1
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
2
|
Li C, Gao D, Gao Y, Zhang R, Qu X, Li S, Xing C. NIR-II Regulation of Mitochondrial Potassium Channel with Dual-Targeted Conjugated Oligomer Nanoparticles for Efficient Cancer Theranostics In Vivo. Adv Healthc Mater 2023; 12:e2301954. [PMID: 37722719 DOI: 10.1002/adhm.202301954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Cell fate can be efficiently modulated by switching ion channels. However, the precise regulation of ion channels in cells, especially in specific organelles, remains challenging. Herein, biomimetic second near-infrared (NIR-II) responsive conjugated oligomer nanoparticles with dual-targeted properties are designed and prepared to modulate the ion channels of mitochondria to selectively kill malignant cells in vivo. Upon 1060 nm laser irradiation, the mitochondria-located nanoparticles photothermally release a specific ion inhibitor of the potassium channel via a temperature-sensitive liposome, thus altering the redox balance and pathways of mitochondria. NIR-II responsive nanoparticles can effectively regulate the potassium channels of mitochondria and fully suppress tumor growth. This work provides a new modality based on the NIR-II nanoplatform to regulate ion channels in specific organelles and proposes an effective therapeutic mechanism for malignant tumors.
Collapse
Affiliation(s)
- Chaoqun Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Dong Gao
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, P. R. China
| | - Ran Zhang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiongwei Qu
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
3
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
4
|
Dou R, Cai X, Ruan L, Zhang J, Rouzi A, Chen J, Chai Z, Hu Y. Precision Nanomedicines: Targeting Hot Mitochondria in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4103-4117. [PMID: 36066886 DOI: 10.1021/acsabm.2c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrion is a multifunctional organelle in a cell, and it is one of the important targets of antitumor therapy. Conventional mitochondrial targeting strategies can hardly distinguish the mitochondria in cancer cells from those in normal cells, which might raise a concern about the biosafety. Recent studies suggest that a relatively high temperature of mitochondria exists in cancer cells. We named it tumor intrinsic mitochondrial overheating (TIMO). By taking advantage of the difference in mitochondrial temperatures between cancer cells and normal cells, therapeutic agents can be specifically delivered to the mitochondria in cancer cells. Here we will briefly overview the mitochondria-targeted delivery strategies. In addition, the recent discovery of hot mitochondria in cancer cells and the development of mitochondrial temperature-responsive delivery systems for antitumor therapy will be reviewed.
Collapse
Affiliation(s)
- Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Aisha Rouzi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| |
Collapse
|
5
|
Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. J Biomater Appl 2022; 37:614-633. [PMID: 35790487 DOI: 10.1177/08853282221111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial dysfunction, characterized by the electron transport chain (ETC) leakage and reduced adenosine tri-phosphate synthesis, occurs primarily due to free radicals -induced mutations in either the mitochondrial deoxyribonucleic acid (mtDNA) or nuclear (n) DNA caused by pathogenic infections, toxicant exposures, adverse drug-effects, or other environmental exposures, leading to secondary dysfunction affecting ischemic, diabetic, cancerous, and degenerative diseases. In these concerns, mitochondria-targeted remedies may include a significant role in the protection and treatment of mitochondrial function to enhance its activity. Coenzyme Q10 pyridinol and pyrimidinol antioxidant analogues and other potent drug-compounds for their multifunctional radical quencher and other anti-toxic activities may take a significant therapeutic effectivity for ameliorating mitochondrial dysfunction. Moreover, the encapsulation of these bioactive ligands-attached potent compounds in vesicular system may enable them a superb biological effective for the treatment of mitochondria-targeted dysfunction-related diseases with least side effects. This review depicts mainly on mitochondrial enzymatic dysfunction and their amelioration by potent drugs with the usages of nanoparticulated delivery system against mitochondria-affected diseases.
Collapse
|
6
|
Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Yadav S, Ramesh K, Kumar P, Jo SH, Yoo SII, Gal YS, Park SH, Lim KT. Near-Infrared Light-Responsive Shell-Crosslinked Micelles of Poly(d,l-lactide)- b-poly((furfuryl methacrylate)- co-( N-acryloylmorpholine)) Prepared by Diels-Alder Reaction for the Triggered Release of Doxorubicin. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7913. [PMID: 34947507 PMCID: PMC8705764 DOI: 10.3390/ma14247913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
In the present study, we developed near-infrared (NIR)-responsive shell-crosslinked (SCL) micelles using the Diels-Alder (DA) click reaction between an amphiphilic copolymer poly(d,l-lactide)20-b-poly((furfuryl methacrylate)10-co-(N-acryloylmorpholine)78) (PLA20-b-P(FMA10-co-NAM78)) and a diselenide-containing crosslinker, bis(maleimidoethyl) 3,3'-diselanediyldipropionoate (BMEDSeDP). The PLA20-b-P(FMA10-co-NAM78) copolymer was synthesized by RAFT polymerization of FMA and NAM using a PLA20-macro-chain transfer agent (PLA20-CTA). The DA reaction between BMEDSeDP and the furfuryl moieties in the copolymeric micelles in water resulted in the formation of SCL micelles. The SCL micelles were analyzed by 1H-NMR, FE-SEM, and DLS. An anticancer drug, doxorubicin (DOX), and an NIR sensitizer, indocyanine green (ICG), were effectively incorporated into the SCL micelles during the crosslinking reaction. The DOX/ICG-loaded SCL micelles showed pH- and NIR-responsive drug release, where burst release was observed under NIR laser irradiation. The in vitro cytotoxicity analysis demonstrated that the SCL was not cytotoxic against normal HFF-1 cells, while DOX/ICG-loaded SCL micelles exhibited significant antitumor activity toward HeLa cells. Thus, the SCL micelles of PLA20-b-P(FMA10-co-NAM78) can be used as a potential delivery vehicle for the controlled drug release in cancer therapy.
