1
|
Cao Y, Zheng M, Shi J, Si J, Huang G, Ji Y, Hou Y, Ge Z. X-ray-Triggered Activation of Polyprodrugs for Synergistic Radiochemotherapy. Biomacromolecules 2025; 26:579-590. [PMID: 39727263 DOI: 10.1021/acs.biomac.4c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
X-ray-induced photodynamic therapy (XPDT) can penetrate deeply into the tumor tissues to overcome the disadvantage of conventional PDT. However, the therapeutic efficacy of XPDT in cancer therapy is still restricted due to the insufficient reactive oxygen species (ROS) generation at a relatively low irradiation dosage. Herein, we present the tumor pH and ROS-responsive polyprodrug micelles to load the X-ray photosensitizer verteporfin (VP) as an ROS production enhancer. The block copolymer polyprodrug consisting of hydrophilic poly(ethylene glycol) (PEG) as well as the segments of thioketal-linked camptothecin (CPT) methacrylate (CPTKMA) and 2-(pentamethyleneimino)ethyl methacrylate (PEMA) (PEG-b-P(CPTKMA-co-PEMA)) can self-assemble into micelles in aqueous solution and encapsulate VP with a high loading efficiency of 67%. Inside tumor tissues, the zeta potential of the micelles can transform from neutral to positive for promoted cellular internalization under tumor acidity. Followed by X-ray irradiation at the dose of 4 Gy, efficient ROS generation in the presence of VP triggers CPT release. The VP-loaded polyprodrug micelles can finally ablate tumors efficiently via synergistic radiochemotherapy due to deep penetration of X-ray inside tumor tissues, ROS generation enhancement, and triggered CPT release. Consequently, this promising strategy represents a robust therapeutic modality for the enhanced radiochemotherapy of cancers.
Collapse
Affiliation(s)
- Yufei Cao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Moujiang Zheng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jiahong Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jiale Si
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Guopu Huang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yuanyuan Ji
- Department of Geriatric General Surgery, Scientific Research Center and Precision Medical Institute, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
2
|
Guerassimoff L, Ferrere M, Bossion A, Nicolas J. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization. Chem Soc Rev 2024; 53:6511-6567. [PMID: 38775004 PMCID: PMC11181997 DOI: 10.1039/d2cs01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/18/2024]
Abstract
Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
3
|
Ren L, Zhang Q, Wang W, Chen X, Li Z, Gong Q, Gu Z, Luo K. Co-assembly of polymeric conjugates sensitizes neoadjuvant chemotherapy of triple-negative breast cancer with reduced systemic toxicity. Acta Biomater 2024; 175:329-340. [PMID: 38135204 DOI: 10.1016/j.actbio.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Rational design of polymeric conjugates could greatly potentiate the combination therapy of solid tumors. In this study, we designed and prepared two polymeric conjugates (HT-DTX and PEG-YC-1), whereas the drugs were attached to the PEG via a linker sensitive to cathepsin B, over-expressed in TNBC. Stable nanostructures were formed by these two polymer prodrug conjugates co-assembly (PPCC). The stimuli-responsiveness of PPCC was confirmed, and the size shrinkage under tumor microenvironment would facilitate the penetration of PPCC into tumor tissue. In vitro experiments revealed the molecular mechanism for the synergistic effect of the combination of DTX and YC-1. Moreover, the systemic side effects were significantly diminished since the biodistribution of PPCC was improved after i.v. administration in vivo. In this context, the co-assembled nano-structural approach could be employed for delivering therapeutic drugs with different mechanisms of action to exert a synergistic anti-tumor effect against solid tumors, including triple-negative breast cancer. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianfeng Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China; School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Wenjia Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. NANOSCALE 2023; 15:17658-17697. [PMID: 37909755 DOI: 10.1039/d3nr04147f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Zhu Guo
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
- The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
5
|
A universal multivalent hyperbranched delivery platform for circumventing multidrug resistance via double camouflage and rapid bonding with cell. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
6
|
Mishra AK, Lim J, Lee J, Park S, Seo Y, Hwang H, Kim JK. Control drug release behavior by highly stable and pH sensitive poly(N-vinylpyrrolidone)-block-poly(4-vinylpyridine) copolymer micelles. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Zhao L, Shi L, Wang J, Zhang Q, Yang X, Lu Y. Degradable inorganic/polymer core-shell microspheres for pH-triggered release of indole-3-acetic acid. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2018.1563087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Linlin Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Luqing Shi
