1
|
Gong S, Ma Y, Liu H, Shen L. Surface-Induced Conformational Changes of α-Synuclein on Silica Nanoparticles of Varying Sizes Corresponding to Protein Structural Domains: Insights from Enhanced Sampling MD Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10632-10638. [PMID: 40233005 DOI: 10.1021/acs.langmuir.5c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Protein-nanoparticle interactions are crucial in a diverse array of biotechnology and biomedical applications. Variations in nanoparticle sizes can adjust surface interactions with proteins and biomolecules, thereby influencing their conformation and functionality. To achieve precise control over the nanoparticle sizes corresponding to the dimensions of protein structural domains (∼nm) and establish the relationship between nanoparticle curvature and protein conformational changes, we conduct well-tempered metadynamics simulations to explore the secondary structure changes and thermodynamic characteristics of α-synuclein (αS), an intrinsically disordered protein (IDP), adsorbed onto silicon dioxide (SiO2) nanoparticles of varying sizes (diameter, d = 0.5-2.5 nm). The analysis of αS's conformational landscapes and structural probabilities reveals that intermediate-sized SiO2 nanoparticles (d = 1.2-1.4 nm) effectively stabilize the native intrinsically disordered conformations of αS (with domain sizes of 1-2 nm). In contrast, excessively large or small SiO2 nanoparticles significantly enhance the likelihood of forming intramolecular β-sheet domains within αS chains, a process that is critical for subsequent aggregation of αS. This study is of significance to the development of nanoparticles that stabilize desired protein conformations, which may pave the way for in vivo penetration and distribution of nanoparticles as well as biomedicine therapeutic interventions aimed at targeting αS aggregation.
Collapse
Affiliation(s)
- Shuai Gong
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Ma
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Hongyi Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Shen
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Institute WUT-AMU, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang J, Zhao Y, Wang Z, Wang W, Ma J, Jia Q. Design of magnetic polyethyleneimine-fluorescein isothiocyanate composites toward efficient enrichment of phosphopeptides. J Chromatogr A 2025; 1743:465679. [PMID: 39813911 DOI: 10.1016/j.chroma.2025.465679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Phosphoproteins maintain the normal metabolic activity of the organisms. Direct phosphopeptides detection is difficult to be realized by mass spectroscopy (MS) due to the low ionization efficiency, low abundance of phosphopeptides and interferences of complicated biological fluids. In the present work, a magnetic composite material was prepared by combining polyethyleneimine (PEI) and fluorescein isothiocyanate (FITC) focusing on phosphopeptides enrichment. Fourier-transform infrared spectroscopy, thermogravimetry analysis, X-ray photoemission spectroscopy, X-ray diffraction and UV-vis spectrometry measurement results confirmed the successful synthesis of Fe3O4@PEI@FITC material. FITC was facilely connected with PEI, and the two motifs endowed the efficient enrichment capacity of phosphopeptides by simple regulation of pH. The Fe3O4@PEI@FITC material was applied to the detection of phosphopeptides from real samples, implying that it can serve as an applicable platform for phosphoproteomics analysis.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yaming Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zirui Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Wanshu Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
3
|
Sahoo S, Ghosh S, Areekkadan AM, Chakrabarty A, Banerjee R. Cancer Cell-Selective Inhibition of Migration by Styrenic Catiomer Emulsions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53599-53609. [PMID: 39340815 DOI: 10.1021/acsami.4c14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Cancer metastasis remains the most formidable cause of mortality and morbidity in cancer patients. Developing an effective and economical method toward cancer antimetastatic strategy demands immediate attention in anticancer therapy. Herein, we followed a cost-effective greener method for preparing a small family of amphiphilic catiomers with varied styrene content (45, 63, and 83%), which revealed the unique potential of promoting normal cell migration while retarding cancer metastasis. The styrenic polymers formed micellar self-assembly in aqueous phase and exhibited a cationic charge. Polymers were quite nontoxic up to 200 μg/mL concentration toward human embryonic kidney cell HEK293 as well as human, triple negative breast cancer cell MDAMB-231, mouse melanoma cell B16F10, and human oral squamous carcinoma cell FaDu. Confocal imaging and fluorescence activated cell sorting (FACS) showed effective incorporation of polymers within cells. Interestingly, the polymer-treated HEK293 cells underwent prominent wound healing in scratch assay. However, the as-synthesized polymer-treated cancer cells resisted migration as analyzed from the scratch assay. A mechanistic study using immunoblotting assay established upregulation of migratory proteins vimentin and TGF-β and downregulation of E-cadherin in normal HEK293 cells. Remarkably, this trend was completely reversed in cancer cell MDAMB-231. This study describes the extraordinary potential of styrenic catiomers as wound healers for normal cells while inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Subhasish Sahoo
- Department of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Souma Ghosh
- Department of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abdul Malik Areekkadan
- Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Arindam Chakrabarty
- Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajkumar Banerjee
- Department of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
5
|
