1
|
Kumar S, Kumar M, Bhambri H, Mandal SK, Bhalla V. Understanding the Structural Modulations in Twisted Donor-Acceptor-Donor (D-A-D) Systems for Boosting Type I Photosensitizing Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67683-67696. [PMID: 39601526 DOI: 10.1021/acsami.4c13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Supramolecular assemblies based on the twisted donor-acceptor-donor (D-A-D) building block Qx-Ind have been developed, which interestingly, due to the balanced angle of twist (38.28°), high intermolecular charge transfer, and crystallization induced emission (CIE) characteristics, exhibit high molar absorptivity and a long-lived "lighted" excited state at the supramolecular level. The validity of the design concept was examined by preparing CIE active D-A-D system Qx-Indaz (weak donor, low angle of twist: 35.45°), in which, due to the insertion of an additional binding site for noncovalent interactions, a drastic change in the photophysical behavior is observed. The combined spectroscopic studies of all the compounds unveil the strong impact of modulation of the angle of twist and intermolecular charge transfer upon photophysical behavior in the aggregated state. Due to the favorable photophysical behavior, the supramolecular assemblies of Qx-Ind exhibit high type I photosensitizing activity in comparison to Qx-Indaz. The superior type I photosensitizing activity of Qx-Ind assemblies is manifested in their ability to efficiently catalyze the aerobic oxidative synthesis of quinazolin-4(3H)-ones (via type I ROS) from 2-aminobenzamide and aromatic aldehydes in the absence of additional additives (base/oxidant). Unlike photocatalytic nanoassemblies reported in the literature, due to the CIE characteristics, Qx-Ind does not require preliminary preparation and could be directly introduced in the solid state to reaction media. Thus, the present work demonstrates a simple strategy of upgrading type I photosensitizing activity by improving the ground/excited state behavior of a twisted D-A-D system through modulation of the angle of twist and charge transfer characteristics.
Collapse
Affiliation(s)
- Sourav Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
2
|
Selenius E, Sigurdarson AE, Schmerwitz YLA, Levi G. Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States. J Chem Theory Comput 2024; 20:3809-3822. [PMID: 38695313 DOI: 10.1021/acs.jctc.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The performance of time-independent, orbital-optimized calculations of excited states is assessed with respect to charge transfer excitations in organic molecules in comparison to the linear-response time-dependent density functional theory (TD-DFT) approach. A direct optimization method to converge on saddle points of the electronic energy surface is used to carry out calculations with the local density approximation (LDA) and the generalized gradient approximation (GGA) functionals PBE and BLYP for a set of 27 excitations in 15 molecules. The time-independent approach is fully variational and provides a relaxed excited state electron density from which the extent of charge transfer is quantified. The TD-DFT calculations are generally found to provide larger charge transfer distances compared to the orbital-optimized calculations, even when including orbital relaxation effects with the Z-vector method. While the error on the excitation energy relative to theoretical best estimates is found to increase with the extent of charge transfer up to ca. -2 eV for TD-DFT, no correlation is observed for the orbital-optimized approach. The orbital-optimized calculations with the LDA and the GGA functionals provide a mean absolute error of ∼0.7 eV, outperforming TD-DFT with both local and global hybrid functionals for excitations with a long-range charge transfer character. Orbital-optimized calculations with the global hybrid functional B3LYP and the range-separated hybrid functional CAM-B3LYP on a selection of states with short- and long-range charge transfer indicate that inclusion of exact exchange has a small effect on the charge transfer distance, while it significantly improves the excitation energy, with the best-performing functional CAM-B3LYP providing an absolute error typically around 0.15 eV.