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Qiang Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Xinlin Yang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Yan Lu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
8
|
Kong M, Peng X, Cui H, Liu P, Pang B, Zhang K. pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Adv 2020; 10:4860-4868. [PMID: 35498333 PMCID: PMC9049203 DOI: 10.1039/c9ra10280a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022] Open
Abstract
Biodegradable nanoparticles (NPs) have shown great promise as intracellular imaging probes, nanocarriers and drug delivery vehicles. In this study, we designed and prepared amphiphilic cellulose derivatives via Schiff base reactions between 2,3-dialdehyde cellulose (DAC) and amino compounds. Polymeric NPs were facilely fabricated via the self-assembly of the as-synthesized amphiphilic macromolecules. The size distribution of the obtained NPs can be tuned by changing the amount and length of the grafted hydrophobic side-chains. Anticancer drugs (DOX) were encapsulated in the NPs and the drug-loaded NPs based on cellulose derivatives were stable in neutral and alkaline environments for at least a month. They rapidly decomposed with the efficient release of the drug in acidic tumor microenvironments. These drug-loaded NPs have the potential for application in cancer treatment.
Collapse
Affiliation(s)
- Mengle Kong
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
| | - Xinwen Peng
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Hao Cui
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
| | - Peiwen Liu
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Bo Pang
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Kai Zhang
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| |
Collapse
|
9
|
Dimeric camptothecin-loaded mPEG-PCL nanoparticles with high drug loading and reduction-responsive drug release. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Ibrahim A, Twizeyimana E, Lu N, Ke W, Mukerabigwi JF, Mohammed F, Japir AAWMM, Ge Z. Reduction-Responsive Polymer Prodrug Micelles with Enhanced Endosomal Escape Capability for Efficient Intracellular Translocation and Drug Release. ACS APPLIED BIO MATERIALS 2019; 2:5099-5109. [DOI: 10.1021/acsabm.9b00769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alhadi Ibrahim
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Etienne Twizeyimana
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Nannan Lu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Applied Chemistry, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Abd Al-Wali Mohammed M. Japir
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
11
|
Mohammed F, Ke W, Mukerabigwi JF, M Japir AAWM, Ibrahim A, Wang Y, Zha Z, Lu N, Zhou M, Ge Z. ROS-Responsive Polymeric Nanocarriers with Photoinduced Exposure of Cell-Penetrating Moieties for Specific Intracellular Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31681-31692. [PMID: 31397163 DOI: 10.1021/acsami.9b10950] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In situ modulation of the surface properties on the micellar drug delivery nanocarriers offers an efficient method to improve the drug delivery efficiency into cells while maintaining stealth and stability during blood circulation. Light has been demonstrated to be a temporally and spatially controllable tool to improve cellular internalization of nanoparticles. Herein, we develop reactive oxygen species (ROS)-responsive mixed polymeric micelles with photoinduced exposure of cell-penetrating moieties via photodynamic ROS production, which can facilitate cellular internalization of paclitaxel (PTX) and chlorin e6 (Ce6)-coloaded micelles for the synergistic effect of photodynamic and chemotherapy. The thioketal-bond-linked block polymers poly(ε-caprolactone)-TL-poly(N,N-dimethylacrylamide) (PCL-TL-PDMA) with a long PDMA block are used to self-assemble into mixed micelles with PCL-b-poly(2-guanidinoethyl methacrylate) (PCL-PGEMA) consisting of a short PGEMA block, which are further used to coencapsulate PTX and Ce6. After intravenous injection, prolonged blood circulation of the micelles guarantees high tumor accumulation. Upon irradiation by 660 nm light, ROS production of the micelles by Ce6 induces cleavage of PDMA to expose PGEMA shells for significantly improved cellular internalization. The combination of photodynamic therapy and chemotherapy inside the tumor cells achieves improved antitumor efficacy. The design of ROS-responsive mixed polymeric nanocarriers represents a novel and efficient approach to realize both long blood circulation and high-efficiency cellular internalization for combined photodynamic and chemotherapy under light irradiation.
