings. Although the microfabricated neural implantable device holds much promise in the biosensing field, there are some significant technological challenges. The most advanced neural implantable device relies on complex semiconductor manufacturing processes, which are required for the use of expensive masks and specific clean room facilities. In addition, these processes based on a conventional photolithography technique are suitable for mass production, which is not applicable for custom-made manufacturing in response to individual experimental requirements. The microfabricated complexity of the implantable neural device is increasing, as is the associated energy consumption, and corresponding emissions of carbon dioxide and other greenhouse gases, resulting in environmental deterioration. Herein, we developed a fabless fabricated process for a neural electrode array that was simple, fast, sustainable, and customizable. An effective strategy to produce conductive patterns as the redistribution layers (RDLs) includes implementing microelectrodes, traces, and bonding pads onto the polyimide (PI) substrate by laser micromachining techniques combined with the drop coating of the silver glue to stack the laser grooving lines. The process of electroplating platinum on the RDLs was performed to increase corresponding conductivity. Sequentially, Parylene C was deposited onto the PI substrate to form the insulation layer for the protection of inner RDLs. Following the deposition of Parylene C, the via holes over microelectrodes and the corresponding probe shape of the neural electrode array was also etched by laser micromachining. To increase the neural recording capability, three-dimensional microelectrodes with a high surface area were formed by electroplating gold. Our eco-electrode array showed reliable electrical characteristics of impedance under harsh cyclic bending conditions of over 90 degrees. For in vivo application, our flexible neural electrode array demonstrated more stable and higher neural recording quality and better biocompatibility as well during the 2-week implantation compared with those of the silicon-based neural electrode array. In this study, our proposed eco-manufacturing process for fabricating the neural electrode array reduced 63 times of carbon emissions compared to the traditional semiconductor manufacturing process and provided freedom in the customized design of the implantable electronic devices as well.
Collapse
Affiliation(s)
- Szu-Ying Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ta-Chung Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Fu-Yu Hsieh
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, Johns Hopkins University, No. 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Yan-Bo Lai
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| |
Collapse
|
8
|
Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing. J Funct Biomater 2023; 14:jfb14010035. [PMID: 36662082 PMCID: PMC9863167 DOI: 10.3390/jfb14010035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Realizing the neurological information processing by analyzing the complex data transferring behavior of populations and individual neurons is one of the fast-growing fields of neuroscience and bioelectronic technologies. This field is anticipated to cover a wide range of advanced applications, including neural dynamic monitoring, understanding the neurological disorders, human brain-machine communications and even ambitious mind-controlled prosthetic implant systems. To fulfill the requirements of high spatial and temporal resolution recording of neural activities, electrical, optical and biosensing technologies are combined to develop multifunctional bioelectronic and neuro-signal probes. Advanced two-dimensional (2D) layered materials such as graphene, graphene oxide, transition metal dichalcogenides and MXenes with their atomic-layer thickness and multifunctional capabilities show bio-stimulation and multiple sensing properties. These characteristics are beneficial factors for development of ultrathin-film electrodes for flexible neural interfacing with minimum invasive chronic interfaces to the brain cells and cortex. The combination of incredible properties of 2D nanostructure places them in a unique position, as the main materials of choice, for multifunctional reception of neural activities. The current review highlights the recent achievements in 2D-based bioelectronic systems for monitoring of biophysiological indicators and biosignals at neural interfaces.
Collapse
|
9
|
Kutlehria S, D'Souza A, Bleier BS, Amiji MM. Role of 3D Printing in the Development of Biodegradable Implants for Central Nervous System Drug Delivery. Mol Pharm 2022; 19:4411-4427. [PMID: 36154128 DOI: 10.1021/acs.molpharmaceut.2c00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased life expectancy has led to a rise in age-related disorders including neurological diseases such as Alzheimer's disease and Parkinson's disease. Limited progress has been made in the development of clinically translatable therapies for these central nervous system (CNS) diseases. Challenges including the blood-brain barrier, brain complexity, and comorbidities in the elderly population are some of the contributing factors toward lower success rates. Various invasive and noninvasive ways are being employed to deliver small and large molecules across the brain. Biodegradable, implantable drug-delivery systems have gained lot of interest due to advantages such as sustained and targeted delivery, lower side effects, and higher patient compliance. 3D printing is a novel additive manufacturing technique where various materials and printing techniques can be used to fabricate implants with the desired complexity in terms of mechanical properties, shapes, or release profiles. This review discusses an overview of various types of 3D-printing techniques and illustrative examples of the existing literature on 3D-printed systems for CNS drug delivery. Currently, there are various technical and regulatory impediments that need to be addressed for successful translation from the bench to the clinical stage. Overall, 3D printing is a transformative technology with great potential in advancing customizable drug treatment in a high-throughput manner.