Collapse
Affiliation(s)
- Elli Selenius
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| | | | | | - Gianluca Levi
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| |
Collapse
|
3
|
Ruan F, Fang H, Chen F, Xie X, He M, Wang R, Lu J, Wu Z, Liu J, Guo F, Sun W, Shao D. Leveraging Radiation-triggered Metal Prodrug Activation Through Nanosurface Energy Transfer for Directed Radio-chemo-immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202317943. [PMID: 38078895 DOI: 10.1002/anie.202317943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 12/30/2023]
Abstract
Metal-based drugs currently dominate the field of chemotherapeutic agents; however, achieving the controlled activation of metal prodrugs remains a substantial challenge. Here, we propose a universal strategy for the radiation-triggered activation of metal prodrugs via nanosurface energy transfer (NSET). The core-shell nanoplatform (Ru-GNC) is composed of gold nanoclusters (GNC) and ruthenium (Ru)-containing organic-inorganic hybrid coatings. Upon X-ray irradiation, chemotherapeutic Ru (II) complexes were released in a controlled manner through a unique NSET process involving the transfer of photoelectron energy from the radiation-excited Ru-GNCs to the Ru-containing hybrid layer. In contrast to the traditional radiation-triggered activation of prodrugs, such an NSET-based system ensures that the reactive species in the tumor microenvironment are present in sufficient quantity and are not easily quenched. Additionally, ultrasmall Ru-GNCs preferably target mitochondria and profoundly disrupt the respiratory chain upon irradiation, leading to radiosensitization by generating abundant reactive oxygen species. Consequently, Ru-GNC-directed radiochemotherapy induces immunogenic cell death, resulting in significant therapeutic outcomes when combined with the programmed cell death-ligand 1 (PD-L1) checkpoint blockade. This NSET strategy represents a breakthrough in designing radiation-triggered nanoplatforms for metal-prodrug-mediated cancer treatment in an efficient and controllable manner.
Collapse
Affiliation(s)
- Feixia Ruan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hui Fang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junna Lu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiali Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Feng Guo
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
5
|
Zhang RZ, Liu H, Xin CL, Han N, Ma CQ, Yu S, Wang YB, Xing LB. Construction of aggregation-induced emission photosensitizers through host-guest interactions for photooxidation reaction and light-harvesting. J Colloid Interface Sci 2023; 651:894-901. [PMID: 37573735 DOI: 10.1016/j.jcis.2023.07.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
In the present work, we have designed and synthesized a triphenylamine modified cyanophenylenevinylene derivative (TPCI), which can self-assembly with cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) through host-guest interactions to form supramolecular complexes (TPCI-CB[6]) and supramolecular polymers (TPCI-CB[8]) in the aqueous solution. The supramolecular assemblies of TPCI-CB[6] and TPCI-CB[8] not only exhibited high singlet oxygen (1O2) production efficiency as photosensitizers, but also realized the application in the construction of artificial light-harvesting systems due to the excellent fluorescence properties in the aqueous solution. The production efficiency of 1O2 has been effectively improved after the addition of CB[6] and CB[8] for TPCI, which were applied as efficient photosensitizers in the photooxidation reactions of thioanisole and its derivatives with the highest yield of 98% in the aqueous solution. The excellent fluorescence properties of TPCI-CB[6] and TPCI-CB[8] can be used as energy donors in artificial light-harvesting systems with energy acceptors sulforhodamine 101 (SR101) and cyanine dye 5 (Cy5), in which one-step energy transfer processes of TPCI-CB[6]+SR101 and TPCI-CB[8]+Cy5, and a two-step sequential energy transfer process of TPCI-CB[6]+SR101+Cy5 were constructed to simulate the natural photosynthesis system.
Collapse
Affiliation(s)
- Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Cheng-Long Xin
- Shandong Center for Disease Control and Prevention, Jinan 255014, PR China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Chao-Qun Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
6
|
Yang P, Huang H, Xie X. Removal of antibiotic resistant bacteria in wastewater by aggregation-induced emission photosensitizer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:121738. [PMID: 37121304 DOI: 10.1016/j.envpol.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
The spread of antibiotic resistant bacteria from wastewater to the environment will pose serious threats to human health. It is a potential solution to prepare photosensitizers with broad-spectrum antibacterial activity for use in the photo-oxidation process to supplement the wastewater treatment system. Here, an aggregation-induced emission photosensitizer with D-π-A structure (TBTPy) has been reasonably designed and successfully developed. TBTPy can generate singlet oxygen with extraordinarily high efficiency under white-light irradiation owing to the small singlet-triplet energy gap. TBTPy has a rapid and efficient photo-oxidative killing effect on bacteria and fungi (such as MRSA, S. aureus, E. coli and C. albicans). TBTPy kills bacteria by binding to bacterial surface and releasing singlet oxygen to destroy cell membrane, leading to leakage of bacterial genetic material. This successful case can provide practical guidance for the subsequent development of AIE photosensitizers.