Collapse
Affiliation(s)
- Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Abd Al-Wali Mohammed M Japir
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Alhadi Ibrahim
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| | - Nannan Lu
- Department of Oncology , The First Affiliated Hospital of University of Science and Technology of China , Hefei 230001 , Anhui , China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei 230001 , Anhui , China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China
| |
Collapse
|
12
|
Bai T, Shao D, Chen J, Li Y, Xu BB, Kong J. pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. J Colloid Interface Sci 2019; 552:439-447. [DOI: 10.1016/j.jcis.2019.05.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
|
13
|
Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1581. [PMID: 31429208 DOI: 10.1002/wnan.1581] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| |
Collapse
|
14
|
Prodrugs in combination with nanocarriers as a strategy for promoting antitumoral efficiency. Future Med Chem 2019; 11:2131-2150. [DOI: 10.4155/fmc-2018-0388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prodrug entrapment into nanocarriers for tumor delivery is a strategy to achieve a valid therapy with high efficiency. The prodrug contains anticancer agents conjugating with functional moieties or ligands so that the active component is released after metabolism in the body or tumor. The advantages of nanosystems for loading prodrugs include high loading, increased prodrug stability, improved bioavailability and enhanced targeting to tumor cells. In the present article, we introduce the prodrug delivery approaches according to nanomedicine and the recent advances in prodrug-loaded nanocarriers. First, we discuss the conceptional design of combined prodrugs and nanocarriers in response to the obstruction in anticancer therapy. Then we describe the cases of prodrug-loaded nanoparticles for cancer treatment during the past 5 years.
Collapse
|
15
|
Polymersome nanoreactors with tumor pH-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy. J Control Release 2019; 303:209-222. [DOI: 10.1016/j.jconrel.2019.04.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
16
|
Sharma PK, Singh Y. Glyoxylic Hydrazone Linkage-Based PEG Hydrogels for Covalent Entrapment and Controlled Delivery of Doxorubicin. Biomacromolecules 2019; 20:2174-2184. [DOI: 10.1021/acs.biomac.9b00020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peeyush K. Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
| |
Collapse
|
17
|
Liu P. Redox- and pH-responsive polymeric nanocarriers. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:3-36. [DOI: 10.1016/b978-0-08-101995-5.00001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Xu C, Song RJ, Lu P, Chen JC, Zhou YQ, Shen G, Jiang MJ, Zhang W. pH-triggered charge-reversal and redox-sensitive drug-release polymer micelles codeliver doxorubicin and triptolide for prostate tumor therapy. Int J Nanomedicine 2018; 13:7229-7249. [PMID: 30510415 PMCID: PMC6231516 DOI: 10.2147/ijn.s182197] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To significantly promote cancer cell uptake and to achieve combination therapy and on-demand drug release, a pH-triggered charge-switchable and redox-responsive drug-release nanovehicle was developed in this study. MATERIALS AND METHODS The nanocarrier was constructed by conjugating 3,3'-dithiodipropionic acid-modified doxorubicin (DTPA-DOX) and 2,3-dimethylmaleic anhydride (DMA) to the side amino groups of poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL) and by encapsulating triptolide (TRI) into the hydrophobic core. The surface charge of the obtained nanocarriers (DA-ss-DT) can change from negative to positive in response to tumor extracellular acidity pH, and the nanocarriers capably release two drugs in response to intracellular high glutathione (GSH) environment. RESULTS Compared to the control group, the in vitro cellular uptake of DA-ss-DT by human prostate cancer PC-3 cells was significantly promoted in slightly acidic conditions, and the drug could be rapidly released in the high concentration of GSH conditions. The in vitro and in vivo antitumor experiments exhibited that the DA-ss-DT nanoparticles have a great antitumor effect in comparison to the control group. CONCLUSION These findings demonstrated that the DA-ss-DT nanoparticles supply a useful strategy for promoting cellular uptake and synergetic anticancer therapy.