Shen Y, Gao X, Chen H, Wei Y, Yang H, Gu Y. Ultrathin C 3N 4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131171. [PMID: 36913745 DOI: 10.1016/j.jhazmat.2023.131171] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Engineering efficient dual-mode portable sensor with built-in cross reference correction is of great significance for onsite reliable and precise detection of organophosphorus pesticides (OPs) and evading the false-positive outputs, especially in emergency case. Currently, most nanozyme-based sensors for OPs monitoring primarily replied on the peroxidase-like activity, which involved unstable and toxic H2O2. In this scenario, a hybrid oxidase-like 2D fluorescence nanozyme (PtPdNPs@g-C3N4) was yielded by in situ growing PtPdNPs in the ultrathin two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheet. When acetylcholinesterase (AChE) hydrolyzed acetylthiocholine (ATCh) to thiocholine (TCh), it ablated O2-• from the dissolved O2 catalyzed by PtPdNPs@g-C3N4's oxidase-like activity, hampering the oxidation of o-phenylenediamine (OPD) into 2,3-diaminophenothiazine (DAP). Consequently, with the increasing concentration of OPs which inhibited the blocking effect by inactivating AChE, the produced DAP caused an apparent color change and a dual-color ratiometric fluorescence change in the response system. Through integrating into a smartphone, a H2O2-free 2D nanozyme-based onsite colorimetric and fluorescence dual-mode visual imaging sensor for OPs was proposed with acceptable results in real samples, which holds vast promise for further development of commercial point-of-care testing platform in early warning and controlling of OPs pollution for safeguarding environmental health and food safety.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
6
|
Wang L, Qian Y. Modification of a SOCT-ISC type triphenylamine-BODIPY photosensitizer by a multipolar dendrimer design for photodynamic therapy and two-photon fluorescence imaging. Biomater Sci 2023; 11:1459-1469. [PMID: 36602169 DOI: 10.1039/d2bm01838a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a series of multipolar triphenylamine-BODIPY photosensitizers T-BDPn (n = 1, 2, 3) was synthesized. Compared with T-BDP1 of D-A configuration, the multipolar T-BDP3 dendrimer have higher singlet oxygen efficiency (44%), better fluorescence quantum yield (7.45%), and could be used in the simulated photodynamic therapy in A-549 cells and two-photon fluorescence imaging in zebrafish. The theoretical calculation and fs-transient absorption spectra indicated that the reason of its higher singlet oxygen efficiency was that the multipolar T-BDP3 dendrimer could generate more nearly degenerate charge transfer (CT) states and triplet states, which could further increase the possibility of spin-orbit charge-transfer intersystem crossing (SOCT-ISC) process. In the simulated photodynamic therapy of A-549 cells, T-BDP3 shows good cytocompatibility, great phototoxicity with its IC50 value of 3.17 μM, and could kill cancer cells effectively with the dosage of 5 μM under 10 min irradiation in the AO/EB double-staining experiment. In the fluorescence imaging of zebrafish, the experiment results indicate that T-BDP3 could generate superoxide radical (O2˙-) in the body of zebrafish and could be applied to the two-photon fluorescence imaging under 800 nm excitation. The above experiment results shown that the multipolar dendrimer design was an effective approach to improve the key parameters of SOCT-ISC-type BODIPY photosensitizer and was ready for further two-photon photodynamic therapy in organisms.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
7
|
Zhang Y, Guo CX, Du H, Wang X, Liu L, Li CM. Solvent-engineered morphologies of Mn-MOF toward ultrasensitive sensing cell superoxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Gogoi H, Banerjee S, Datta A. Photoluminescent silica nanostructures and nanohybrids. Chemphyschem 2022; 23:e202200280. [PMID: 35686692 DOI: 10.1002/cphc.202200280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Indexed: 11/06/2022]
Abstract
The complicated photophysics of wide variety of defects existing in silica (SiO2) layer of nanometer thickness determines wide spread photoluminescence bands of Si/SiO2 based system as well as SiO2 nanoparticles (NPs) for their applications in photovoltaic and optoelectronic devices. This review attempts to summarize different photophysical processes in pure SiO2 NPs. Moreover, these NPs also act as scaffolds for various guest molecules to perform their specific functions. Guest fluorophore molecules when trapped inside pores of SiO2 NPs exhibit a different photodynamics than free state, which opens up several important applications of hybrid SiO2 NPs in artificial photosynthesis, sensing, biology and optical fiber.
Collapse
Affiliation(s)
- Hemen Gogoi
- Indian Institute of Technology Bombay, Chemistry, Department of Chemistry, IIT Bombay, Powai, 400076, Mumbai, INDIA
| | - Subhasree Banerjee
- Panchmura Mahavidyalaya, Chemistry, Department of Chemistry Panchmura Mahavidyalaya Bankura, West Bengal 722156, Ind, 722156, Bankura, INDIA
| | - Anindya Datta
- Indian Institute of Technology Bombay, Department of Chemistry, Powai, 400076, Mumbai, INDIA
| |
Collapse
|
9
|
Wang Z, Yao Y, Yang Y. Fulvic acid-like substance-Ca(II) complexes improved the utilization of calcium in rice: Chelating and absorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113502. [PMID: 35447470 DOI: 10.1016/j.ecoenv.2022.113502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Water-soluble chelated calcium has been widely used in agriculture as a fertilizer to improve the absorption and utilization of calcium by plants. This paper prepared a new organic mineral fertilizer, based on fulvic acid-like substance chelated calcium (PFA-Ca2+ complex), using optimal parameters (i.e., pH, time, temperature, and Ca2+ concentration) to achieve a high chelation efficiency. The absorption, utilization, and distribution of the PFA-Ca2+ complex in rice roots were analyzed using laser scanning confocal microscopy (LSCM). Our results demonstrated that the optimal PFA-Ca2+ complex chelating efficiency (87%) was achieved at an initial Ca2+ concentration of 0.1 mol L-1, an equilibration time of 120 min, a pH of 5.0, and a temperature of 40 °C. The chelating reaction of a fulvic acid-like substance with Ca2+ primarily occurred on phenol hydroxyl, alcohol hydroxyl, and carboxyl groups. The PFA-Ca2+ complex was primarily enriched in the roots' pericycle, cortical, and epidermis cells, in both chelating and non-chelating forms. To our knowledge, this is the first report investigating how the PFA-Ca2+complex affects transformation in plants, which has significant implications for research on plant nutrition and nutrient distribution.