Collapse
Affiliation(s)
- Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - XiaoBao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China.
| |
Collapse
|
7
|
Li Y, Zhang D, Yu Y, Zhang L, Li L, Shi L, Feng G, Tang BZ. A Cascade Strategy Boosting Hydroxyl Radical Generation with Aggregation-Induced Emission Photosensitizers-Albumin Complex for Photodynamic Therapy. ACS NANO 2023; 17:16993-17003. [PMID: 37606032 DOI: 10.1021/acsnano.3c04256] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Effective photodynamic therapy (PDT) requires photosensitizers (PSs) to massively generate type I reactive oxygen species (ROS) in a less oxygen-dependent manner in the hypoxia tumor microenvironment. Herein, we present a cascade strategy to boost type I ROS, especially hydroxyl radical (OH·-), generation with an aggregation-induced emission (AIE) photosensitizer-albumin complex for hypoxia-tolerant PDT. The cationic AIE PS TPAQ-Py-PF6 (TPA = triphenylamine, Q = anthraquinone, Py = pyridine) contains three important moieties to cooperatively enhance free radical generation: the AIE-active TPA unit ensures the effective triplet exciton generation in aggregate, the anthraquinone moiety possesses the redox cycling ability to promote electron transfer, while the cationic methylpyridinium cation further increases intramolecular charge transfer and electron separation processes. Inserting the cationic TPAQ-Py-PF6 into the hydrophobic domain of bovine serum albumin nanoparticles (BSA NPs) could greatly immobilize its molecular geometry to further increase triplet exciton generation, while the electron-rich microenvironment of BSA ultimately leads to OH·- generation. Both experimental and theoretical results confirm the effectiveness of our molecular cationization and BSA immobilization cascade strategy for enhancing OH·- generation. In vitro and in vivo experiments validate the excellent antitumor PDT performance of BSA NPs, superior to the conventional polymeric encapsulation approach. Such a multidimensional cascade strategy for specially boosting OH·- generation shall hold great potential in hypoxia-tolerant PDT and related antitumor applications.
Collapse
Affiliation(s)
- Yulu Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Di Zhang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuewen Yu
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Le Zhang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ling Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China
| |
Collapse
|
8
|
Liu W, Yu Y, Cheng W, Wang X, Zhou M, Xu B, Wang P, Wang Q. D-A Structured High-Performance Photothermal/Photodynamic Thionin-Synthetic Melanin Nanoparticles for Rapid Bactericidal and Wound Healing Effects. Adv Healthc Mater 2023; 12:e2203303. [PMID: 37023477 DOI: 10.1002/adhm.202203303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Indexed: 04/08/2023]
Abstract
Synthesized melanin nanoparticles (SMNPs) are used as advanced photothermal materials. However, their internal structures are complex and disordered, and tuning the photothermal performance of nanoparticles is still a hot spot of concern. This article presents thionin (Th)-doped SMNPs, namely Th-SMNPs, which are the first SMNPs formed using the one-pot polymerization of Th with Levodopa. Th can undergo Michael addition and Schiff base reaction between indole dihydroxy/indolequinone and their oligomers to form donor-acceptor pairs in the structure to modulate the photothermal performance of SMNPs. Structural and spectroscopic analyses and density functional theory simulations further confirm the existence of the donor-acceptor structure. Th-SMNPs exhibit excellent total photothermal efficiency (34.49%) in the near-infrared region (808 nm), which is a 60% improvement compared to SMNPs. This allows Th-SMNPs to exhibit excellent photothermal performance at low power 808 nm laser irradiation. Meanwhile, Th not only enhances the photothermal properties of SMNPs, but also imparts photodynamic effects to SMNPs. Th-SMNPs can produce 1 O2 under 660 nm laser irradiation. A dual-function photothermal and photodynamic textile named Th-SMNPs@cotton is constructed based on Th-SMNPs, which can act as a rapid photothermal/photodynamic sterilization and is promising for wound healing treatment of bacterial infections under low-power dual laser irradiation.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinyue Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
9
|
Xu C, Shen H, Liu TM, Kwok RT, Lam JW, Tang BZ. Restriction of molecular motion to a higher level: Towards bright AIE dots for biomedical applications. iScience 2023; 26:106568. [PMID: 37128609 PMCID: PMC10148129 DOI: 10.1016/j.isci.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
In the late 19th century, scientists began to study the photophysical differences between chromophores in the solution and aggregate states, which breed the recognition of the prototypical processes of aggregation-caused quenching and aggregation-induced emission (AIE). In particular, the conceptual discovery of the AIE phenomenon has spawned the innovation of luminogenic materials with high emission in the aggregate state based on their unique working principle termed the restriction of intramolecular motion. As AIE luminogens have been practically fabricated into AIE dots for bioimaging, further improvement of their brightness is needed although this is technically challenging. In this review, we surveyed the recent advances in strategic molecular engineering of highly emissive AIE dots, including nanoscale crystallization and matrix-assisted rigidification. We hope that this timely summary can deepen the understanding about the root cause of the high emission of AIE dots and provide inspiration to the rational design of functional aggregates.