Collapse
Affiliation(s)
- Shallu Kutlehria
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
2D Materials towards sensing technology: From fundamentals to applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv Drug Deliv Rev 2022; 186:114315. [PMID: 35513130 DOI: 10.1016/j.addr.2022.114315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices.
Collapse
|
12
|
Murphy BB, Apollo NV, Unegbu P, Posey T, Rodriguez-Perez N, Hendricks Q, Cimino F, Richardson AG, Vitale F. Vitamin C-reduced graphene oxide improves the performance and stability of multimodal neural microelectrodes. iScience 2022; 25:104652. [PMID: 35811842 PMCID: PMC9263525 DOI: 10.1016/j.isci.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/28/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
Nanocarbons are often employed as coatings for neural electrodes to enhance surface area. However, processing and integrating them into microfabrication flows requires complex and harmful chemical and heating conditions. This article presents a safe, scalable, cost-effective method to produce reduced graphene oxide (rGO) coatings using vitamin C (VC) as the reducing agent. We spray coat GO + VC mixtures onto target substrates, and then heat samples for 15 min at 150°C. The resulting rGO films have conductivities of ∼44 S cm−1, and are easily integrated into an ad hoc microfabrication flow. The rGO/Au microelectrodes show ∼8x lower impedance and ∼400x higher capacitance than bare Au, resulting in significantly enhanced charge storage and injection capacity. We subsequently use rGO/Au arrays to detect dopamine in vitro, and to map cortical activity intraoperatively over rat whisker barrel cortex, demonstrating that conductive VC-rGO coatings improve the performance and stability of multimodal microelectrodes for different applications. Easy, scalable, and safe reduction method to create rGO films with vitamin C VC-rGO coatings improve the performance of bare gold microelectrodes in vitro VC-rGO coatings enable the voltammetric detection of dopamine on the microscale rGO/Au electrode arrays enable high-resolution microscale recording in vivo
Collapse
Affiliation(s)
- Brendan B. Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Nicholas V. Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Placid Unegbu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Tessa Posey
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29206, USA
| | - Nancy Rodriguez-Perez
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Quincy Hendricks
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesca Cimino
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G. Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA 19146, USA
- Corresponding author
| |
Collapse
|
13
|
Singh SU, Chatterjee S, Lone SA, Ho HH, Kaswan K, Peringeth K, Khan A, Chiang YW, Lee S, Lin ZH. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochim Acta 2022; 189:236. [PMID: 35633385 PMCID: PMC9146825 DOI: 10.1007/s00604-022-05317-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
Given the huge economic burden caused by chronic and acute diseases on human beings, it is an urgent requirement of a cost-effective diagnosis and monitoring process to treat and cure the disease in their preliminary stage to avoid severe complications. Wearable biosensors have been developed by using numerous materials for non-invasive, wireless, and consistent human health monitoring. Graphene, a 2D nanomaterial, has received considerable attention for the development of wearable biosensors due to its outstanding physical, chemical, and structural properties. Moreover, the extremely flexible, foldable, and biocompatible nature of graphene provide a wide scope for developing wearable biosensor devices. Therefore, graphene and its derivatives could be trending materials to fabricate wearable biosensor devices for remote human health management in the near future. Various biofluids and exhaled breath contain many relevant biomarkers which can be exploited by wearable biosensors non-invasively to identify diseases. In this article, we have discussed various methodologies and strategies for synthesizing and pattering graphene. Furthermore, general sensing mechanism of biosensors, and graphene-based biosensing devices for tear, sweat, interstitial fluid (ISF), saliva, and exhaled breath have also been explored and discussed thoroughly. Finally, current challenges and future prospective of graphene-based wearable biosensors have been evaluated with conclusion. Graphene is a promising 2D material for the development of wearable sensors. Various biofluids (sweat, tears, saliva and ISF) and exhaled breath contains many relevant biomarkers which facilitate in identify diseases. Biosensor is made up of biological recognition element such as enzyme, antibody, nucleic acid, hormone, organelle, or complete cell and physical (transducer, amplifier), provide fast response without causing organ harm.