Collapse
Affiliation(s)
- Sonyabapu Yadav
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| | - Kalyan Ramesh
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Parveen Kumar
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea; (S.-H.J.); (S.-H.P.)
| | - Seong II Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Korea;
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 38428, Korea;
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea; (S.-H.J.); (S.-H.P.)
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| |
Collapse
|
8
|
Lv S, Jing R, Liu X, Shi H, Shi Y, Wang X, Zhao X, Cao K, Lv Z. One-Step Microfluidic Fabrication of Multi-Responsive Liposomes for Targeted Delivery of Doxorubicin Synergism with Photothermal Effect. Int J Nanomedicine 2021; 16:7759-7772. [PMID: 34848958 PMCID: PMC8627283 DOI: 10.2147/ijn.s329621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Cancer of the bladder is one of the most common and life-threatening. Compared with traditional delivery methods, intravesical administration reduces the amount of drugs required, increases the amount of drugs reaching the lesion site, and minimizes systemic exposure to therapeutic agents. To overcome the limitations of urinary voiding, low urothelium permeability, and intermittent catheterization for large dilution and irrigation of drugs in the bladder, magnetic and photothermal-responsive folate receptor-targeted thermal liposomes (FA-TMLs) were designed for the targeted delivery of doxorubicin (DOX) to bladder cancer cells. Methods Through a microfluidic mixer chip, the magnetic nanoparticles (MNPs), gold nanorods (GNRs) and DOX were encapsulated in folate-modified thermosensitive liposomes to form FA-TMLs@MNPs-GNRs-DOX. DLS, TEM, DSC, and magnetic hysteresis loop were used to characterize the construction of FA-TMLs@MNPs-GNRs-DOX. Results FA-TMLs@MNPs-GNRs-DOX had a size of about 230 nm and exhibited superparamagnetic properties with the saturation magnetization of 20 emu/g. The DOX loading capacity was as high as 0.57 mg/mL. Additionally, drug release of the FA-TMLs@MNPs-GNRs-DOX could be controlled by temperature change through the photothermal effect. A 980 nm laser beam was selectively irradiated on the FA-TMLs@MNPs-GNRs-DOX to trigger the structural changes of the FA-TMLs, and an average of 95% of the drug was released after 3 hours. The results of cell uptake experiments reveal indicated that FA-TMLs@MNPs-GNRs-DOX were able to specifically bind folate-receptor-positive cells and exhibited toxicity to bladder tumor cells. Conclusion The present results suggest FA-TMLs@MNPs-GNRs-DOX have a promising multifunctional response and can act as an ideal multifunctional drug delivery system (DDS) for the treatment of bladder tumors.
Collapse
Affiliation(s)
- Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Ran Jing
- Division of Nephrology, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Xiaowu Liu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213164, People's Republic of China.,Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213164, People's Republic of China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213164, People's Republic of China.,Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213164, People's Republic of China
| | - Yunfeng Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213164, People's Republic of China.,Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213164, People's Republic of China
| | - Xugang Wang
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213164, People's Republic of China.,Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213164, People's Republic of China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kai Cao
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213164, People's Republic of China.,Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213164, People's Republic of China
| | - Zhong Lv
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213164, People's Republic of China.,Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
9
|
Capocefalo A, Deckert-Gaudig T, Brasili F, Postorino P, Deckert V. Unveiling the interaction of protein fibrils with gold nanoparticles by plasmon enhanced nano-spectroscopy. NANOSCALE 2021; 13:14469-14479. [PMID: 34473176 DOI: 10.1039/d1nr03190b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of various degenerative diseases is suggested to be triggered by the uncontrolled organisation and aggregation of proteins into amyloid fibrils. For this reason, there are ongoing efforts to develop novel agents and approaches, including metal nanoparticle-based colloids, that dissolve amyloid structures and prevent pathogenic protein aggregation. In this contribution, the role of gold nanoparticles (AuNPs) in degrading amyloid fibrils of the model protein lysozyme is investigated. The amino acid composition of fibril surfaces before and after the incubation with AuNPs is determined at the single fibril level by exploiting the high spatial resolution and sensitivity provided by tip-enhanced and surface-enhanced Raman spectroscopies. This combined spectroscopic approach allows to reveal the molecular mechanisms driving the interaction between fibrils and AuNPs. Our results provide an important input for the understanding of amyloid fibrils and could have a potential translational impact on the development of strategies for the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Angela Capocefalo
- Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 5, Roma, Italy
- CNR-ISC, Istituto dei Sistemi Complessi, c/o Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena Helmholtzweg 4, 07743 Jena, Germany
| | - Francesco Brasili
- Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 5, Roma, Italy
| | - Paolo Postorino
- Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 5, Roma, Italy
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena Helmholtzweg 4, 07743 Jena, Germany
- Institute of Quantum Science and Engineering, Texas A&M University, College Station, TX 77843-4242, USA
| |
Collapse
|
10
|
Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020; 167:170-188. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The widespread development of nanocarriers to deliver chemotherapeutics to specific tumor sites has been motivated by the lack of selective targeting during chemotherapy inducing serious side effects and low therapeutic efficacy. The utmost challenge in targeted cancer therapies is the ineffective drug delivery system, in which the drug-loaded nanocarriers are hindered by multiple complex biological barriers that compromise the therapeutic efficacy. Despite considerable progress engineering novel nanoplatforms for the delivery of chemotherapeutics, there has been limited success in a clinical setting. In this review, we identify and analyze design strategies for improved therapeutic efficacy and unique properties of nanoplatforms, including liposomes, polymeric micelles, nanogels, and dendrimers. We provide a comprehensive and integral description of key biological barriers that nanoplatforms are exposed to during their in vivo journey and discuss associated strategies to overcome these barriers based on the latest research and information available in the field. We expect this review to provide constructive information for the rational design of more effective nanoplatforms to advance precision therapies and accelerate their clinical translation.