Collapse
Affiliation(s)
- Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, China
| | - Ryan T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Pham TTD, Phan LMT, Cho S, Park J. Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:707-734. [DOI: 10.1080/14686996.2022.2134976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/14/2025]
Affiliation(s)
- Thi-Thuy Duong Pham
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Juhyun Park
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Lu Y, Wu W. Conjugated‐Polymer‐Based Photodynamic Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaru Lu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
12
|
Wu MY, Wang Y, Wang LJ, Wang JL, Xia FW, Feng S. A novel furo[3,2- c]pyridine-based AIE photosensitizer for specific imaging and photodynamic ablation of Gram-positive bacteria. Chem Commun (Camb) 2022; 58:10392-10395. [PMID: 36039808 DOI: 10.1039/d2cc04084k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Rh-catalyzed tandem reaction was performed to construct an AIE-active furo[2,3-c]pyridine-based photosensitizer, named LIQ-TF. LIQ-TF showed near-infrared emission with high quantum yield, and high 1O2 and ˙OH generation efficiency, and could be used for specific imaging and photodynamic ablation of Gram-positive bacteria in vitro and in vivo, showing great potential for combating multiple drug-resistant bacteria.
Collapse
Affiliation(s)
- Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yun Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Li-Juan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
13
|
Zhang NY, Hu XJ, An HW, Liang JX, Wang H. Programmable design and self assembly of peptide conjugated AIEgens for biomedical applications. Biomaterials 2022; 287:121655. [PMID: 35810541 DOI: 10.1016/j.biomaterials.2022.121655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Aggregation-induced emission luminogens (AIEgens) possess enhanced fluorescence in highly aggregated states, thus enabling AIEgens as a promising module for highly emissive fluorescence biomaterials. So far, AIEgens-based nanomaterials and their hybrids have been reported for biomedical applications. Benefiting from the intrinsic biocompatibility and biofunction-editing properties of peptides, peptide-AIEgens hybrid biomaterials reveal unlimited possibilities including target capacity, specificity, stimuli-responsiveness, self-assembly, controllable structural transformation, etc.. In the last two decades, peptide-AIEgens hybrid nanomaterials with a unique design concept in aggregated states have achieved various biomedical applications such as biosensing, bioimaging, imaging-guided surgery, drug delivery and therapy. More recently, programmable design of peptide-AIEgens for in situ self-assembly provides a unique strategy for constructing intelligent entities with defined biological functions. In this review, we summarize the basic design principle of programmable peptide-AIEgens, structure-effect relationship and their unusual biomedical effects. Finally, an outlook and perspective toward future challenges and developments of peptide-AIEgens nanomaterials are concluded.