Collapse
Affiliation(s)
- Santoshi U Singh
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Subhodeep Chatterjee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shahbaz Ahmad Lone
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Hsuan Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kiran Peringeth
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arshad Khan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
14
|
Xu T, Ji W, Wang X, Zhang Y, Zeng H, Mao L, Zhang M. Support‐Free PEDOT:PSS Fibers as Multifunctional Microelectrodes for In Vivo Neural Recording and Modulation. Angew Chem Int Ed Engl 2022; 61:e202115074. [DOI: 10.1002/anie.202115074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Tianci Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Wenliang Ji
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Xiaofang Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Yue Zhang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Hui Zeng
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Lanqun Mao
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Meining Zhang
- Department of Chemistry Renmin University of China Beijing 100872 China
| |
Collapse
|
15
|
Xu T, Ji W, Wang X, Zhang Y, Zeng H, Mao L, Zhang M. Support‐Free PEDOT:PSS Fibers as Multifunctional Microelectrodes for In Vivo Neural Recording and Modulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tianci Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Wenliang Ji
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Xiaofang Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Yue Zhang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Hui Zeng
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Lanqun Mao
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Meining Zhang
- Department of Chemistry Renmin University of China Beijing 100872 China
| |
Collapse
|
16
|
Zhao Y, Yu M, Sun J, Zhang S, Li Q, Teng L, Tian Q, Xie R, Li G, Liu L, Liu Z. Electrical Failure Mechanism in Stretchable Thin-Film Conductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3121-3129. [PMID: 34981914 DOI: 10.1021/acsami.1c22447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable thin-film conductors are basic building blocks in advanced flexible and stretchable electronics. Current research mainly focuses on strategies to improve stretchability and widen the range of applications of stretchable conductors. However, stability should not be neglected, and the electrical failure mode is one of the most common stability issues that determines the current range and duration in a circuit. In this work, we report the electrical failure mechanism of stretchable conductors. We find a special failure mode for the stretchable conductors, which can be attributed to the coupling effect between local thermal strains and dynamic resistance changes of the thin film. This creates a vicious circle that significantly differs from traditional conductors. Physical parameters related to this special failure mode are investigated in detail. It is found that this mechanism is applicable to different kinds of stretchable conductors. Based on this finding, we also explore methods to modulate the failure of stretchable conductors. The failure mechanism found here provides a fundamental understanding of the current effect of stretchable circuits and is crucial for designing stable stretchable bioelectrodes and circuits.
Collapse
Affiliation(s)
- Yang Zhao
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Mei Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Sun
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Shenglong Zhang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Optics and Thermal Radiation Research Center, Shandong University, Qingdao 266237, China
| | - Qingsong Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Lijun Teng
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ruijie Xie
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Linhua Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- Optics and Thermal Radiation Research Center, Shandong University, Qingdao 266237, China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Center of Neural Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
17
|
Xu B, Pei J, Feng L, Zhang XD. Graphene and graphene-related materials as brain electrodes. J Mater Chem B 2021; 9:9485-9496. [PMID: 34797365 DOI: 10.1039/d1tb01795k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural electrodes are used for acquiring neuron signals in brain-machine interfaces, and they are crucial for next-generation neuron engineering and related medical applications. Thus, developing flexible, stable and high-resolution neural electrodes will play an important role in stimulation, acquisition, recording and analysis of signals. Compared with traditional metallic electrodes, electrodes based on graphene and other two-dimensional materials have attracted wide attention in electrophysiological recording and stimulation due to their excellent physical properties such as unique flexibility, low resistance, and high optical transparency. In this review, we have reviewed the recent progress of electrodes based on graphene, graphene/polymer compounds and graphene-related materials for neuron signal recording, stimulation, and related optical signal coupling technology, which provides an outlook on the role of electrodes in the nanotechnology-neuron interface as well as medical diagnosis.
Collapse
Affiliation(s)
- Boyu Xu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Jiahui Pei
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Liefeng Feng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China. .,Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
18
|
Brain neurochemical monitoring. Biosens Bioelectron 2021; 189:113351. [PMID: 34049083 DOI: 10.1016/j.bios.2021.113351] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Brain neurochemical monitoring aims to provide continuous and accurate measurements of brain biomarkers. It has enabled significant advances in neuroscience for application in clinical diagnostics, treatment, and prevention of brain diseases. Microfabricated electrochemical and optical spectroscopy sensing technologies have been developed for precise monitoring of brain neurochemicals. Here, a comprehensive review on the progress of sensing technologies developed for brain neurochemical monitoring is presented. The review provides a summary of the widely measured clinically relevant neurochemicals and commonly adopted recognition technologies. Recent advances in sampling, electrochemistry, and optical spectroscopy for brain neurochemical monitoring are highlighted and their application are discussed. Existing gaps in current technologies and future directions to design industry standard brain neurochemical sensing devices for clinical applications are addressed.