Collapse
Affiliation(s)
- Zhonghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuanyuan Yao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuechao Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China; Department of Soil and Water Science, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, United States.
| |
Collapse
|
10
|
Fan W, Liu X, Wu J, Liu Q, Ding L, Liu X. Development of a Novel Silver‐based Sensing Platform for Detecting Superoxide Anion Released from HeLa Cells Directly. ELECTROANAL 2021. [DOI: 10.1002/elan.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weizhou Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiaohong Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Jinsheng Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Qian Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Lan Ding
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| |
Collapse
|
11
|
Nakahara Y, Nakajima Y, Okada S, Miyazaki J, Yajima S. Synthesis of Silica Nanoparticles with Physical Encapsulation of Near-Infrared Fluorescent Dyes and Their Tannic Acid Coating. ACS OMEGA 2021; 6:17651-17659. [PMID: 34278150 PMCID: PMC8280675 DOI: 10.1021/acsomega.1c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
This study reports a novel method for the synthesis of silica nanoparticles (NPs) encapsulating near-infrared (NIR) fluorescent dyes through physical adsorption. Although a NIR cationic fluorescent dye, oxazine 725 (OXA), has no chemical bonding moiety toward silica NPs such as the triethoxysilyl group, the dyes were successfully incorporated into silica NPs without denaturation under the mild reaction conditions. Next, tannic acid (TA) molecules were coated in the presence of Fe3+ on the particle surface for the functionalization of silica NPs encapsulating OXA (OXA@SiO2 NPs). The TA coating on the surface of OXA@SiO2 NPs was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. The TA coating significantly contributed to the resistance improvement against photobleaching and leakage of the dyes in the NPs. Furthermore, the obtained TA-coated silica NPs encapsulating OXAs (OXA@SiO2@TA NPs) were used for the fluorescence imaging of African green monkey kidney (COS-7) cells, and it was shown that the fluorescence originated from OXA@SiO2@TA NPs was clearly observed in the COS-7 cells.
Collapse
|
12
|
Li X, Wu R, Chen H, Li T, Jiang H, Xu X, Tang X, Wan M, Mao C, Shi D. Near-Infrared Light-Driven Multifunctional Tubular Micromotors for Treatment of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30930-30940. [PMID: 34156244 DOI: 10.1021/acsami.1c03600] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the difficulties in atherosclerosis treatment is that the ablation of inflammatory macrophages, repair of vascular endothelial injury, and anti-tissue proliferation should be considered. However, there are few studies that can solve the abovementioned problems simultaneously. Herein, we present a kind of near-infrared (NIR) light-driven multifunctional mesoporous/macroporous tubular micromotor which can rapidly target the damaged blood vessels and release different drugs. Their motion effect can promote themselves to penetrate into the plaque site, and the generated heat effect caused by NIR irradiation can realize the photothermal ablation of inflammatory macrophages. Furthermore, these micromotors can rapidly release the vascular endothelial growth factor for endothelialization and slowly release paclitaxel for antiproliferation to achieve synergistic treatment of atherosclerosis. In vivo results demonstrated that the micromotors can achieve a good therapeutic effect for atherosclerosis. This kind of micro/nanomotor technology with a complex porous structure for drug loading will bring a more potential treatment platform for the disease.
Collapse
Affiliation(s)
- Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Rui Wu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huiming Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xueting Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
13
|
Oxygen‐derived free radicals: Production, biological importance, bioimaging, and analytical detection with responsive luminescent nanoprobes. VIEW 2021. [DOI: 10.1002/viw.20200139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Oggianu M, Figus C, Ashoka-Sahadevan S, Monni N, Marongiu D, Saba M, Mura A, Bongiovanni G, Caltagirone C, Lippolis V, Cannas C, Cadoni E, Mercuri ML, Quochi F. Silicon-based fluorescent platforms for copper(ii) detection in water. RSC Adv 2021; 11:15557-15564. [PMID: 35481193 PMCID: PMC9029085 DOI: 10.1039/d1ra02695j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The potential of silicon-based fluorescent platforms for the detection of trace toxic metal ions was investigated in an aqueous environment. To this aim, silicon chips were first functionalized with amino groups, and fluorescein organic dyes, used as sensing molecules, were then covalently linked to the surface via formation of thiourea groups. The obtained hybrid heterostructures exhibited high sensitivity and selectivity towards copper(ii), a limit of detection compatible with the recommended upper limits for copper in drinking water, and good reversibility using a standard metal-chelating agent. The fluorophore-analyte interaction mechanism at the basis of the reported fluorescence quenching, as well as the potential of performance improvement, were also studied. The herein presented sensing architecture allows, in principle, tailoring of the selectivity towards other metal ions by proper fluorophore selection, and provides a favorable outlook for integration of fluorescent chemosensors with silicon photonics technology.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Cristiana Figus
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Suchithra Ashoka-Sahadevan
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Noemi Monni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Carla Cannas
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| |
Collapse
|
15
|
Ruan M, Cheng Q, Gong C, Cao Z, Xu L, Zhang Q. Development of a kind of RG108-Fluorescein conjugates for detection of DNA methyltransferase 1 (DNMT1) in living cells. Anal Biochem 2020; 607:113823. [PMID: 32758504 DOI: 10.1016/j.ab.2020.113823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
DNA methyltransferase 1 (DNMT1) is one of the most essential proteins in propagating DNA methylation patterns during replication. Developing methods to assess the expression level of DNMT1 will enable study of gene methylation abnormalities. Thus, a series of fluorescein-conjugated RG108 derivatives were designed and synthesized in the current study. The affinity of the derivatives with DNMT1 was evaluated using surface plasmon resonance. Permeability of the derivatives through the cytomembrane and nuclear envelope was evaluated via confocal imaging. Probe 8a was found to compete with RG108 binding to DNMT1 in the nucleus of HeLa cells, suggesting that probe 8a and RG108 share the same binding site. A HeLa cell model with 4.05-fold overexpression of DNMT1 was constructed and used to evaluate probe 8a. Probe 8a was found to be significantly increased in the nucleus of DNMT1 overexpressing cells. These results indicate that fluorescent probes derived from RG108 have the potential to be used for evaluating the expression level of DNMT1 in living cells.