Collapse
Affiliation(s)
- Chen Xu
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Ri-Jin Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Pei Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Jian-Chun Chen
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Yong-Qiang Zhou
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Gang Shen
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Min-Jun Jiang
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| |
Collapse
|
19
|
A pH-sensitive prodrug strategy to co-deliver DOX and TOS in TPGS nanomicelles for tumor therapy. Colloids Surf B Biointerfaces 2018; 173:346-355. [PMID: 30316081 DOI: 10.1016/j.colsurfb.2018.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
This work has presented a novel strategy for designing pH-sensitive TOS-H-DOX prodrug-loaded TPGS nanomicelles for co-delivery TOS and DOX to enhance tumor therapy and reduce the toxic side effects. DOX was covalently conjugated to the vitamin E succinate through hydrazone bond to produce an pH-sensitive prodrug TOS-H-DOX (amido bond as a control, TOS-A-DOX), which was responsive to the acidic environment in tumor cells, and the prodrugs were subsequently encapsulated in the core of TPGS nanomicelles via hydrophobic effects with a significant drug loading capacity. The pH-sensitive prodrug nanomicelles TOS-H-DOX/TPGS exhibited potent release of DOX in acidic media relative to the pH-insensitive prodrug nanomicelles TOS-A-DOX/TPGS, and further studies of their intracellular uptake and intracellular localization demonstrated that TOS-H-DOX/TPGS nanomicelles can be effectively taken up by cells and drugs can be released. In vitro results confirmed that TOS-H-DOX/TPGS nanomicelles exhibited significant antitumor cell proliferation activity compared to TOS-A-DOX/TPGS and free DOX, TPGS. Furthermore, in vivo studies further confirmed an excellent synergistic antitumor efficacy in MCF-7 tumor-bearing nude mice model. More importantly, the H&E staining of the heart, liver, kidney tissue sections of experimental nude mice showed that TOS-H-DOX/TPGS nanomicelles can reduce damage to them.
Collapse
|
20
|
Ji X, Tang Q, Pang P, Wu J, Kirk TB, Xu J, Ma D, Xue W. Redox-responsive chemosensitive polyspermine delivers ursolic acid targeting to human breast tumor cells: The depletion of intracellular GSH contents arouses chemosensitizing effects. Colloids Surf B Biointerfaces 2018; 170:293-302. [PMID: 29936382 DOI: 10.1016/j.colsurfb.2018.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 06/17/2018] [Indexed: 01/08/2023]
Abstract
Antitumor efficacy of ursolic acid (UA) is seriously limited due to its low hydrophilicity and needy bioavailability. To overcome these obstacles, chemosensitive polyspermine (CPSP) conjugated with UA and folic acid (FA) as a novel targeted prodrug was designed and successfully synthesized in this investigation. This prodrug not only showed high aqueous solubility, GSH-triggered degradation and good biocompatibility, but also exhibited better inhibition effect on the tumor cells proliferation in comparison with free UA. FA-CPSP-UA could down-regulate the generation of GSH and manifest excellent ability in enhancing antitumor efficacy. In addition, FA-CPSP-UA could inhibit the expression of MMP-9, which led to restricting MCF-7 cells migration. Taken together, the results indicated that FA-CPSP-UA, as a carrier, can efficiently deliver UA to folate receptor positive cancer cells and improve tumor therapy of UA by Chemosensitive effect.