Collapse
|
19
|
Foremny K, Konerding WS, Behrens A, Baumhoff P, Froriep UP, Kral A, Doll T. Carbon-Nanotube-Coated Surface Electrodes for Cortical Recordings In Vivo. NANOMATERIALS 2021; 11:nano11041029. [PMID: 33920671 PMCID: PMC8073035 DOI: 10.3390/nano11041029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
Current developments of electrodes for neural recordings address the need of biomedical research and applications for high spatial acuity in electrophysiological recordings. One approach is the usage of novel materials to overcome electrochemical constraints of state-of-the-art metal contacts. Promising materials are carbon nanotubes (CNTs), as they are well suited for neural interfacing. The CNTs increase the effective contact surface area to decrease high impedances while keeping minimal contact diameters. However, to prevent toxic dissolving of CNTs, an appropriate surface coating is required. In this study, we tested flexible surface electrocorticographic (ECoG) electrodes, coated with a CNT-silicone rubber composite. First, we describe the outcome of surface etching, which exposes the contact nanostructure while anchoring the CNTs. Subsequently, the ECoG electrodes were used for acute in vivo recordings of auditory evoked potentials from the guinea pig auditory cortex. Both the impedances and the signal-to-noise ratios of coated contacts were similar to uncoated gold contacts. This novel approach for a safe application of CNTs, embedded in a surface etched silicone rubber, showed promising results but did not lead to improvements during acute recordings.
Collapse
Affiliation(s)
- Katharina Foremny
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinic, Hannover Medical School, 30625 Hannover, Germany; (W.S.K.); (A.B.); (P.B.); (A.K.); (T.D.)
- Correspondence:
| | - Wiebke S. Konerding
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinic, Hannover Medical School, 30625 Hannover, Germany; (W.S.K.); (A.B.); (P.B.); (A.K.); (T.D.)
| | - Ailke Behrens
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinic, Hannover Medical School, 30625 Hannover, Germany; (W.S.K.); (A.B.); (P.B.); (A.K.); (T.D.)
| | - Peter Baumhoff
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinic, Hannover Medical School, 30625 Hannover, Germany; (W.S.K.); (A.B.); (P.B.); (A.K.); (T.D.)
| | - Ulrich P. Froriep
- Division of Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany;
| | - Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinic, Hannover Medical School, 30625 Hannover, Germany; (W.S.K.); (A.B.); (P.B.); (A.K.); (T.D.)
| | - Theodor Doll
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinic, Hannover Medical School, 30625 Hannover, Germany; (W.S.K.); (A.B.); (P.B.); (A.K.); (T.D.)
- Division of Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany;
| |
Collapse
|
20
|
Apollo NV, Murphy B, Prezelski K, Driscoll N, Richardson AG, Lucas TH, Vitale F. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. J Neural Eng 2020; 17:041002. [PMID: 32759476 PMCID: PMC8152109 DOI: 10.1088/1741-2552/abacd7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Implantable neuroelectronic interfaces have enabled breakthrough advances in the clinical diagnosis and treatment of neurological disorders, as well as in fundamental studies of brain function, behavior, and disease. Intracranial electroencephalography (EEG) mapping with stereo-EEG (sEEG) depth electrodes is routinely adopted for precise epilepsy diagnostics and surgical treatment, while deep brain stimulation has become the standard of care for managing movement disorders. Intracortical microelectrode arrays for high-fidelity recordings of neural spiking activity have led to impressive demonstrations of the power of brain-machine interfaces for motor and sensory functional recovery. Yet, despite the rapid pace of technology development, the issue of establishing a safe, long-term, stable, and functional interface between neuroelectronic devices and the host brain tissue still remains largely unresolved. A body of work spanning at least the last 15 years suggests that safe, chronic integration between invasive electrodes and the brain requires a close match between the mechanical properties of man-made components and the neural tissue. In other words, the next generation of invasive electrodes should be soft and compliant, without sacrificing biological and chemical stability. Soft neuroelectronic interfaces, however, pose a new and significant surgical challenge: bending and buckling during implantation that can preclude accurate and safe device placement. In this topical review, we describe the next generation of soft electrodes and the surgical implantation methods for safe and precise insertion into brain structures. We provide an overview of the most recent innovations in the field of insertion strategies for flexible neural electrodes such as dissolvable or biodegradable carriers, microactuators, biologically-inspired support structures, and electromagnetic drives. In our analysis, we also highlight approaches developed in different fields, such as robotic surgery, which could be potentially adapted and translated to the insertion of flexible neural probes.
Collapse
Affiliation(s)
- Nicholas V Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Brendan Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Kayla Prezelski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Nicolette Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Andrew G Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Timothy H Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Physical Medicine & Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
21
|
Bhat A, Graham AR, Trivedi H, Hogan MK, Horner PJ, Guiseppi-Elie A. Engineering the ABIO-BIO interface of neurostimulation electrodes using polypyrrole and bioactive hydrogels. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Following spinal cord injury, the use of electrodes for neurostimulation in animal models has been shown to stimulate muscle movement, however, the efficacy of such treatment is impaired by increased interfacial impedance caused by fibrous encapsulation of the electrode. Sputter-deposited gold-on-polyimide electrodes were modified by potentiostatic electrodeposition of poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate): sulfopropyl methacrylate [P(Py-co-PyBA-conj-AEMA):SPMA] to various charge densities (0–100 mC/cm2) to address interfacial impedance and coated with a phosphoryl choline containing bioactive hydrogel to address biocompatibility at the ABIO-BIO interface. Electrodes were characterized with scanning electron microscopy (surface morphology), multiple-scan rate cyclic voltammetry (peak current and electroactive area), and electrochemical impedance spectroscopy (charge transfer resistance and membrane resistance). SEM analysis and electroactive area calculations identified films fabricated with a charge density of 50 mC/cm2 as well suited for neurostimulation electrodes. Charge transfer resistance demonstrated a strong inverse correlation (−0.83) with charge density of electrodeposition. On average, the addition of polypyrrole and hydrogel to neurostimulation electrodes decreased charge transfer resistance by 82 %. These results support the use of interfacial engineering techniques to mitigate high interfacial impedance and combat the foreign body response towards epidurally implanted neurostimulation electrodes.