Collapse
Affiliation(s)
- Minli Ruan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Qunxian Cheng
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No 170 Xindong Road, Shanghai, 201199, China
| | - Chaochao Gong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Zhonglian Cao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Ling Xu
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No 170 Xindong Road, Shanghai, 201199, China.
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
16
|
Carbon quantum Dot@Silver nanocomposite-based fluorescent imaging of intracellular superoxide anion. Mikrochim Acta 2020; 187:484. [PMID: 32757083 DOI: 10.1007/s00604-020-04359-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/31/2020] [Indexed: 01/06/2023]
Abstract
Silver nanoparticle (Ag NP)-coated carbon quantum dot (CQD) core-shell-structured nanocomposites (CQD@Ag NCs) were developed for fluorescent imaging of intracellular superoxide anion (O2•-). The morphology of CQD@Ag NCs was investigated by transmission electron microscopy, and the composition was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. CQDs display blue fluorescence with excitation/emission maxima at 360/440 nm, and the fluorescence was quenched by Ag NPs in CQD@Ag NCs. In the presence of O2•-, Ag NPs were oxide-etched and the fluorescence of CQDs was recovered. A linearity between the relative fluorescence intensity and O2•- solution concentration within the range 0.6 to 1.6 μM was found, with a detection limit of 0.3 μM. Due to their high sensitivity, selectivity, and low cytotoxicity, the as-synthesized CQD@Ag NCs have been successfully applied for imaging of O2•- in MCF-7 cells during the whole process of autophagy induced by serum starvation. In our perception, the developed method provides a cost-effective, sensitive, and selective tool in bioimaging and monitoring of intracellular O2•- changes, and is promising for potential biological applications. Graphical abstract Illustration of the synthesis of carbon quantum Dot@Silver nanocomposites (CQD@Ag NCs), and CQD@Ag NCs as a "turn-on" nanoprobe for fluorescent imaging of intracellular superoxide anion.
Collapse
|
17
|
Weng Y, Zhu Q, Huang ZZ, Tan H. Time-Resolved Fluorescence Detection of Superoxide Anions Based on an Enzyme-Integrated Lanthanide Coordination Polymer Composite. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30882-30889. [PMID: 32525648 DOI: 10.1021/acsami.0c09080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we proposed a new strategy of fabricating time-resolved fluorescent nanoprobes by using an enzyme-integrated lanthanide coordination polymer (CP) composite for the detection of superoxide anions (O2•-). This CP composite was constructed with terbium ions (Tb3+) as a metal node, adenosine triphosphate (ATP) as a bridge ligand, and carboxyphenylboronic acid (CPBA) as a sensitizer in which superoxide dismutase (SOD) was encapsulated by a self-adaptive inclusion process. The as-prepared SOD@ATP/Tb-CPBA displays both catalytic and fluorescence properties. Benefiting from the shielding effect of ATP/Tb CP, greatly enhanced catalytic activity and stability against harsh environments can be obtained in the loaded SOD. Meanwhile, the loaded SOD can remove the water molecules on the coordination sphere of Tb3+, leading to a significant increase in the fluorescence intensity and lifetime of SOD@ATP/Tb-CPBA. However, upon the addition of O2•-, the fluorescence of SOD@ATP/Tb-CPBA was quenched significantly. This is because SOD can convert O2•- into H2O2 to induce the deboronation of CPBA, resulting in an intramolecular charge transfer process. On this basis, by taking advantage of Tb3+ in long lifetime emission, a time-resolved fluorescence method was developed for the detection of O2•-, and satisfactory results have been achieved in both buffered aqueous solutions and serum samples. We believe that the presented study will open up a new avenue to develop enzyme-involved fluorescent nanoprobes.
Collapse
Affiliation(s)
- Yuhao Weng
- Key laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qiaoyu Zhu
- Key laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Zhen-Zhong Huang
- Key laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hongliang Tan
- Key laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
18
|
Wu S, Ma C, Gao Y, Su Y, Xia Q, Chen Z, Zhu JJ. Dynamic Detection of Endogenous Hydroxyl Radicals at Single-Cell Level with Individual Ag-Au Nanocages. Anal Chem 2020; 92:9940-9947. [PMID: 32567299 DOI: 10.1021/acs.analchem.0c01501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydroxyl radicals (•OH) are a type of short-lived radical which is the most aggressive reactive oxygen species due to its high reactivity to biomolecules. Dynamic measurement of •OH level in living cells is critical for understanding cell physiology and pathology. In this manuscript, we prepare individual Ag-Au@PEG/RGD nanocages for in situ determination of endogenous •OH at single-cell level, whose spectral shift rate correlate to the •OH concentration. The high-selective response to •OH relies on the specific oxidization of the conjugated PEG/RGD outside and the silver etching inside the nanocages that resulted in a significant LSPR signal and scattered color changes. The spectral red-shift rate of LSPR has a linear relationship with the logarithm of •OH concentration in range of 100 pM to 1 μM, suitable for the measurement of endogenous •OH. Thus, the individual nanocages were successfully used to monitor the dynamic intracellular •OH level of single tumor cells under oxidative stress. This strategy has great potential in promoting •OH mediated cell homeostasis and injury research.