Collapse
|
11
|
Gouarderes S, Mingotaud AF, Vicendo P, Gibot L. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site. Expert Opin Drug Deliv 2020; 17:1703-1726. [PMID: 32838565 DOI: 10.1080/17425247.2020.1814735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Modern comprehensive studies of tumor microenvironment changes allowed scientists to develop new and more efficient strategies that will improve anticancer drug delivery on site. The tumor microenvironment, especially the dense extracellular matrix, has a recognized capability to hamper the penetration of conventional drugs. Development and co-applications of strategies aiming at remodeling the tumor microenvironment are highly demanded to improve drug delivery at the tumor site in a therapeutic prospect. AREAS COVERED Increasing indications suggest that classical physical approaches such as exposure to ionizing radiations, hyperthermia or light irradiation, and emerging ones as sonoporation, electric field or cold plasma technology can be applied as standalone or associated strategies to remodel the tumor microenvironment. The impacts on vasculature and extracellular matrix remodeling of these physical approaches will be discussed with the goal to improve nanotherapeutics delivery at the tumor site. EXPERT OPINION Physical approaches to modulate vascular properties and remodel the extracellular matrix are of particular interest to locally control and improve drug delivery and thus increase its therapeutic index. They are particularly powerful as adjuvant to nanomedicine delivery; the development of these technologies could have extremely widespread implications for cancer treatment.[Figure: see text].
Collapse
Affiliation(s)
- Sara Gouarderes
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| |
Collapse
|
12
|
|
13
|
Yu K, Liu M, Dai H, Huang X. Targeted drug delivery systems for bladder cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Wang M, Ruan L, Zheng T, Wang D, Zhou M, Lu H, Gao J, Chen J, Hu Y. A surface convertible nanoplatform with enhanced mitochondrial targeting for tumor photothermal therapy. Colloids Surf B Biointerfaces 2020; 189:110854. [PMID: 32086023 DOI: 10.1016/j.colsurfb.2020.110854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 01/09/2023]
Abstract
Photothermal therapy emerges as a promising approach in antitumor treatment. A major challenge for conventional photothermal therapy is its unselective hyperthermia distribution within tumor tissues, which leads to detrimental effects on surrounding healthy tissues and compromised therapeutic effectiveness. In this study, a targeted photothermal delivery nanoplatform (P-D-CS-CNTs) was facilely fabricated by decoration of an acidity-labile polyethylene glycol (PEG) derivative onto chitosan nanoparticles encapsulating single-walled carbon nanotubes. P-D-CS-CNTs displayed a good stability in serum at normal physiological pH and convertibility of surface charges upon exposure to tumoral acidic pH, which was attributed to the acidity-triggered dePEGylation. The confocal laser scanning microscopic observations suggested that such surface-convertibility of nanoparticles facilitated tumor cell uptake, endo/lyososomal escape, and enhanced mitochondrial targeting. Furthermore, upon irradiation with an 808 nm laser, P-D-CS-CNTs could sabotage mitochondria with mild hyperthermia, which further induced the ROS burst from damaged mitochondria. The overdosed ROS ultimately resulted in mitochondrial damage and cell death. These findings indicate that the surface-convertible nanoplatform is promising for improved photothermal anticancer therapy.
Collapse
Affiliation(s)
- Miao Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Zheng
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Dongqing Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China.
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
15
|
Bi Y, Wang M, Peng L, Ruan L, Zhou M, Hu Y, Chen J, Gao J. Photo/thermo-responsive and size-switchable nanoparticles for chemo-photothermal therapy against orthotopic breast cancer. NANOSCALE ADVANCES 2020; 2:210-213. [PMID: 36134004 PMCID: PMC9417067 DOI: 10.1039/c9na00652d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/16/2019] [Indexed: 06/16/2023]
Abstract
Tumor penetration of nanocarriers is still an unresolved challenge for effective drug delivery. Herein, we described a size-switchable nanoplatform in response to an external near-infrared (NIR) laser for transcellular drug delivery. The nanoplatform was constructed with a poly(N-isopropylacrylamide) (PNIPAM)-based nanogel encapsulating chitosan-coated single-walled carbon nanotubes, followed by loading a chemotherapeutic drug, doxorubicin (DOX). In mice bearing orthotopic breast tumors, the photothermal effect from single-walled carbon nanotubes upon NIR irradiation potently inhibited tumor growth. The antitumor effect of the nanomedicine with NIR irradiation might be attributed to its capability of transcellular transport and tumor penetration in mice. In addition, the nanomedicine with NIR irradiation could elicit an antitumor response by increasing cytotoxic T cells and decreasing myeloid-derived suppressor cells. These results validated the application of photo/thermo-responsive nanomedicine in the orthotopic model of breast cancer.