Collapse
Affiliation(s)
- Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xing-Jie Hu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jian-Xiao Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
14
|
Kundu S, Das S, Jaiswal S, Patra A. Molecular to Supramolecular Self-Assembled Luminogens for Tracking the Intracellular Organelle Dynamics. ACS APPLIED BIO MATERIALS 2022; 5:3623-3648. [PMID: 35834795 DOI: 10.1021/acsabm.2c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the dynamics of intracellular organelles has gained immense attention due to their subtle control over diverse, complex biological processes such as cellular metabolism, energy homeostasis, and autophagy. In this context, molecular materials, including small-organic fluorescent probes and their supramolecular self-assembled nano-/microarchitectures, have been employed to explore the diverse intracellular biological events. However, only a handful of fluorescent probes and self-assembled emissive structures have been successfully used to track different organelle's movements, circumventing the issues related to water solubility and long-term photostability. Thus, the water-soluble molecular fluorescent probes and the water-dispersible supramolecular self-assemblies have emerged as promising candidates to explore the trafficking of the organelles under diverse physiological conditions. In this review, we have delineated the recent progress of fluorescent probes and their supramolecular self-assemblies for the elucidation of the dynamics of diverse cellular organelles with a special emphasis on lysosomes, lipid droplets, and mitochondria. Recent advancement in fluorescence lifetime and super-resolution microscopy imaging has also been discussed to investigate the dynamics of organelles. In addition, the fabrication of the next-generation molecular to supramolecular self-assembled luminogens for probing the variation of microenvironments during the trafficking process has been outlined.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
15
|
Dong MJ, Li W, Xiang Q, Tan Y, Xing X, Wu C, Dong H, Zhang X. Engineering Metal-Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29599-29612. [PMID: 35737456 DOI: 10.1021/acsami.2c05860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE)-active luminogens (AIEgens) have demonstrated exciting potential for the application in cancer phototheranostics. However, simultaneously achieving tumor-activated bright emission, enhanced reactive oxygen species (ROS) generation, high tumor accumulation, and minimized ROS depletion remains challenging. Here, a metal-organic framework (MOF) hybrid AIEgen theranostic platform is designed, termed A-NUiO@DCDA@ZIF-Cu, composed of an AIEgen-loaded hydrophobic UiO-66 (A-NUiO@DCDA) core and a Cu-doped hydrophilic ZIF-8 (ZIF-Cu) shell. The fluorescence emission and therapeutic ROS activity of AIEgens are restrained during delivery. After uptake by tumor tissues, ZIF-Cu decomposition occurs in response to an acidic tumor microenvironment (TME), and the hydrophobic A-NUiO@DCDA cores self-assemble into large particles, extremely increasing the tumor accumulation of AIEgens. This results in enhanced fluorescence imaging (FLI) and highly improved 1O2 generation ability during photodynamic therapy (PDT). Meanwhile, the released Cu2+ reacts to glutathione (GSH) to generate Cu+, which provides an extra chemodynamic therapy (CDT) function through Fenton-like reactions with overexpressed H2O2, resulting in the GSH depletion-enhanced ROS therapy. As a result of these characteristics, the MOF hybrid AIEgens can selectively kill tumors with excellent efficacy.
Collapse
Affiliation(s)
- Ming-Jie Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Weiqun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qin Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaotong Xing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chaoxiong Wu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
16
|
Gan S, Wu W, Feng G, Wang Z, Liu B, Tang BZ. Size Optimization of Organic Nanoparticles with Aggregation-Induced Emission Characteristics for Improved ROS Generation and Photodynamic Cancer Cell Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202242. [PMID: 35652497 DOI: 10.1002/smll.202202242] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE) fluorogens provide new opportunities to promote efficient reactive oxygen species (ROS) production in aggregates, which represent the promising candidates to construct theranostic nanoparticles for photodynamic therapy (PDT), but the size effect has been rarely explored. Herein, a universal method to fabricate organic nanoparticles with controllable sizes is reported and it demonstrates that ≈45 nm is the optimal size of AIE nanoparticles for PDT. Different from conventional Ce6 nanoparticles which show largely reduced fluorescence and ROS generation with increasing nanoparticle size, AIE nanoparticles show gradually enhanced brightness and ROS generation upon increasing the sizes from 6 to ≈45 nm. Further increasing sizes could continue to intensify the nanoparticle's brightness at the expense of ROS production, with the optimal size for ROS generation being achieved at ≈45 nm. Both 2D monolayer cell and 3D multicellular spheroid experiments confirm that 45 nm AIE nanoparticles have the highest cellular uptake, the deepest penetration depth, and the best photodynamic killing effect. Such a study not only manifests the advantages of AIE photosensitizers, but also delivers the optimal size ranging for efficient PDT, which shall provide an attractive paradigm to guide the development of phototheranostic nanoparticles besides molecular design to further promote PDT applications.