Collapse
Affiliation(s)
- Ankita Bhat
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering , Texas A&M University , College Station, TX 77843 , USA
| | - Alexa R. Graham
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering , Texas A&M University , College Station, TX 77843 , USA
| | - Hemang Trivedi
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
| | - Matthew K. Hogan
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
| | - Philip J. Horner
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering , Texas A&M University , College Station, TX 77843 , USA
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute , 6670 Bertner Ave. , Houston, TX 77030 , USA
- Department of Electrical and Computer Engineering , Texas A&M University , College Station, TX 77843 , USA
- ABTECH Scientific, Inc., Biotechnology Research Park , 800 East Leigh Street , Richmond, VA 23219 , USA , Tel.: +1(979) 458 1239, Fax: +1(979) 845 4450
| |
Collapse
|
22
|
Shukla RP, Cazelles R, Kelly DL, Ben-Yoav H. A reduced-graphene oxide-modified microelectrode for a repeatable detection of antipsychotic clozapine using microliters-volumes of whole blood. Talanta 2020; 209:120560. [DOI: 10.1016/j.talanta.2019.120560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|
23
|
Li Y, Martens I, Cheung KC, Bizzotto D. Electrodeposition of reduced graphene oxide onto gold electrodes: creating thin electrochemically active and optically transparent overlayers. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Zeng Q, Zhao S, Yang H, Zhang Y, Wu T. Micro/Nano Technologies for High-Density Retinal Implant. MICROMACHINES 2019; 10:E419. [PMID: 31234507 PMCID: PMC6630275 DOI: 10.3390/mi10060419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
During the past decades, there have been leaps in the development of micro/nano retinal implant technologies, which is one of the emerging applications in neural interfaces to restore vision. However, higher feedthroughs within a limited space are needed for more complex electronic systems and precise neural modulations. Active implantable medical electronics are required to have good electrical and mechanical properties, such as being small, light, and biocompatible, and with low power consumption and minimal immunological reactions during long-term implantation. For this purpose, high-density implantable packaging and flexible microelectrode arrays (fMEAs) as well as high-performance coating materials for retinal stimulation are crucial to achieve high resolution. In this review, we mainly focus on the considerations of the high-feedthrough encapsulation of implantable biomedical components to prolong working life, and fMEAs for different implant sites to deliver electrical stimulation to targeted retinal neuron cells. In addition, the functional electrode materials to achieve superior stimulation efficiency are also reviewed. The existing challenge and future research directions of micro/nano technologies for retinal implant are briefly discussed at the end of the review.
Collapse
Affiliation(s)
- Qi Zeng
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Saisai Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Hangao Yang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Yi Zhang
- Shenzhen CAS-Envision Medical Technology Co. Ltd., Shenzhen 518100, China.
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
25
|
Huang H, Su S, Wu N, Wan H, Wan S, Bi H, Sun L. Graphene-Based Sensors for Human Health Monitoring. Front Chem 2019; 7:399. [PMID: 31245352 PMCID: PMC6580932 DOI: 10.3389/fchem.2019.00399] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Since the desire for real-time human health monitoring as well as seamless human-machine interaction is increasing rapidly, plenty of research efforts have been made to investigate wearable sensors and implantable devices in recent years. As a novel 2D material, graphene has aroused a boom in the field of sensor research around the world due to its advantages in mechanical, thermal, and electrical properties. Numerous graphene-based sensors used for human health monitoring have been reported, including wearable sensors, as well as implantable devices, which can realize the real-time measurement of body temperature, heart rate, pulse oxygenation, respiration rate, blood pressure, blood glucose, electrocardiogram signal, electromyogram signal, and electroencephalograph signal, etc. Herein, as a review of the latest graphene-based sensors for health monitoring, their novel structures, sensing mechanisms, technological innovations, components for sensor systems and potential challenges will be discussed and outlined.