Collapse
Affiliation(s)
- Ying Bi
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University Wenzhou Zhejiang 325035 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
| | - Miao Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University Wenzhou Zhejiang 325035 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
| | - Lirong Peng
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| |
Collapse
|
16
|
Augé A, Camerel F, Benoist A, Zhao Y. Near-infrared light-responsive UCST-nanogels using an efficient nickel-bis(dithiolene) photothermal crosslinker. Polym Chem 2020. [DOI: 10.1039/d0py00567c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new kind of near-infrared (NIR) light-responsive polymer nanogel is demonstrated.
Collapse
Affiliation(s)
- Amélie Augé
- Laboratoire de Polymères et de Cristaux Liquides
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Franck Camerel
- Institut des Sciences Chimique de Rennes – UMR 6226
- Université de Rennes
- France
| | - Apolline Benoist
- Laboratoire de Biogéochimie Terrestre
- Département de Chimie
- Université de Sherbrooke
- Québec
- Canada
| | - Yue Zhao
- Laboratoire de Polymères et de Cristaux Liquides
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada
| |
Collapse
|
17
|
Ruan L, Wang M, Zhou M, Lu H, Zhang J, Gao J, Chen J, Hu Y. Doxorubicin–Metal Coordinated Micellar Nanoparticles for Intracellular Codelivery and Chemo/Chemodynamic Therapy in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:4703-4707. [DOI: 10.1021/acsabm.9b00879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Bhatta A, Krishnamoorthy G, Marimuthu N, Dihingia A, Manna P, Biswal HT, Das M, Krishnamoorthy G. Chlorin e6 decorated doxorubicin encapsulated chitosan nanoparticles for photo-controlled cancer drug delivery. Int J Biol Macromol 2019; 136:951-961. [DOI: 10.1016/j.ijbiomac.2019.06.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
|
19
|
Shen J, Wang Q, Lv Y, Dong J, Xuan G, Yang J, Wu D, Zhou J, Yu G, Tang G, Li X, Huang F, Chen X. Nanomedicine Fabricated from A Boron-dipyrromethene (BODIPY)-Embedded Amphiphilic Copolymer for Photothermal-Enhanced Chemotherapy. ACS Biomater Sci Eng 2019; 5:4463-4473. [DOI: 10.1021/acsbiomaterials.9b01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Shen
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Qiwen Wang
- Heart and Vascular Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, P. R. China
| | - Yuanyuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jingyin Dong
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Guida Xuan
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Wu
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guping Tang
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao Li
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
- The Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Wang D, Zhou M, Huang H, Ruan L, Lu H, Zhang J, Chen J, Gao J, Chai Z, Hu Y. Gold Nanoparticle-Based Probe for Analyzing Mitochondrial Temperature in Living Cells. ACS APPLIED BIO MATERIALS 2019; 2:3178-3182. [DOI: 10.1021/acsabm.9b00463] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dongqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Zhou M, Huang H, Wang D, Lu H, Chen J, Chai Z, Yao SQ, Hu Y. Light-Triggered PEGylation/dePEGylation of the Nanocarriers for Enhanced Tumor Penetration. NANO LETTERS 2019; 19:3671-3675. [PMID: 31062980 DOI: 10.1021/acs.nanolett.9b00737] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanocarriers-derived anticancer therapeutics typically suffers from poor tumor penetration and suboptimal antitumor efficacy. Although PEGylation improves the stability of nanoparticles and prolongs drug circulation, it further increases the size of nanoparticles and adversely affects the tumor penetration. Here, we developed a light-triggered PEGylation/dePEGylation strategy, whereby near-infrared (NIR)-/pH- dual responsive dePEGylation activates iRGD for tumor targeting. The embedded up-conversion nanoparticles (UCNPs) could efficiently convert NIR to UV-vis which cleaved the linker to remove PEG. NIR-induced dePEGylation remarkably improved vascular extravasation of drugs and deep tumor penetration. Therefore, the stimuli-responsive nanocarriers facilitated the tumor-targeted delivery of drugs through blood circulation and enhanced the antitumor effects.
Collapse
Affiliation(s)
- Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS) , Chinese Academy of Sciences (CAS) , Beijing 100049 , P.R. China
| | - Hui Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS) , Chinese Academy of Sciences (CAS) , Beijing 100049 , P.R. China
| | - Dongqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS) , Chinese Academy of Sciences (CAS) , Beijing 100049 , P.R. China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS) , Chinese Academy of Sciences (CAS) , Beijing 100049 , P.R. China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS) , Chinese Academy of Sciences (CAS) , Beijing 100049 , P.R. China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS) , Chinese Academy of Sciences (CAS) , Beijing 100049 , P.R. China
| | - Shao Q Yao
- Department of Chemistry , National University of Singapore , Singapore 117543
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS) , Chinese Academy of Sciences (CAS) , Beijing 100049 , P.R. China
| |
Collapse
|
22
|
Wang D, Huang H, Zhou M, Lu H, Chen J, Chang YT, Gao J, Chai Z, Hu Y. A thermoresponsive nanocarrier for mitochondria-targeted drug delivery. Chem Commun (Camb) 2019; 55:4051-4054. [PMID: 30870553 DOI: 10.1039/c9cc00603f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria emerge as an important target for cancer therapy. Herein, by taking advantage of the recently reported high temperature of mitochondria, a well-tuned thermoresponsive nanocarrier was developed for specifically delivering the anticancer drug, paclitaxel (PTX), to mitochondria in cancer cells. The temperature-dependent delivery of drugs to mitochondria represents a novel anticancer strategy.