Collapse
Affiliation(s)
- Shengming Gan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, South China University of Technology, Guangzhou, 510640, China
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
17
|
Bloyet C, Sciortino F, Matsushita Y, Karr PA, Liyanage A, Jevasuwan W, Fukata N, Maji S, Hynek J, D'Souza F, Shrestha LK, Ariga K, Yamazaki T, Shirahata N, Hill JP, Payne DT. Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. J Am Chem Soc 2022; 144:10830-10843. [PMID: 35587544 DOI: 10.1021/jacs.2c02596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromophores that generate singlet oxygen (1O2) in water are essential to developing noninvasive disease treatments using photodynamic therapy (PDT). A facile approach for formation of stable colloidal nanoparticles of 1O2 photosensitizers, which exhibit aggregation enhanced 1O2 generation in water toward applications as PDT agents, is reported. Chromophore encryption within a fuchsonarene macrocyclic scaffold insulates the photosensitizer from aggregation induced deactivation pathways, enabling a higher chromophore density than typical 1O2 generating nanoparticles. Aggregation enhanced 1O2 generation in water is observed, and variation in molecular structure allows for regulation of the physical properties of the nanoparticles which ultimately affects the 1O2 generation. In vitro activity and the ability of the particles to pass through the cell membrane into the cytoplasm is demonstrated using confocal fluorescence microscopy with HeLa cells. Photosensitizer encryption in rigid macrocycles, such as fuchsonarenes, offers new prospects for the production of biocompatible nanoarchitectures for applications involving 1O2 generation.
Collapse
Affiliation(s)
- Clarisse Bloyet
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Flavien Sciortino
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Anuradha Liyanage
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, United States
| | - Wipakorn Jevasuwan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Hynek
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, United States
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Daniel T Payne
- International Center for Young Scientists, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
18
|
Yu H, Chen B, Huang H, He Z, Sun J, Wang G, Gu X, Tang BZ. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. BIOSENSORS 2022; 12:bios12050348. [PMID: 35624649 PMCID: PMC9139150 DOI: 10.3390/bios12050348] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy. In this review, we review the development of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed for the first time, including consideration of the aggregation of photosensitizers, polymerization, and aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy, and synergistic treatment are also outlined.
Collapse
Affiliation(s)
- Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Binjie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Huiming Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Zhentao He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
- Correspondence: (G.W.); (X.G.)
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Correspondence: (G.W.); (X.G.)
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China;
| |
Collapse
|
19
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
20
|
Wu W, Liu B. Modulating the optical properties and functions of organic molecules through polymerization. MATERIALS HORIZONS 2022; 9:99-111. [PMID: 34498024 DOI: 10.1039/d1mh01030a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic functional materials with advanced optical properties have attracted much attention due to their broad applications, such as in light-emitting diodes, solar cells, anti-counterfeiting, photocatalysis, and even disease diagnosis and treatment. Recent research has revealed that many optical properties of organic molecules can be improved through simple polymerization. In this review, we discuss the phenomenon, mechanism, and impact of polymerization on the properties of materials, including the polymerization-induced spectral shift, polymerization-enhanced photosensitization, polymerization-enhanced two-photon absorption, polymerization-enhanced photocatalytic efficiency, polymerization-induced room temperature phosphorescence, polymerization-induced thermally activated delayed fluorescence, and polymerization-induced emission using specific examples with different applications. The new opportunities arising from polymerization in designing high performance optical materials are summarized in the future perspective.
Collapse
Affiliation(s)
- Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
21
|
Zeng W, Lin M, Zhu L, Lin M. A Triphenylphosphonium Functionalized
AIE
Conjugated Macrocyclic Tetramaleimide for Mitochondrial‐targeting Bioimaging. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Zeng
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Mao‐Hua Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ling‐Yun Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Mei‐Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- College of Materials Science and Engineering Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
22
|
He Z, Han X, Xie H, Yan Z, Guo B, Yao Y. Miniemulsion polymerization-formulated poly(fluorene-alt-6-(2-ethylhexyl)-[1,2,5]thiadiazole[3,4-f]benzotriazole) for cancer cell imaging. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Chen X, Han H, Tang Z, Jin Q, Ji J. Aggregation-Induced Emission-Based Platforms for the Treatment of Bacteria, Fungi, and Viruses. Adv Healthc Mater 2021; 10:e2100736. [PMID: 34190431 DOI: 10.1002/adhm.202100736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Indexed: 12/19/2022]
Abstract
The prevention and control of pathogenic bacteria, fungi, and viruses is a herculean task for all the countries since they greatly threaten global public health. Rapid detection and effective elimination of these pathogens is crucial for the treatment of related diseases. It is urgently demanded to develop new diagnostic and therapeutic strategies to combat bacteria, fungi, and viruses-induced infections. The emergence of aggregation-induced emission (AIE) luminogens (AIEgens) is a revolutionary breakthrough for the treatment of many diseases, including pathogenic infections. In this review, the main focus is on the applications of AIEgens for theranostic treatment of pathogenic bacteria, fungi, and viruses. Due to the AIE characteristic, AIEgens are promising fluorescent probes for the detection of bacteria, fungi, and viruses with excellent sensitivity and photostability. Moreover, AIEgen-based theranostic platforms can be fabricated by introducing bactericidal moieties or designing AIE photosensitizers and AIE photothermal agents. The current strategies and ongoing developments of AIEgens for the treatment of pathogenic bacteria, fungi, and viruses will be discussed in detail.