Collapse
Affiliation(s)
- Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Qiao Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Peng Pang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jianping Wu
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University, Australia
| | - Thomas Brett Kirk
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University, Australia
| | - Jiake Xu
- The School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Tao R, Gao M, Liu F, Guo X, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21836-21846. [PMID: 29897226 DOI: 10.1021/acsami.8b04192] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocarriers have been extensively utilized to enhance the anti-tumor performance of chemotherapy, but it is very challenging to eliminate the associated hepatotoxicity. This was due to the significant liver accumulation of cytotoxic drug-loaded nanocarriers as a consequence of systemic biodistribution. To address this, we report a novel type of nanocarrier that was made of hepatoprotective compound (oleanolic acid/OA) with a model drug (methotrexate/MTX) being physically encapsulated. OA was covalently connected with methoxy poly(ethylene glycol) (mPEG) via a hydrazone linker, generating amphiphilic mPEG-OA prodrug conjugate that could self-assemble into pH-responsive micelles (ca. 100 nm), wherein the MTX loading was ca. 5.1% (w/w). The micelles were stable at pH 7.4 with a critical micelle concentration of 10.5 μM. At the acidic endosome/lysosome microenvironment, the breakdown of hydrazone induced the micelle collapse and fast release of payloads (OA and MTX). OA also showed adjunctive anti-tumor effect with a low potency, which was proved in 4T1 cells. In the mouse 4T1 breasttumor model, MTX-loaded mPEG-OA micelles demonstrated superior capability regarding in vivo tumorgrowth inhibition because of the passive tumor targeting of nanocarriers. Unsurprisingly, MTX induced significant liver toxicity, which was evidenced by the increased liver mass and increased levels of alanine transaminase, aspartate transaminase, and lactate dehydrogenase in serum as well as in liver homogenate. MTX-induced hepatotoxicity was also accompanied with augmented oxidative stress, for example, the increase of the malondialdehyde level and the reduction of glutathione peroxidase and superoxide dismutase concentration in the liver. As expected, mPEG-OA micelles significantly reduced the liver toxicity induced by MTX because of the hepatoprotective action of OA, which was supported by the reversal of all the above biomarkers and qualitative histological analysis of liver tissue. This work offers an efficient approach for reducing the liver toxicity associated with chemotherapy, which can be applied to various antitumor drugs and hepatoprotective materials.
Collapse
Affiliation(s)
- Ran Tao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Min Gao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Fang Liu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuliang Guo
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Aiping Fan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
22
|
Han Y, Chen Z, Zhao H, Zha Z, Ke W, Wang Y, Ge Z. Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles. J Control Release 2018; 284:15-25. [PMID: 29894709 DOI: 10.1016/j.jconrel.2018.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/31/2018] [Accepted: 06/08/2018] [Indexed: 01/27/2023]
Abstract
Tumor hypoxia strikingly restricts photodynamic therapy (PDT) efficacy and limits its clinical applications in cancer therapy. The ideal strategy to address this issue is to develop oxygen-independent PDT systems. Herein, the rationally designed tumor pH-responsive polymeric micelles are devised to realize oxygen-independent combined PDT and photothermal therapy (PTT) under near-infrared light (NIR) irradiation. The triblock copolymer, poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-(piperidin-1-yl)ethyl methacrylate) (PEG-b-PCL-b- PPEMA), was prepared to co-encapsulate cypate and singlet oxygen donor (diphenylanthracene endoperoxide, DPAE) via self-assembly to obtain the micellar delivery system (C/O@N-Micelle). C/O@N-Micelle showed remarkable tumor accumulation and improved cellular internalization (2.1 times) as the pH value was changed from 7.4 during blood circulation to 6.8 in tumor tissues. The micelles could produce a potent hyperthermia for PTT of cypate under 808 nm NIR irradiation, which simultaneously induced thermal cycloreversion of DPAE generating abundant singlet oxygen for PDT without participation of tumor oxygen. Finally, the photothermally triggered PDT and PTT combination achieved efficient tumor ablation without remarkable systemic toxicity in an oxygen-independent manner. This work represents an efficient strategy for oxygen-independent combined PDT and PTT of cancers under NIR irradiation through co-encapsulation of cypate and DPAE into tumor pH-responsive polymeric micelles.