Collapse
Affiliation(s)
- Dongqing Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ruan L, Zhou M, Chen J, Huang H, Zhang J, Sun H, Chai Z, Hu Y. Thermoresponsive drug delivery to mitochondria in vivo. Chem Commun (Camb) 2019; 55:14645-14648. [DOI: 10.1039/c9cc07538k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thermoresponsive drug delivery to mitochondria in a mouse model of cancer.
Collapse
Affiliation(s)
- Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Hui Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films)
- City University of Hong Kong
- Kowloon
- China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multidisciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| |
Collapse
|
24
|
Zhou M, Zhang X, Xie J, Qi R, Lu H, Leporatti S, Chen J, Hu Y. pH-Sensitive Poly(β-amino ester)s Nanocarriers Facilitate the Inhibition of Drug Resistance in Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E952. [PMID: 30463238 PMCID: PMC6267427 DOI: 10.3390/nano8110952] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Multidrug resistance (MDR) remains an unmet challenge in chemotherapy. Stimuli-responsive nanocarriers emerge as a promising tool to overcome MDR. Herein, pH-sensitive poly(β-amino ester)s polymers (PHP)-based micellar nanoparticles were synthesized for enhanced doxorubicin (DOX) delivery in drug resistant breast cancer MCF-7/ADR cells. DOX-loaded PHP micelles showed rapid cell-internalization and lysosomal escape in MCF-7/ADR cells. The cytotoxicity assays showed relatively higher cell inhibition of DOX-loaded PHP micelles than that of free DOX against MCF-7/ADR cells. Further mechanistic studies showed that PHP micelles were able to inhibit P-glycoprotein (P-gp) activity by lowering mitochondrial membrane potentials and ATP levels. These results suggested that the enhanced antitumor effect might be attributed to PHP-mediated lysosomal escape and drug efflux inhibition. Therefore, PHP would be a promising pH-responsive nanocarrier for enhanced intracellular drug delivery and overcoming MDR in cancer cells.
Collapse
Affiliation(s)
- Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Jin Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongxiang Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Polo di Nanotecnologia, 73100 Lecce, Italy.
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Wen K, Zhou M, Lu H, Bi Y, Ruan L, Chen J, Hu Y. Near-Infrared/pH Dual-Sensitive Nanocarriers for Enhanced Intracellular Delivery of Doxorubicin. ACS Biomater Sci Eng 2018; 4:4244-4254. [DOI: 10.1021/acsbiomaterials.8b01051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kaikai Wen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Ying Bi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
26
|
Andrews MC, Peng P, Rajput A, Cozzolino AF. Modulation of the carboxamidine redox potential through photoinduced spiropyran or fulgimide isomerisation. Photochem Photobiol Sci 2018. [PMID: 29528073 DOI: 10.1039/c7pp00347a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carboxamidines functionalized with either a spiropyran or fulgimide photoswitch were prepared on multigram scales. The thermal, electrochemical, and photochemical ring isomerizations of these compounds were studied and the results compared with related systems. The photochemical isomerisations were found to be reversible and could be followed by 1H NMR and UV-vis spectroscopy. The spiropyran/merocyanine couple was thermally active and an activation enthalpy of 116 kJ mol-1 was measured for ring-opening. These measurements yielded an enthalpy difference of 25 kJ mol-1 between the open and closed states which is consistent with DFT calculations. DFT calculations predicted a charge transfer to the carboxamidine group upon ring closure in the fulgimide and a charge transfer from the carboxamidine group upon switching the spiropyran to the merocyanine form. This was confirmed experimentally by monitoring the change in the oxidation potential assigned to the carboxamidine group. The potential of these molecules to therefore act as a new class of photoresponsive ligands that can modulate the ligand field of a complex is discussed.
Collapse
Affiliation(s)
- M Crawford Andrews
- Department of Chemistry and Biochemistry, Texas Tech University, MS 41061, Lubbock, TX 79409, USA.
| | | | | | | |
Collapse
|
27
|
|
28
|
Beals N, Model MA, Worden M, Hegmann T, Basu S. Intermolecular G-Quadruplex Induces Hyaluronic Acid-DNA Superpolymers Causing Cancer Cell Swelling, Blebbing, and Death. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6869-6878. [PMID: 29400433 DOI: 10.1021/acsami.7b16983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the past decade, nanomedicine has gained considerable attraction through its relevance, for example, in "smart" delivery, thus creating platforms for novel treatments. Here, we report a natural polymer-DNA conjugate that undergoes self-assembly in a K+-dependent fashion to form a G-quadruplex (GQ) and generate superpolymeric structures. We derivatized a thiolated conjugate of the naturally occurring glycosaminoglycan polymer hyaluronic acid (HASH) with short G-rich DNA (HASH-DNA) that can form an intermolecular noncanonical GQ structure. Gel mobility shift assay and circular dichroism measurements confirmed HASH conjugation to DNA and K+-dependent GQ formation, respectively. Transmission electron microscopy and scanning electron microscopy results indicated that the addition of K+ to the HASH-DNA conjugate led to the formation of micron-range structures, whereas control samples remained unordered and as a nebulous globular form. Confocal microscopy of a fluorescently labeled form of the superpolymer verified increased cellular uptake. The HASH-DNA conjugates showed toxicity in HeLa cells, whereas a scrambled DNA (Mut) conjugate HASH-Mut showed no cytotoxicity, presumably because of nonformation of the superpolymeric structure. To understand the mechanism of cell death and if the superpolymeric structure is responsible for it, we monitored the cell size and observed an average of 23% increase in size compared to 4.5% in control cells at 4.5 h. We believe that cellular stress is generated presumably by the intracellular assembly of this large superpolymeric nanostructure causing cell blebbing with no exit option. This approach provides a new strategy of cellular delivery of a targeted naturally occurring polymer and a novel way to induce superpolymeric structure formation that acts as a therapeutic.