Collapse
Affiliation(s)
- Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qing Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
19
|
KARAKAYA U, DERKUŞ B, EMREGUL E. Development of Gelatin-Alginate-TiO2-SOD Biosensor for the Detection of Superoxide Radicals. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.646433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Xiao H, Zhang W, Li P, Zhang W, Wang X, Tang B. Versatile Fluorescent Probes for Imaging the Superoxide Anion in Living Cells and In Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906793] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haibin Xiao
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
21
|
Wang L, Miao X, Qu Y, Duan C, Wang B, Yu Q, Gao J, Song D, Li Y, Yin Z. Rattle-type Au@NiCo LDH hollow core-shell nanostructures for nonenzymatic glucose sensing. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Xiao H, Zhang W, Li P, Zhang W, Wang X, Tang B. Versatile Fluorescent Probes for Imaging the Superoxide Anion in Living Cells and In Vivo. Angew Chem Int Ed Engl 2019; 59:4216-4230. [DOI: 10.1002/anie.201906793] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Haibin Xiao
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
23
|
Peng Q, Yan X, Shi X, Ou S, Gu H, Yin X, Shi G, Yu Y. In vivo monitoring of superoxide anion from Alzheimer's rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens Bioelectron 2019; 144:111665. [DOI: 10.1016/j.bios.2019.111665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
|
24
|
Singh P, Srivastava S, Singh SK. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater Sci Eng 2019; 5:4882-4898. [PMID: 33455238 DOI: 10.1021/acsbiomaterials.9b00464] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silica nanoparticles (Si-NPs) are widely explored in biomedical applications due to their high surface area, excellent biocompatibility, and tunable pore size. The silica surface can be readily functionalized for wide range of applications such as cellular imaging, biosensing, and targeted drug delivery. This comprehensive review discusses different synthesis methodologies of Si-NPs and their surface functionalization with various functional groups. Nanosilica functionalization methods are discussed in detail, emphasizing their suitability for targeted drug delivery, cancer therapy, bioimaging, and biosensing. The toxicity assessment of nanosilica is also critically reviewed to get a clear focus before employing them for nanomedicine.
Collapse
Affiliation(s)
- Priti Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Sunil Kumar Singh
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Mansa Road, Bathinda, Punjab 151001, India
| |
Collapse
|
25
|
Huang Y, Liang G, Lin T, Hou L, Ye F, Zhao S. Magnetic Cu/Fe 3O 4@FeOOH with intrinsic HRP-like activity at nearly neutral pH for one-step biosensing. Anal Bioanal Chem 2019; 411:3801-3810. [PMID: 31172237 DOI: 10.1007/s00216-019-01841-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022]
Abstract
The convenience of colorimetric sensors is useful for practical applications. In this work, we constructed a novel colorimetric sensor with magnetic separation ability that can be operated in nearly neutral conditions and achieve one-step detection of metabolites. Magnetic Cu doped Fe3O4@FeOOH magnetic nanocomposite (Cu/Fe3O4@FeOOH) with an oxygen vacancy was prepared by a one-step self-assembly hydrothermal method, and fully characterized by different methods. The oxygen vacancy generated by the incorporation of Cu2+ cations into the Fe3O4@FeOOH structure was confirmed to be a vital reactive site for enhancing the catalytic activity, which opens up a new way of designing highly efficient enzyme mimics. Benefiting from its inherent horseradish-peroxidase-like activity, a simple and selective enzyme-based colorimetric sensor was developed for one-step detection of H2O2 and cholesterol, and 3,3',5,5'-tetramethylbenzidine was catalyzed by H2O2 to generate a colored product of oxidized 3,3',5,5'-tetramethylbenzidine for signaling. H2O2 and cholesterol can be linearly detected in the same range from 0.01 to 0.4 mmol L-1 with detection limits of 0.0075 mmol L-1 and 0.0082 mmol L-1, respectively. The proposed colorimetric sensor has satisfactory reusability, accuracy, and practicability in human serum samples, indicating its potential application for the detection of different metabolites in the fields of life science and analytical science. Graphical abstract.
Collapse
Affiliation(s)
- Yuanlin Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Guangzhao Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Tianran Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China.
| | - Li Hou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
26
|
Du Y, Song Y, Hao J, Cai K, Liu N, Yang L, Wang L. Ratiometric fluorescence detection of O2•− based on dual-emission schiff base polymer/rhodamine-B nanocomposites. Talanta 2019; 198:316-322. [DOI: 10.1016/j.talanta.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/28/2022]
|
27
|
Yu Y, Zhou M, Zhang W, Huang L, Miao D, Zhu H, Su G. Rattle-Type Gold Nanorods/Porous-SiO2 Nanocomposites as Near-Infrared Light-Activated Drug Delivery Systems for Cancer Combined Chemo–Photothermal Therapy. Mol Pharm 2019; 16:1929-1938. [DOI: 10.1021/acs.molpharmaceut.8b01298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Min Zhou
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lei Huang
- Phase I Clinical Laboratory of Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Dandan Miao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongyan Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
28
|
Esquivel-Castro TA, Ibarra-Alonso M, Oliva J, Martínez-Luévanos A. Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:915-940. [DOI: 10.1016/j.msec.2018.11.067] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/06/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
|
29
|
An ultrasensitive electrochemical sensor based on cotton carbon fiber composites for the determination of superoxide anion release from cells. Mikrochim Acta 2019; 186:198. [PMID: 30796529 DOI: 10.1007/s00604-019-3304-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
A sensor is described for determination of superoxide anion (O2˙-). The electrode consists of nitrogen-doped cotton carbon fiber (NCFs) modified with silver nanoparticles (AgNPs) which have excellent catalytic capability. The resulting sensor, best operated at working potentials around -0.5 V (vs. SCE), can detect O2˙- over an extraordinarily wide range that covers 10 orders of magnitude, and the detection limit is 2.32 ± 0.07 fM. The electrode enables the release of O2˙- from living cells under normal or under oxidative stress conditions to be determined. The ability to scavenge the superoxide anions of antioxidants was also investigated. In the authors' perception, the method represents a viable tool for studying diseases related to oxidative stress. Graphical abstract Schematic presentation of the construction of an electrochemical sensor based on Nitrogen-doped cotton carbon fiber and silver nanoparticles. It can be used for the direct detection of superoxide anions released from Glioma cells (U87) under normal or under oxidative stress conditions.