Collapse
Affiliation(s)
- Yu Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhongping Chen
- Department of Chemistry, Anhui Science and Technology University, Fengyang 233100, China
| | - Hong Zhao
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
23
|
Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018; 8:3038-3058. [PMID: 29896301 PMCID: PMC5996358 DOI: 10.7150/thno.23459] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Han-Bin Dai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jian-Shu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Gui-Xue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
24
|
Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702858. [PMID: 29450963 DOI: 10.1002/smll.201702858] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/13/2017] [Indexed: 05/23/2023]
Abstract
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano-biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles-from self-assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
25
|
Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2035-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Mixed polycarbonate prodrug nanoparticles with reduction/pH dual-responsive and charge conversional properties. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids Surf B Biointerfaces 2017; 158:47-56. [DOI: 10.1016/j.colsurfb.2017.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 01/07/2023]
|
28
|
Wang W, Wang B, Liu S, Shang X, Yan X, Liu Z, Ma X, Yu X. Bioreducible Polymer Nanocarrier Based on Multivalent Choline Phosphate for Enhanced Cellular Uptake and Intracellular Delivery of Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15986-15994. [PMID: 28481098 DOI: 10.1021/acsami.7b03317] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited cellular uptake and inefficient intracellular drug release severely hamper the landscape of polymer drug nanocarriers in cancer chemotherapy. Herein, to address these urgent challenges in tumor treatment simultaneously, we integrated the multivalent choline phosphate (CP) and bioreducible linker into a single polymer chain, designed and synthesized a neoteric bioreducible polymer nanocarrier. The excellent hydrophility of these zwitterionic CP groups endowed high drug loading content and drug loading efficiency of doxorubicin to this drug delivery system (∼22.1 wt %, ∼95.9%). Meanwhile, we found that the multivalent choline phosphate can effectively enhance the internalization efficiency of this drug-loaded nanocarrier over few seconds, and the degree of improvement depended on the CP density in a single polymer chain. In addition, after these nanocarriers entered into the tumor cells, the accelerated cleavage of bioreducible linker made it possible for more cargo escape from the delivery system to cytoplasm to exert their cytostatic effects more efficiently. The enhanced therapeutic efficacy in various cell lines indicated the great potential of this system in anticancer drug delivery applications.
Collapse
Affiliation(s)
- Wenliang Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Bo Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Sanrong Liu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xudong Shang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - XinXin Yan
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University , Guangzhou 510632, P.R. China
| | - Xiaojing Ma
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xifei Yu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| |
Collapse
|
29
|
Du X, Sun Y, Zhang M, He J, Ni P. Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13939-13949. [PMID: 28378998 DOI: 10.1021/acsami.7b02281] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyphosphoesters (PPEs), as potential candidates for biocompatible and biodegradable polymers, play an important role in material science. Various synthetic methods have been employed in the preparation of PPEs such as polycondensation, polyaddition, ring-opening polymerization, and olefin metathesis polymerization. In this study, a series of linear PPEs has been prepared via one-step Michael addition polymerization. Subsequently, camptothecin (CPT) derivatives containing disulfide bonds and azido groups were linked onto the side chain of the PPE through Cu(I)-catalyzed azidealkyne cyclo-addition "click" chemistry to yield a reduction-responsive polymeric prodrug P(EAEP-PPA)-g-ss-CPT. The chemical structures were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared, ultraviolet-visible spectrophotometer, and high performance liquid chromatograph analyses, respectively. The amphiphilic prodrug could self-assemble into micelles in aqueous solution. The average particle size and morphology of the prodrug micelles were measured by dynamic light scattering and transmission electron microscopy, respectively. The results of size change under different conditions indicate that the micelles possess a favorable stability in physiological conditions and can be degraded in reductive medium. Moreover, the studies of in vitro drug release behavior confirm the reduction-responsive degradation of the prodrug micelles. A methyl thiazolyl tetrazolium assay verifies the good biocompatibility of P(EAEP-PPA) not only for normal cells, but also for tumor cells. The results of cytotoxicity and the intracellular uptake about prodrug micelles further demonstrate that the prodrug micelles can efficiently release CPT into 4T1 or HepG2 cells to inhibit the cell proliferation. All these results show that the polyphosphoester-based prodrug can be used for triggered drug delivery system in cancer treatment.
Collapse
Affiliation(s)
- Xueqiong Du
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Yue Sun
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
30
|
Hiruta Y, Kanda Y, Katsuyama N, Kanazawa H. Dual temperature- and pH-responsive polymeric micelle for selective and efficient two-step doxorubicin delivery. RSC Adv 2017. [DOI: 10.1039/c7ra03579a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual responsive polymeric micelle enabled selective intracellular uptake with thermal stimulation and effective release of doxorubicin at acidic endosomal pH.