Collapse
Affiliation(s)
- Nathan Beals
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Michael A Model
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Matt Worden
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Torsten Hegmann
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §Liquid Crystals Institute, Kent State University , Kent, Ohio 44242, United States
| |
Collapse
|
29
|
Yan G, Li A, Zhang A, Sun Y, Liu J. Polymer-Based Nanocarriers for Co-Delivery and Combination of Diverse Therapies against Cancers. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E85. [PMID: 29401694 PMCID: PMC5853717 DOI: 10.3390/nano8020085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Cancer gives rise to an enormous number of deaths worldwide nowadays. Therefore, it is in urgent need to develop new therapies, among which combined therapies including photothermal therapy (PTT) and chemotherapy (CHT) using polymer-based nanocarriers have attracted enormous interest due to the significantly enhanced efficacy and great progress has been made so far. The preparation of such nanocarriers is a comprehensive task involving the cooperation of nanomaterial science and biomedicine science. In this review, we try to introduce and analyze the structure, preparation and synergistic therapeutic effect of various polymer-based nanocarriers composed of anti-tumor drugs, nano-sized photothermal materials and other possible parts. Our effort may bring benefit to future exploration and potential applications of similar nanocarriers.
Collapse
Affiliation(s)
- Guowen Yan
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Aihua Li
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Aitang Zhang
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Yong Sun
- School of Pharmacy, Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, China.
| | - Jingquan Liu
- School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
30
|
Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A. Transferrin-Copper Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3282-3294. [PMID: 29278317 DOI: 10.1021/acsami.7b15165] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transferrin (Tf)-templated luminescent blue copper nanoclusters (Tf-Cu NCs) are synthesized. They are further formulated into spherical Tf-Cu NC-doxorubicin nanoparticles (Tf-Cu NC-Dox NPs) based on electrostatic interaction with doxorubicin (Dox). The as-synthesized Tf-Cu NC-Dox NPs are explored for bioimaging and targeted drug delivery to delineate high therapeutic efficacy. Förster resonance energy transfer (FRET) within the Tf-Cu NC-Dox NPs exhibited striking red luminescence, wherein the blue luminescence of Tf-Cu NCs (donor) is quenched due to absorption by Dox (acceptor). Interestingly, blue luminescence of Tf-Cu NCs is restored in the cytoplasm of cancer cells upon internalization of the NPs through overexpressed transferrin receptor (TfR) present on the cell surface. Finally, gradual release of Dox from the NPs leads to the generation of its red luminescence inside the nucleus. The biocompatible Tf-Cu NC-Dox NPs displayed superior targeting efficiency on TfR overexpressed cells (HeLa and MCF-7) as compared to the cells expressing less TfR (HEK-293 and 3T3-L1). Combination index (CI) revealed synergistic activity of Tf-Cu NCs and Dox in Tf-Cu NC-Dox NPs. In vivo assessment of the NPs on TfR positive Daltons lymphoma ascites (DLA) bearing mice revealed significant inhibition of tumor growth rendering prolonged survival of the mice.
Collapse
Affiliation(s)
| | | | | | - Raghuram Kandimalla
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology , Guwahati 781035, Assam, India
| | - Sanjeeb Kalita
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology , Guwahati 781035, Assam, India
| | | | | |
Collapse
|
31
|
PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids Surf B Biointerfaces 2017; 160:11-21. [DOI: 10.1016/j.colsurfb.2017.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
|
32
|
Abstract
The huge diversity and applications of various forms of hydrogels in medicine in last few decades have come up with one of the innovating forms of hydrogels i.e., “Nanogels” (NGs). NGs are the three-dimensional hydrogel materials, with sizes in the nanoscale range. They are composed of synthetic or natural polymers or a combination of both. By varying their chemical composition, their characteristic properties such as their size, charge, porosity, and others, they can be tuned or tailor-made. Along with their unique physical properties, they exhibit good swelling behaviour, stimuli-responsiveness, and biocompatibility, and encapsulation of guest molecules, protecting their cargo from degradation and delivering it at targeted sites. These nanoforms of hydrogels are being extensively explored by researchers for various medical applications today, some of which are discussed in the present chapter.