Collapse
|
30
|
Das A, Anbu N, SK M, Dhakshinamoorthy A, Biswas S. A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Trans 2019; 48:17371-17380. [DOI: 10.1039/c9dt03638e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MOF based sensor is reported for specific, rapid, and sensitive sensing of O2·− and effective and recyclable catalysis of Knoevenagel condensation.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| | - Nagaraj Anbu
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Mostakim SK
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| | | | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| |
Collapse
|
31
|
Ma H, Yang M, Zhang S, Yin P, Wang T, Yang Y, Lei Z, Ma Y, Qin Y, Yang Z. Two aggregation-induced emission (AIE)-active reaction-type probes: for real-time detecting and imaging of superoxide anions. Analyst 2019; 144:536-542. [DOI: 10.1039/c8an01811a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two AIE-active reaction-type probes: one probe, two channels, at the same & different cell locations for superoxide anion.
Collapse
|
32
|
Huang Y, Lin T, Hou L, Ye F, Zhao S. Colorimetric detection of thioglycolic acid based on the enhanced Fe3+ ions Fenton reaction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Xu J, Wang X, Teng Z, Lu G, He N, Wang Z. Multifunctional Yolk-Shell Mesoporous Silica Obtained via Selectively Etching the Shell: A Therapeutic Nanoplatform for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24440-24449. [PMID: 29963847 DOI: 10.1021/acsami.8b08574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we fabricated a new yolk-shell-structured mesoporous silica nanoparticle (YMSN) with multifunctionalities of fluorescence imaging, photothermal therapy (PTT), and drug delivery by using a fluorescein isothiocyanate-doped silica nanoparticle partially covered by patchy gold as the core. Different from the conventional selective etching procedure, the multifunctional silica core is left intact, and the alkali etching mainly occurs in a hexadecyl trimethyl ammonium bromide/silica hybrid layer, which leads to the formation of the void space in YMSNs. In addition, the utilization of patchy gold as the PTT agent can avoid the shield against the outer irradiation on the core. Results show that the as-prepared YMSNs have a good biocompatibility in the concentration of 0-1000 μg·mL-1 and a high doxorubicin-loading capability (8.04 wt %). In vitro and in vivo antitumor experiments reveal that the resulting YMSNs can be utilized for chemo- and photothermic combination therapy as well as optical imaging.
Collapse
Affiliation(s)
- Jing Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xiaoxiao Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Nongyue He
- School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Zhifei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
34
|
Dou B, Li J, Jiang B, Yuan R, Xiang Y. Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor. Anal Chim Acta 2018; 1038:166-172. [PMID: 30278899 DOI: 10.1016/j.aca.2018.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023]
Abstract
The detection of single nucleotide polymorphisms (SNPs) is of great clinical significance to the diagnosis of various genetic diseases and cancers. In this work, the development of an ultrasensitive ratiometric electrochemical sensor for screening SNP with a significantly enhanced discrimination factor is reported. The ferrocene (Fc) and methylene blue (MB) dual-tagged triple helix complex (THC) probes are self-assembled on the gold electrode to construct the sensing interface. The addition of the mutant p53 gene causes the disassembly of the THC probes with the release of the Fc-tagged sequence and the folding of the MB-labeled sequence into a hairpin structure, causing the change in the current response ratio of MB to Fc for monitoring the mutant p53 gene. Such ratio is dramatically enhanced by the toehold-mediated displacement reaction-assisted target recycling amplification with the presence of an assistance hairpin sequence. With the significant signal amplification and the advantageous specificity of the THC probes, sub-femtomolar detection limit and a highly enhanced SNP discrimination factor for the mutant p53 gene can be obtained. Besides, the proof-of-demonstration application of the sensor for diluted real samples has been verified, offering such sensor new opportunities for monitoring various genetic related diseases.
Collapse
Affiliation(s)
- Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
35
|
Lin LS, Song J, Yang HH, Chen X. Yolk-Shell Nanostructures: Design, Synthesis, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704639. [PMID: 29280201 DOI: 10.1002/adma.201704639] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Yolk-shell nanostructures (YSNs) composed of a core within a hollow cavity surrounded by a porous outer shell have received tremendous research interest owing to their unique structural features, fascinating physicochemical properties, and widespread potential applications. Here, a comprehensive overview of the design, synthesis, and biomedical applications of YSNs is presented. The synthetic strategies toward YSNs are divided into four categories, including hard-templating, soft-templating, self-templating, and multimethod combination synthesis. For the hard- or soft-templating strategies, different types of rigid or vesicle templates are used for making YSNs. For the self-templating strategy, a number of unconventional synthetic methods without additional templates are introduced. For the multimethod combination strategy, various methods are applied together to produce YSNs that cannot be obtained directly by only a single method. The biomedical applications of YSNs including biosensing, bioimaging, drug/gene delivery, and cancer therapy are discussed in detail. Moreover, the potential superiority of YSNs for these applications is also highlighted. Finally, some perspectives on the future research and development of YSNs are provided.