Collapse
Affiliation(s)
- Haizhou Huang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shi Su
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
| | - Nan Wu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hao Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Shu Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Hengchang Bi
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou, China
- Center for Advanced Carbon Materials, Jiangnan Graphene Research Institute, Southeast University, Changzhou, China
| |
Collapse
|
26
|
Oh B, George P. Conductive polymers to modulate the post-stroke neural environment. Brain Res Bull 2019; 148:10-17. [PMID: 30851354 DOI: 10.1016/j.brainresbull.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Despite the prevalence of stroke, therapies to augment recovery remain limited. Here we focus on the use of conductive polymers for cell delivery, drug release, and electrical stimulation to optimize the post-stroke environment for neural recovery. Conductive polymers and their interactions with in vitro and in vivo neural systems are explored. The ability to continuously modify the neural environment utilizing conductive polymers provides applications in directing stem cell differentiation and increasing neural repair. This exciting class of polymers offers new approaches to optimizing the post-stroke brain to improve functional recovery.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Choi JR, Kim SM, Ryu RH, Kim SP, Sohn JW. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects. Exp Neurobiol 2018; 27:453-471. [PMID: 30636899 PMCID: PMC6318554 DOI: 10.5607/en.2018.27.6.453] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes.
Collapse
Affiliation(s)
- Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Seong-Min Kim
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| | - Rae-Hyung Ryu
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Sung-Phil Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong-Woo Sohn
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| |
Collapse
|
28
|
Wu F, Yu P, Mao L. Analytical and Quantitative in Vivo Monitoring of Brain Neurochemistry by Electrochemical and Imaging Approaches. ACS OMEGA 2018; 3:13267-13274. [PMID: 30411032 PMCID: PMC6217607 DOI: 10.1021/acsomega.8b02055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/02/2018] [Indexed: 05/27/2023]
Abstract
Quantitative monitoring of brain neurochemistry is aimed at an accurate measurement of chemical basal levels and dynamics defining neuronal activities. Analytical tools must be endowed with high selectivity, sensitivity, and spatiotemporal resolution to tackle this task. On one hand, in vivo electroanalysis combined with miniature electrodes has evolved into a minimally invasive method for probing transient events during neural communication and metabolism. On the other hand, noninvasive imaging techniques have been widely adopted in visualizing the neural structure and processes within a population of neurons in two or three dimensions. This perspective will give a concise review of the inspiring frontiers at the interface of neurochemistry and electrochemistry (microvoltammetry, nanoamperometry, galvanic redox potentiometry and ion transport-based sensing) or imaging (super-resolution single nanotube tracking, deep multiphoton microscopy, and free animal imaging). Potential opportunities with these methods and their combinations for multimodal brain analysis will be discussed, intending to draw a brief picture for future neuroscience research.
Collapse
Affiliation(s)
- Fei Wu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University
of CAS, Beijing 100049, China
- CAS
Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University
of CAS, Beijing 100049, China
- CAS
Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University
of CAS, Beijing 100049, China
- CAS
Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| |
Collapse
|
29
|
Chen YL, Nguyen Y, Wu SE, Chun YC, Chuang C, Hsieh YP, Hofmann M. Patterned liquid metal contacts for high density, stick-and-peel 2D material device arrays. NANOSCALE 2018; 10:14510-14515. [PMID: 30024009 DOI: 10.1039/c8nr02979b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional materials have shown great promise to enable novel wearable electronic devices ranging from sensors to energy generators. These developments are due to their high mechanical robustness, which allow them to retain high performance even at large deformations. Under these conditions, however, good electrical contacts become an important issue that cannot be addressed with conventional materials. Liquid metals could overcome this limitation by providing soft and compliant electrodes but to date no realistic heterointegration of nanomaterials and complex liquid metal contacts has been attempted. We here demonstrate the application of micrometer-sized electrical contacts to flexible, fragile and rough 2D materials using patterned liquid metal contacts. A novel deposition method enables the scalable and facile production of large arrays of contacts in arbitrary geometries. This ability permitted the single-step, fabrication-free and contamination-free production of concentric liquid metal-contacted graphene field effect transistors of comparable performance to traditional devices. We demonstrate that the contacts can be removed without damaging the 2D materials allowing the contacts to be reused. Finally, good contact could be made to complex morphologies and three-dimensional substrates, which highlights the potential of our approach to the characterization and application of nanomaterials in electronics.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Materials Science, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Ghosal K, Sarkar K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater Sci Eng 2018; 4:2653-2703. [DOI: 10.1021/acsbiomaterials.8b00376] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Krishanu Ghosal
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
31
|
Abstract
Most diseases and disorders of the brain require long-term therapy and a constant supply of drugs. Implantable drug-delivery systems provide long-term, sustained drug delivery in the brain. The present review discusses different type of implantable systems such as solid implants, in situ forming implants, in situ forming microparticles, depot formulations, polymeric-lipid implants, sucrose acetate isobutyrate and N-stearoyl L-alanine methyl ester systems for continuous drug delivery into brain for various brain diseases including glioblastomas, medulloblastoma, epilepsy, stroke, schizophrenia and Alzheimer's diseases. Implantable neural probes and microelectrode array systems for brain are also discussed in brief.