Collapse
Affiliation(s)
- Yuki Hiruta
- Faculty of Pharmacy
- Keio University
- Minato
- Japan
| | - Yuki Kanda
- Faculty of Pharmacy
- Keio University
- Minato
- Japan
| | | | | |
Collapse
|
31
|
A shell-crosslinked polymeric micelle system for pH/redox dual stimuli-triggered DOX on-demand release and enhanced antitumor activity. Colloids Surf B Biointerfaces 2016; 152:1-11. [PMID: 28063272 DOI: 10.1016/j.colsurfb.2016.12.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/30/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022]
Abstract
Based on targeted amphiphilic block copolymer N-acetyl glucosamine-poly (styrene-alt-maleic anhydride)58-b-polystyrene130 (NAG-P(St-alt-MA)58-b-PSt130), a pH/redox dual-triggered shell-crosslinked polymeric micelle system was constructed. The shell-crosslinked micelles (CLM) were prepared by post-crosslinking method to regulate drug release kinetics using cystamine as linkers between carboxy groups of the shell. Compared with non-crosslinked micelles (NCLM), CLM showed spherical shapes with little increased mean diameter of 102.40±0.54nm, low polydispersity index (PDI) of 0.19±0.36, enlarged zeta potential value from -41.46±0.99 to -9.31±0.50mV, indicating the successful modification of disulfide bonds in shell. In vitro drug release study clearly exhibited a pH and redox dual-sensitive drug release profile with significantly accelerated drug release under pH 5.0 and 10mM GSH conditions (46.84% in 96h) without burst release. Both CLM and NCLM showed quite different release profiles between physiological (pH 7.4) and tumoral microenvironment (pH 5.0), effectively avoiding the premature drug leakage and realizing on-demand drug release. The MTT assay implied that CLM presented a time- and concentration-dependent manner to inhibit proliferation of A549 and MCF-7 cells and much lower IC50 values in comparison with that of NCLM after 72h incubation. Both FCM and CLSM results showed that CLM displayed much higher cellular uptake efficiency and anti-tumor activities than NCLM and free DOX. CLM and NCLM could be internalized by energy-dependent endocytosis mechanism due to similar surface properties. Overall, this dual-stimuli triggered micelle system provided a promising tumor-responsive platform for cancer therapy.
Collapse
|
32
|
Dutta D, Alex SM, Bobba KN, Maiti KK, Bhuniya S. New Insight into a Cancer Theranostic Probe: Efficient Cell-Specific Delivery of SN-38 Guided by Biotinylated Poly(vinyl alcohol). ACS APPLIED MATERIALS & INTERFACES 2016; 8:33430-33438. [PMID: 27960424 DOI: 10.1021/acsami.6b10580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An optically modulated "turn-on" theranostic prodrug TP1 has been explored and formulated with biotinylated poly(vinyl alcohol) (biotinPVA) to obtain desired pharmacokinetics. TP1, consisting of the antineoplastic camptothecin analogue SN-38, and the fluorescent dye rhodol green have been covalently conjugated through a disulfide bond. Glutathione triggering the release of drug and fluorophore has been well established by UV-vis measurements through mass spectral analysis in physiological conditions. The biocompatible biotinPVA formulated prodrug (PTP1) showed remarkably higher stability against blood serum and cell-specific activation in contrast to that of TP1. Significantly, PTP1 permits monitoring of the delivery and release of well-known topoisomerase I inhibitor SN-38 by modulating fluorescence signal at λem 550 nm within intracellular milieus. Moreover, theranostic probe PTP1 exhibited dose-dependent antiproliferative activity against receptor-positive HeLa cells, whereas it did not show such an effect against receptor-negative NIH3T3 cells. Finally, the cell-specific antiproliferative activity of PTP1 via the apoptotic pathway is an efficient approach in cancer theranostics. Thus, futuristic PTP1 could be a promising agent in which diagnostic and prognostic data will be monitored synergistically.