Collapse
Affiliation(s)
- Li-Sen Lin
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jibin Song
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Huang-Hao Yang
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
36
|
Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, Qi S, Wu J, Liu D, Xiao L, Ren C, Chen X. Ratiometric Detection of Intracellular Lysine and pH with One-Pot Synthesized Dual Emissive Carbon Dots. Anal Chem 2017; 89:13626-13633. [DOI: 10.1021/acs.analchem.7b04211] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Song
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Wenxiu Duan
- School
of Life Sciences, University of Science and Technology of China, Hefei, 230027, People’s Republic of China
| | - Yinghua Liu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Zhongju Ye
- College
of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Yonglei Chen
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hongli Chen
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shengda Qi
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jiang Wu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Dan Liu
- School
of Life Sciences, University of Science and Technology of China, Hefei, 230027, People’s Republic of China
| | - Lehui Xiao
- College
of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Cuiling Ren
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xingguo Chen
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
37
|
Novel biomimetic enzyme for sensitive detection of superoxide anions. Talanta 2017; 174:82-91. [DOI: 10.1016/j.talanta.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 01/16/2023]
|
38
|
Wei H, Shang T, Wu T, Liu G, Ding L, Liu X. Construction of an ultrasensitive non-enzymatic sensor to investigate the dynamic process of superoxide anion release from living cells. Biosens Bioelectron 2017; 100:8-15. [PMID: 28843793 DOI: 10.1016/j.bios.2017.08.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022]
Abstract
In this work, a novel non-enzymatic superoxide anion (O2•-) sensor was constructed based on Ag nanoparticles (NPs) / poly (amidoamine) (PAMAM) dendrimers and used to investigate the dynamic process of O2•- release from living cells. The AgNPs/PAMAM nanohybrids were characterized by transmission electron microscopy (TEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The fabricated electrode exhibited excellent catalytic activity toward the reaction of O2•- with a super low detection limit (LOD) of 2.530 × 10-13M (S/N = 3) and wide linear range of 8 orders of magnitude. It could fulfill the requirement of real-time measurement O2•- released from living cells. Furthermore, zymosan was chosen as the stimulant to induce O2•- generation from cancer cells (rat adrenal medulla pheochromocytoma cell (PC12)). The electrochemical experiment results indicated that the levels of intracellular O2•- depended on the amount of Zymosan. A large amount of O2•- generated in the living cells by added heavy stimulant could damage cells seriously. More importantly, a vitro simulation experiment confirmed the role of superoxide dismutase (SOD) for the first time because it could maintain the O2•- concentration at a normal physiological range. These findings are of great significance for evaluating the metabolic processes of O2•- in the biological system, and this work has the tremendous potential application in clinical diagnostics to assess oxidative stress.
Collapse
Affiliation(s)
- Hongwei Wei
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tianyi Shang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tiaodi Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guoan Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lan Ding
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
39
|
Yang L, Chen Y, Yu Z, Pan W, Wang H, Li N, Tang B. Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27512-27521. [PMID: 28770609 DOI: 10.1021/acsami.7b08223] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Autophagy and apoptosis are closely associated with various pathological and physiological processes in cell cycles. Investigating the dynamic changes of intracellular active molecules in autophagy and apoptosis is of great significance for clarifying their inter-relationship and regulating mechanism in many diseases. In this study, we develop a dual-ratiometric fluorescent nanoprobe for quantitatively differentiating the dynamic process of superoxide anion (O2•-) and pH changes in autophagy and apoptosis in HeLa cells. A rhodamine B-loaded mesoporous silica core was used as the reference, and fluorescence probes for pH and O2•- measurement were doped in the outer layer shell of SiO2. Then, chitosan and triphenylphosphonium were modified on the surface of SiO2. The experimental results showed that the nanoprobe is able to simultaneously and precisely visualize the changes of mitochondrial O2•- and pH in HeLa cells. The kinetics data revealed that the changes of pH and O2•- during autophagy and apoptosis in HeLa cells were significantly different. The pH value was decreased at the early stage of apoptosis and autophagy, whereas the O2•- level was enhanced at the early stage of apoptosis and almost unchanged at the initial stage of autophagy. At the late stage of apoptosis and autophagy, the concentration of O2•- was increased, whereas the pH was decreased at the late stage of autophagy and almost unchanged at the late stage of apoptosis. We hope that the present results provide useful information for studying the effects of O2•- and pH in autophagy and apoptosis in various pathological conditions and diseases.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Zhengze Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Hongyu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
40
|
Andina D, Leroux JC, Luciani P. Ratiometric Fluorescent Probes for the Detection of Reactive Oxygen Species. Chemistry 2017; 23:13549-13573. [DOI: 10.1002/chem.201702458] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Diana Andina
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences; Swiss Federal Institute of Technology (ETHZ); Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Paola Luciani
- Biologisch-Pharmazeutisch Fakultät, Institut für Pharmazie; Friedrich-Schiller-Universität Jena; 07743 Jena Germany
| |
Collapse
|
41
|
Chaudhari R, Joshi A, Srivastava R. pH and Urea Estimation in Urine Samples using Single Fluorophore and Ratiometric Fluorescent Biosensors. Sci Rep 2017; 7:5840. [PMID: 28724984 PMCID: PMC5517509 DOI: 10.1038/s41598-017-06060-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/06/2017] [Indexed: 11/29/2022] Open
Abstract
Kidney diseases remain often undiagnosed due to inefficient screening methods available at patient's disposal. Early diagnosis and effective management of kidney problems can best be addressed by the development of biosensors for commonly occurring clinical biomarkers. Here we report the development of single fluorophore and dual fluorophore ratiometric biosensors based on alginate microspheres for pH and urea analysis in urine samples. A facile method of air driven atomization was used for developing these polymeric fluorophore and enzyme based biosensors. Ratiometric biosensors were developed using layer-by-layer coating of polyelectrolyte conjugated to reference fluorophores. Biosensing studies using these biosensors showed that samples in pathophysiological range can be measured having pH range of 4-8 and urea levels between 0-50 mM. Testing of urine samples using these biosensors showed that both pH and urea detection can be accurately performed without interference. Thus, we believe that FITC-Dextran and FITC-Dextran/RuBpy based pH and urea biosensors show a great potential to be translated as a point of care device for pH and urea biosensing in early detection and continuous monitoring of kidney diseases.