Collapse
Affiliation(s)
- Eram Sharmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University P.O. Box 715 Postal Code 21955 Makkah Al-Mukarramah Saudi Arabia
| |
Collapse
|
33
|
Gao H, Bi Y, Wang X, Wang M, Zhou M, Lu H, Gao J, Chen J, Hu Y. Near-Infrared Guided Thermal-Responsive Nanomedicine against Orthotopic Superficial Bladder Cancer. ACS Biomater Sci Eng 2017; 3:3628-3634. [DOI: 10.1021/acsbiomaterials.7b00405] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hui Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
- Clinical
Laboratory Department, Children’s Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Changhe Subdistrict, Binjiang District, Hangzhou, Zhejiang 310052, China
| | - Ying Bi
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Miao Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Mengxue Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China
| | - Huiru Lu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Jun Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China
| | - Yi Hu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 19B Yuquan Road, Beijing 100049, China
- University of Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China
| |
Collapse
|
34
|
Liu Y, Ji X, Liu J, Tong WWL, Askhatova D, Shi J. Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imaging-Guided Combinatorial Chemo-Photothermal Therapy. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1703261. [PMID: 29290753 PMCID: PMC5743210 DOI: 10.1002/adfm.201703261] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Near-infrared (NIR)-absorbing metal-based nanomaterials have shown tremendous potential for cancer therapy, given their facile and controllable synthesis, efficient photothermal conversion, capability of spatiotemporal-controlled drug delivery, and intrinsic imaging function. Tantalum (Ta) is among the most biocompatible metals and arouses negligible adverse biological responses in either oxidized or reduced forms, and thus Ta-derived nanomaterials represent promising candidates for biomedical applications. However, Ta-based nanomaterials by themselves have not been explored for NIR-mediated photothermal ablation therapy. In this work, we report an innovative Ta-based multifunctional nanoplatform composed of biocompatible tantalum sulfide (TaS2) nanosheets (NSs) for simultaneous NIR hyperthermia, drug delivery, and computed tomography (CT) imaging. The TaS2 NSs exhibit multiple unique features including (i) efficient NIR light-to-heat conversion with a high photothermal conversion efficiency of 39%. (ii) high drug loading (177% by weight), (iii) controlled drug release triggered by NIR light and moderate acidic pH, (iv) high tumor accumulation via heat-enhanced tumor vascular permeability, (v) complete tumor ablation and negligible side effects, and (vi) comparable CT imaging contrast efficiency to the widely clinically used agent iobitridol. We expect that this multifunctional NS platform can serve as a promising candidate for imaging-guided cancer therapy and selection of cancer patients with high tumor accumulation.
Collapse
Affiliation(s)
- Yanlan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Liu
- Department of Radiology, the Second Hospital of Jilin University Norman Bethune, Changchun, 130022, China
| | - Winnie W L Tong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Askhatova
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Zhang Q, Zhang L, Li S, Chen X, Zhang M, Wang T, Li L, Wang C. Designed Synthesis of Au/Fe 3 O 4 @C Janus Nanoparticles for Dual-Modal Imaging and Actively Targeted Chemo-Photothermal Synergistic Therapy of Cancer Cells. Chemistry 2017; 23:17242-17248. [PMID: 28845884 DOI: 10.1002/chem.201703498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 01/27/2023]
Abstract
Elaborately designed novel multifunctional Janus nanoparticles (JNPs) have attracted considerable attention owing to their anisotropic surface properties and various functionalities that allow them to house several components for the detection and targeting of cancer cells. In this work, we report a novel and facile approach to synthesize Au/Fe3 O4 @C JNPs, which were further selectively functionalized with amino-poly(ethylene glycol)thiol (NH2 -PEG-SH) and folic acid (FA) on the exposed Au domains to achieve high contrast for X-ray computed tomography (CT) imaging, excellent stability, good biocompatibility, as well as cancer cell-specific targeting. Meanwhile, the other Fe3 O4 @C sides with mesoporous structure served as a drug delivery vehicle for doxorubicin (DOX), an efficient photothermal therapy (PTT) agent, and a magnetic resonance (MR) imaging contrast agent. Taking these features together, these unique multifunctional JNPs provide an intriguing nanoplatform for dual-modal CT and MR imaging-guided actively targeted chemo-photothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shengnan Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiangjun Chen
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Manjie Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Tingting Wang
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
36
|
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14:228-241. [PMID: 28884040 PMCID: PMC5570600 DOI: 10.20892/j.issn.2095-3941.2017.0052] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.
Collapse
Affiliation(s)
- Yanru Xin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingming Yin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liyuan Zhao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Yang JC, Chen Y, Li YH, Yin XB. Magnetic Resonance Imaging-Guided Multi-Drug Chemotherapy and Photothermal Synergistic Therapy with pH and NIR-Stimulation Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22278-22288. [PMID: 28616966 DOI: 10.1021/acsami.7b06105] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The combination of multidrug chemotherapy and photothermal therapy (PTT) enhances cancer therapeutic efficacy. Herein, we develop a simple and smart pH/NIR dual-stimulus-responsive degradable mesoporous CoFe2O4@PDA@ZIF-8 sandwich nanocomposite. The mesoporous CoFe2O4 core acts as T2-weighted magnetic resonance (MR) imaging probe, PTT agent, and loading platform of hydrophilic doxorubicin (DOX). A polydopamine (PDA) layer is used to avoid the premature leakage of DOX before arriving at tumor site, enhance PTT efficiency, and facilitate the integration of ZIF-8 (a kind of metal-organic framework). The ZIF-8 shell serves to encapsulate hydrophobic camptothecin (CPT) and as the switch for the pH and NIR stimulation-responsive release of the two drugs. Therefore, T2-weighted MR imaging-guided multidrug chemotherapy and PTT synergistic treatment is achieved. Two kinds of anticancer drugs, hydrophilic DOX and hydrophobic CPT, are successfully loaded in CoFe2O4 and ZIF-8, respectively, so no mutual interference between the two drugs exists. A unique two-stage stepwise release process is exhibited for CPT and DOX with an interval of 12 h to improve the anticancer efficacy under the acidic microenvironment of tumor tissue. NIR irradiation achieves the burst drug-release and PTT after laser stimulation, simultaneously. With this smart design, high drug concentration is achieved at the tumor site by quick release, especially for the therapeutic drugs that show nonlinear pharmacokinetics, and PTT is integrated efficiently. Furthermore, negligible biotoxicity and a remarkable synergic antitumor effect of the hybrid nanocomposites are validated by HepG2 cells and tumor-bearing mice as models. Our multidrug delivery-releasing composite improves tumor therapeutic efficiency significantly compared with a single-drug chemotherapy system. The simple multifunctional composite system can be applied as an effective platform for personal nanomedicine with diagnosis, smart drug delivery, and cancer treatment through its remarkable photothermal property and controllable multidrug release.