Collapse
|
32
|
Lu Y, Liu X, Kuzum D. Graphene-based neurotechnologies for advanced neural interfaces. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Bramini M, Alberini G, Colombo E, Chiacchiaretta M, DiFrancesco ML, Maya-Vetencourt JF, Maragliano L, Benfenati F, Cesca F. Interfacing Graphene-Based Materials With Neural Cells. Front Syst Neurosci 2018; 12:12. [PMID: 29695956 PMCID: PMC5904258 DOI: 10.3389/fnsys.2018.00012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
The scientific community has witnessed an exponential increase in the applications of graphene and graphene-based materials in a wide range of fields, from engineering to electronics to biotechnologies and biomedical applications. For what concerns neuroscience, the interest raised by these materials is two-fold. On one side, nanosheets made of graphene or graphene derivatives (graphene oxide, or its reduced form) can be used as carriers for drug delivery. Here, an important aspect is to evaluate their toxicity, which strongly depends on flake composition, chemical functionalization and dimensions. On the other side, graphene can be exploited as a substrate for tissue engineering. In this case, conductivity is probably the most relevant amongst the various properties of the different graphene materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation, which holds a great potential in regenerative medicine. In this review, we try to give a comprehensive view of the accomplishments and new challenges of the field, as well as which in our view are the most exciting directions to take in the immediate future. These include the need to engineer multifunctional nanoparticles (NPs) able to cross the blood-brain-barrier to reach neural cells, and to achieve on-demand delivery of specific drugs. We describe the state-of-the-art in the use of graphene materials to engineer three-dimensional scaffolds to drive neuronal growth and regeneration in vivo, and the possibility of using graphene as a component of hybrid composites/multi-layer organic electronics devices. Last but not least, we address the need of an accurate theoretical modeling of the interface between graphene and biological material, by modeling the interaction of graphene with proteins and cell membranes at the nanoscale, and describing the physical mechanism(s) of charge transfer by which the various graphene materials can influence the excitability and physiology of neural cells.
Collapse
Affiliation(s)
- Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, Università degli Studi di Genova, Genova, Italy
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, Università degli Studi di Genova, Genova, Italy
| | - Mattia L DiFrancesco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - José F Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, Università degli Studi di Genova, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
34
|
Zhi B, Song Q, Mao Y. Vapor deposition of polyionic nanocoatings for reduction of microglia adhesion. RSC Adv 2018; 8:4779-4785. [PMID: 35539514 PMCID: PMC9077851 DOI: 10.1039/c7ra12728f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/01/2018] [Indexed: 11/29/2022] Open
Abstract
Polyionics have great potential in improving the performance of neural probes by regulating microglial response. With the shrinkage of microelectrode size and increase in device complexity, challenges arise during liquid-based synthesis of polyionic compounds on neural probes. Nanocoatings of polyionics, with highly crosslinked bulk structure and abundant ionic functional groups on the surface, were synthesized using a process combining chemical vapor deposition and free radical polymerization. Both conformal surface engineering of neural microelectrodes and facile tailoring of surface ionic composition was achieved using this single-step vapor-based method. Adhesion of microglia was reduced on all the polyionic modified surfaces after a seven-day in vitro test, and polyionics with mixed charges presented much lower microglial adhesion than surfaces with single charges. Laminin adsorption on polyionics with mixed charges was significantly reduced due to the surface electrical neutrality and the enhanced wettability. These findings provide valuable information towards the development of neural probes with enhanced biocompatibility and signal stability.