Collapse
Affiliation(s)
- Rashmi Chaudhari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Abhijeet Joshi
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
42
|
Li N, Wang M, Gao X, Yu Z, Pan W, Wang H, Tang B. A DNA Tetrahedron Nanoprobe with Controlled Distance of Dyes for Multiple Detection in Living Cells and in Vivo. Anal Chem 2017; 89:6670-6677. [DOI: 10.1021/acs.analchem.7b00889] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Na Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Meimei Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhengze Yu
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Hongyu Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
43
|
Doran MM, Finnerty NJ, Lowry JP. In-Vitro
Development and Characterisation of a Superoxide Dismutase-Based Biosensor. ChemistrySelect 2017. [DOI: 10.1002/slct.201700793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michelle M. Doran
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| | - Niall J. Finnerty
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| | - John P. Lowry
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| |
Collapse
|
44
|
Development of a Modular Ratiometric Fluorescent Probe for the Detection of Extracellular Superoxide. Chemistry 2017; 23:4765-4769. [DOI: 10.1002/chem.201700563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 02/05/2023]
|
45
|
Wei F, Wang Y, Luo Z, Li Y, Duan Y. New findings of silica nanoparticles induced ER autophagy in human colon cancer cell. Sci Rep 2017; 7:42591. [PMID: 28195184 PMCID: PMC5307363 DOI: 10.1038/srep42591] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Nanoparticle-induced autophagy has been extensively studied, however, real time information about the endoplasmic reticulum involved autophagic process (ER autophagy) induced by nanomaterials remains unknown. In this work, silica nanoparticles (SNPs) were synthesized with characteristics of low toxicity, good biocompatibility and excellent water dispersibility to treat cells. Results show that either low concentration (10 μg/mL) or high concentration (200 μg/mL) of SNPs could increase the quantity of processing from microtubule-associated protein 1-light chain 3-I (LC3-I) to the other variant of LC3 (LC3-II). Interestingly, the level of autophagy induced by the SNPs is associated with the treated time but not the concentrations of SNPs. Importantly, for the first time, SNP accumulation in ER was discovered through co-localization analysis, which incurs ER autophagy. These new findings about SNPs-induced ER autophagy could open an effective way for securely designing silica-based nanoparticles and enable us to know more about ER autophagy.
Collapse
Affiliation(s)
- Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yimin Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yu Li
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
46
|
Controlled synthesis of Mn3(PO4)2 hollow spheres as biomimetic enzymes for selective detection of superoxide anions released by living cells. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2112-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Wang MQ, Ye C, Bao SJ, Xu MW, Zhang Y, Wang L, Ma XQ, Guo J, Li CM. Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells. Biosens Bioelectron 2017; 87:998-1004. [DOI: 10.1016/j.bios.2016.09.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/25/2023]
|
48
|
A Ratiomeric Fluorescent Sensor for Zn 2+ Based on N,N'-Di(quinolin-8-yl)oxalamide. J Fluoresc 2016; 27:723-728. [PMID: 28004345 DOI: 10.1007/s10895-016-2003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/11/2016] [Indexed: 01/27/2023]
Abstract
A new ratiometric fluorescent sensor (DQO) based on N,N'-Di(quinolin-8-yl) oxalamide has been designed and synthesized for selective detection of Zn2+. The fluorescence ratio (I 536 nm/I 450 nm) of DQO was enhanced 10-fold when Zn2+ was present in a buffer aqueous solution at pH 8.66. The sensor showed linear response toward Zn2+ in the concentration range 0-15 μM, and the detection limit was calculated to be 2.4 μM. A Job's plot implied the formation of a DQO/Zn2+ complex with 1:1 stoichiometry, and the apparent association constant of DQO/Zn2+ complex was computed to be 1.5 × 104 M-1.
Collapse
|
49
|
Wang HS. Development of fluorescent and luminescent probes for reactive oxygen species. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Huang H, Dong F, Tian Y. Mitochondria-Targeted Ratiometric Fluorescent Nanosensor for Simultaneous Biosensing and Imaging of O2•– and pH in Live Cells. Anal Chem 2016; 88:12294-12302. [DOI: 10.1021/acs.analchem.6b03470] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hong Huang
- Shanghai State
Key Laboratory
of Green Chemistry and Chemical
Processes, Department of Chemistry, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Fangyuan Dong
- Shanghai State
Key Laboratory
of Green Chemistry and Chemical
Processes, Department of Chemistry, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai State
Key Laboratory
of Green Chemistry and Chemical
Processes, Department of Chemistry, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|