Collapse
Affiliation(s)
- Ji-Chun Yang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Yang Chen
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University , Tianjin 300071, China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University , Tianjin 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| |
Collapse
|
38
|
Zhang L, Li R, Chen H, Wei J, Qian H, Su S, Shao J, Wang L, Qian X, Liu B. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomedicine 2017; 12:2129-2142. [PMID: 28360520 PMCID: PMC5364008 DOI: 10.2147/ijn.s126016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell membrane-derived nanoparticles are becoming more attractive because of their ability to mimic many features of their source cells. This study reports on a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this system, the surface of poly-lactic-co-glycolic acid nanoparticles was camouflaged using T-lymphocyte membranes, and local low-dose irradiation (LDI) was used as a chemoattractant for nanoparticle targeting. The T-lymphocyte membrane coating was verified using dynamic light scattering, transmission electron microscopy, and confocal laser scanning microscopy. This new platform reduced nanoparticle phagocytosis by macrophages to 23.99% (P=0.002). Systemic administration of paclitaxel-loaded T-lymphocyte membrane-coated nanoparticles inhibited the growth of human gastric cancer by 56.68% in Balb/c nude mice. Application of LDI at the tumor site significantly increased the tumor growth inhibition rate to 88.50%, and two mice achieved complete remission. Furthermore, LDI could upregulate the expression of adhesion molecules in tumor vessels, which is important in the process of leukocyte adhesion and might contribute to the localization of T-lymphocyte membrane-encapsulated nanoparticles in tumors. Therefore, this new drug-delivery platform retained both the long circulation time and tumor site accumulation ability of human cytotoxic T lymphocytes, while local LDI could significantly enhance tumor localization.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Hong Chen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Shu Su
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
39
|
Tan Y, Zhang L, Man KH, Peltier R, Chen G, Zhang H, Zhou L, Wang F, Ho D, Yao SQ, Hu Y, Sun H. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6796-6803. [PMID: 28139117 DOI: 10.1021/acsami.6b14176] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.
Collapse
Affiliation(s)
- Yi Tan
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University , Xuzhou 221002, P. R. China
| | | | - Raoul Peltier
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Ganchao Chen
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Huatang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Liyi Zhou
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | | | | | - Shao Q Yao
- Department of Chemistry, National University of Singapore , Singapore 117543
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) , Beijing 100049, P. R. China
| | - Hongyan Sun
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| |
Collapse
|
40
|
Liu Y, Li H, Xie J, Zhou M, Huang H, Lu H, Chai Z, Chen J, Hu Y. Facile construction of mitochondria-targeting nanoparticles for enhanced phototherapeutic effects. Biomater Sci 2017; 5:1022-1031. [DOI: 10.1039/c6bm00878j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An illustration of the preparation of ICG/rPAA@SWCNT nanoparticles which target mitochondria for amplifying photodynamic therapeutic effects.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Road Structure and Material of Ministry of Transport
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha 410114
- P.R. China
| | - Heping Li
- Key Laboratory of Road Structure and Material of Ministry of Transport
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha 410114
- P.R. China
| | - Jin Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multi-disciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Mengxue Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multi-disciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Hui Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multi-disciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multi-disciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multi-disciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multi-disciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Multi-disciplinary Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
| |
Collapse
|
41
|
Das R, Rinaldi-Montes N, Alonso J, Amghouz Z, Garaio E, García JA, Gorria P, Blanco JA, Phan MH, Srikanth H. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25162-9. [PMID: 27589410 DOI: 10.1021/acsami.6b09942] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine.
Collapse
Affiliation(s)
- R Das
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| | - N Rinaldi-Montes
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
- Departamento de Física, Universidad de Oviedo , Oviedo E-33007, Spain
| | - J Alonso
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
- BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya , Derio 48160, Spain
| | - Z Amghouz
- Servicios Científico-Técnicos, Universidad de Oviedo , Oviedo E-33006, Spain
| | - E Garaio
- Department of Electricity and Electronics, University of Basque Country (UPV/EHU) , Leoia 48940, Spain
| | - J A García
- BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya , Derio 48160, Spain
- Department of Applied Physics II, University of Basque Country (UPV/EHU) , Leoia 48940, Spain
| | - P Gorria
- Departamento de Física & IUTA, EPI, Universidad de Oviedo , Gijón E-33203, Spain
| | - J A Blanco
- Departamento de Física, Universidad de Oviedo , Oviedo E-33007, Spain
| | - M H Phan
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| | - H Srikanth
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| |
Collapse
|