Collapse
Affiliation(s)
- Debabrata Dutta
- Amrita Centre for Industrial Research and Innovation, Amrita School of Engineering, Amrita University , Coimbatore 64112, India
| | - Susan M Alex
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research and Innovation, Amrita School of Engineering, Amrita University , Coimbatore 64112, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research, AcSIR, CSIR-NIIST , Thiruvananthapuram, Kerala 695019, India
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research and Innovation, Amrita School of Engineering, Amrita University , Coimbatore 64112, India
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita University , Coimbatore 641112, India
| |
Collapse
|
33
|
Ke W, Li J, Zhao K, Zha Z, Han Y, Wang Y, Yin W, Zhang P, Ge Z. Modular Design and Facile Synthesis of Enzyme-Responsive Peptide-Linked Block Copolymers for Efficient Delivery of Doxorubicin. Biomacromolecules 2016; 17:3268-3276. [PMID: 27564064 DOI: 10.1021/acs.biomac.6b00997] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Construction of efficient doxorubicin (DOX) delivery systems addressing a cascade of physiological barriers remains a great challenge for better therapeutic efficacy of tumors. Herein, we design well-defined enzyme-responsive peptide-linked block copolymer, PEG-GPLGVRGDG-P(BLA-co-Asp) [PEG and P(BLA-co-Asp) are poly(ethylene glycol) and partially hydrolyzed poly(β-benzyl l-aspartate) (PBLA), respectively] (P3), with modular functionality for efficient delivery of DOX. The block copolymers were successfully obtained via click reaction to introduce peptide (alkynyl-GPLGVRGDG) into the end of PEG for initiating ring-opening polymerization of β-benzyl l-aspartate N-carboxyanhydride (BLA-NCA) by terminal amino groups followed by partial hydrolysis of PBLA segments. P3 micelle was demonstrated to encapsulate DOX efficiently through synergistic effect of benzyl group-based hydrophobic and carboxyl moiety-based electrostatic interactions. Effective matrix metalloproteinase-2 (MMP-2)-triggered cleavage of peptide for dePEGylation of P3 micelles was confirmed and residual RGD ligands were retained on the surfaces. Against HT1080 cells overexpressing MMP-2, DOX-loaded P3 micelles showed approximately 4-fold increase of the cellular internalization amount as compared with free DOX and half maximal inhibitory concentration (IC50) value of DOX-loaded P3 micelles was determined to be 0.38 μg/mL compared with 0.66 μg/mL of free DOX due to MMP-triggered dePEGylation, RGD-mediated cellular uptake, and rapid drug release inside cells. Binding and penetration evaluation toward HT1080 multicellular tumor spheroids (MCTs) confirmed high affinity and deep penetration of P3 micelles in tumor tissues. This modular design of enzyme-responsive block copolymers represents an effective strategy to construct intelligent drug delivery vehicles for addressing a cascade of delivery barriers.
Collapse
Affiliation(s)
- Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Kaijie Zhao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Yu Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Wei Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China.,Department of Pharmacology, Xin Hua University of Anhui , Hefei, China
| | - Ping Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China.,Department of Chemistry, Anhui Science and Technology University , Anhui Fengyang 233100, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| |
Collapse
|
34
|
Yin J, Chen Y, Zhang ZH, Han X. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications. Polymers (Basel) 2016; 8:E268. [PMID: 30974545 PMCID: PMC6432437 DOI: 10.3390/polym8070268] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023] Open
Abstract
Although a number of tactics towards the fabrication and biomedical exploration of stimuli-responsive polymeric assemblies being responsive and adaptive to various factors have appeared, the controlled preparation of assemblies with well-defined physicochemical properties and tailor-made functions are still challenges. These responsive polymeric assemblies, which are triggered by stimuli, always exhibited reversible or irreversible changes in chemical structures and physical properties. However, simple drug/polymer nanocomplexes cannot deliver or release drugs into the diseased sites and cells on-demand due to the inevitable biological barriers. Hence, utilizing therapeutic or imaging agents-loaded stimuli-responsive block copolymer assemblies that are responsive to tumor internal microenvironments (pH, redox, enzyme, and temperature, etc.) or external stimuli (light and electromagnetic field, etc.) have emerged to be an important solution to improve therapeutic efficacy and imaging sensitivity through rationally designing as well as self-assembling approaches. In this review, we summarize a portion of recent progress in tumor and intracellular microenvironment responsive block copolymer assemblies and their applications in anticancer drug delivery and triggered release and enhanced imaging sensitivity. The outlook on future developments is also discussed. We hope that this review can stimulate more revolutionary ideas and novel concepts and meet the significant interest to diverse readers.
Collapse
Affiliation(s)
- Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Yu Chen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Zhi-Huang Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Xin Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| |
Collapse
|