Collapse
Affiliation(s)
- Bin Zhi
- Department of Biosystems Engineering, Oklahoma State University Stillwater Oklahoma 74078 USA
| | - Qing Song
- Department of Biosystems Engineering, Oklahoma State University Stillwater Oklahoma 74078 USA
| | - Yu Mao
- Department of Biosystems Engineering, Oklahoma State University Stillwater Oklahoma 74078 USA
| |
Collapse
|
35
|
Apollo NV, Jiang J, Cheung W, Baquier S, Lai A, Mirebedini A, Foroughi J, Wallace GG, Shivdasani MN, Prawer S, Chen S, Williams R, Cook MJ, Nayagam DAX, Garrett DJ. Development and Characterization of a Sucrose Microneedle Neural Electrode Delivery System. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas V. Apollo
- School of Physics; University of Melbourne; Parkville Victoria 3010 Australia
- The Bionics Institute; 384-388 Albert St. East Melbourne Victoria 3002 Australia
| | - Jonathan Jiang
- Department of Medicine; University of Melbourne; Parkville Victoria 3010 Australia
| | - Warwick Cheung
- Department of Medicine; University of Melbourne; Parkville Victoria 3010 Australia
| | - Sebastien Baquier
- Department of Medicine; University of Melbourne; Parkville Victoria 3010 Australia
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Parkville Victoria 3010 Australia
| | - Alan Lai
- Department of Medicine; University of Melbourne; Parkville Victoria 3010 Australia
| | - Azadeh Mirebedini
- Intelligent Polymer Research Institute (IPRI); AIIM Facility; Innovation Campus; University of Wollongong; Wollongong New South Wales 2522 Australia
| | - Javad Foroughi
- Intelligent Polymer Research Institute (IPRI); AIIM Facility; Innovation Campus; University of Wollongong; Wollongong New South Wales 2522 Australia
| | - Gordon G. Wallace
- Intelligent Polymer Research Institute (IPRI); AIIM Facility; Innovation Campus; University of Wollongong; Wollongong New South Wales 2522 Australia
| | - Mohit N. Shivdasani
- The Bionics Institute; 384-388 Albert St. East Melbourne Victoria 3002 Australia
- Department of Medical Bionics; University of Melbourne; Parkville Victoria 3010 Australia
| | - Steven Prawer
- School of Physics; University of Melbourne; Parkville Victoria 3010 Australia
| | - Shou Chen
- Department of Anatomical Pathology; St Vincent's Hospital Melbourne; Fitzroy Victoria 3065 Australia
| | - Richard Williams
- Department of Anatomical Pathology; St Vincent's Hospital Melbourne; Fitzroy Victoria 3065 Australia
- Department of Pathology; University of Melbourne; Parkville Victoria 3010 Australia
| | - Mark J. Cook
- Department of Medicine; University of Melbourne; Parkville Victoria 3010 Australia
| | - David A. X. Nayagam
- The Bionics Institute; 384-388 Albert St. East Melbourne Victoria 3002 Australia
- Department of Pathology; University of Melbourne; Parkville Victoria 3010 Australia
| | - David J. Garrett
- School of Physics; University of Melbourne; Parkville Victoria 3010 Australia
- The Bionics Institute; 384-388 Albert St. East Melbourne Victoria 3002 Australia
| |
Collapse
|
36
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
37
|
Cheng H, Xiao T, Wang D, Hao J, Yu P, Mao L. Simultaneous in vivo ascorbate and electrophysiological recordings in rat brain following ischemia/reperfusion. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Vallejo-Giraldo C, Pugliese E, Larrañaga A, Fernandez-Yague MA, Britton JJ, Trotier A, Tadayyon G, Kelly A, Rago I, Sarasua JR, Dowd E, Quinlan LR, Pandit A, Biggs MJP. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine (Lond) 2016; 11:2547-63. [DOI: 10.2217/nnm-2016-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Medium chain length-polyhydroxyalkanoate/multi-walled carbon nanotube (MWCNTs) nanocomposites with a range of mechanical and electrochemical properties were fabricated via assisted dispersion and solvent casting, and their suitability as neural interface biomaterials was investigated. Materials & methods: Mechanical and electrical properties of medium chain length-polyhydroxyalkanoate/MWCNTs nanocomposite films were evaluated by tensile test and electrical impedance spectroscopy, respectively. Primary rat mesencephalic cells were seeded on the composites and quantitative immunostaining of relevant neural biomarkers, and electrical stimulation studies were performed. Results: Incorporation of MWCNTs to the polymeric matrix modulated the mechanical and electrical properties of resulting composites, and promoted differential cell viability, morphology and function as a function of MWCNT concentration. Conclusion: This study demonstrates the feasibility of a green thermoplastic MWCNTs nanocomposite for potential use in neural interfacing applications.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Eugenia Pugliese
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Aitor Larrañaga
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Marc A Fernandez-Yague
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - James J Britton
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Alexandre Trotier
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Ghazal Tadayyon
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Adriona Kelly
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Ilaria Rago
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Eilís Dowd
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Leo R Quinlan
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Manus JP Biggs
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| |
Collapse
|
39
|
Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 2016; 105:255-274. [PMID: 27037064 PMCID: PMC5039063 DOI: 10.1016/j.addr.2016.03.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023]
Abstract
Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications.
Collapse
Affiliation(s)
- Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Yi-Chen Li
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Hae Lin Jang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Khoshakhlagh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Mohsen Akbari
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
| | - Amir Nasajpour
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
40
|
Baldrighi M, Trusel M, Tonini R, Giordani S. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Front Neurosci 2016; 10:250. [PMID: 27375413 PMCID: PMC4899452 DOI: 10.3389/fnins.2016.00250] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues.
Collapse
Affiliation(s)
- Michele Baldrighi
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| | - Massimo Trusel
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Raffaella Tonini
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Silvia Giordani
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|