Collapse
Affiliation(s)
- Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| | - Haijie Han
- Eye Center the Second Affiliated Hospital School of Medicine Zhejiang University 88 Jiefang Road Hangzhou 310009 P. R. China
| | - Zhe Tang
- Department of Surgery The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| |
Collapse
|
24
|
Kaur L, Kaur H, Kumar M, Bhalla V. Type I 'Lighted Metal-free' Photosensitizing Assemblies of Phenazine for Aerobic Oxidative Transformations. Chem Asian J 2021; 16:4179-4186. [PMID: 34739180 DOI: 10.1002/asia.202101072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Indexed: 11/08/2022]
Abstract
Highly photostable supramolecular photosensitizing 'lighted metal-free' assemblies of DPZ-Th have been developed which show strong absorption in the visible region and excellent electron transportation potential from donor to acceptor units. The as-prepared assemblies of DPZ-Th activate aerial oxygen to generate Type I reactive oxygen species (ROS) under visible-light irradiation in mixed aqueous media. Owing to these properties, the as-prepared DPZ-Th assemblies exhibit high photocatalytic activity in catalyzing the aerobic oxidative coupling of benzylamines and synthesis of quinazolines. Various spectroscopic studies support the participation of Type I reactive species in the reaction mechanism. The 'pure' oxygen environment was not needed for carrying out these transformations and all the reactions proceed very well under aerial conditions to furnish the desired products in high yields.
Collapse
Affiliation(s)
- Lovjot Kaur
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Harpreet Kaur
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
25
|
Li J, Liu W, Li Z, Hu Y, Yang J, Li J. PEGylated AIEgen molecular probe for hypoxia-mediated tumor imaging and photodynamic therapy. Chem Commun (Camb) 2021; 57:4710-4713. [PMID: 33977996 DOI: 10.1039/d1cc00967b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a novel PEGylated aggregation-induced emission luminogen (AIEgen) molecular probe for hypoxia-mediated tumor imaging and photodynamic therapy by linking a PEG chain to the AIE-active photosensitizer via a hypoxia-sensitive azo group.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Wei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jinfeng Yang
- Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
26
|
Enhancing near-infrared AIE of photosensitizer with twisted intramolecular charge transfer characteristics via rotor effect for AIE imaging-guided photodynamic ablation of cancer cells. Talanta 2021; 225:122046. [PMID: 33592768 DOI: 10.1016/j.talanta.2020.122046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
Near-infrared (NIR) aggregation-induced emission (AIE) of previous organic photosensitizers is usually weak because of the competition between twisted intramolecular charge transfer (TICT) effect and AIE. Herein, we report a rational molecular design strategy to boost NIR AIE of photosensitizers and still to keep strong 1O2 production capacity via rotor effect. To this end, one new triphenylamine (TPA)-based AIE photosensitizer, TPAM-1, is designed to give strong ability to generate 1O2 but weak NIR fluorescence in the aggregate state due to the strong TICT effect. Another new TPA-based AIE photosensitizer, TPAM-2, is designed by introducing three p-methoxyphenyl units as rotors into the structure of TPAM-1 to modulate the competition between AIE and TICT. TPAM-1 and TPAM-2 exhibit stronger ability to generate 1O2 in the aggregate state than the commercial photosensitizer, Ce6. Furthermore, TPAM-2 gives much brighter NIR luminescence (25-times higher quantum yield) than TPAM-1 in the aggregate state due to the rotor effect. TPAM-2 with strong NIR AIE and 1O2 production capability was encapsulated by DSPE-PEG2000 to give good biocompatibility. The DSPE-PEG2000-encapsulated TPAM-2 nanoparticles show good cell imaging performance and remarkable photosensitive activity for killing HeLa cells. This work provides a new way for designing ideal photosensitizers for AIE imaging-guided photodynamic therapy.
Collapse
|
27
|
Liu Y, Chen Q, Sun Y, Chen L, Yuan Y, Gu M. Aggregation-induced emission shining in the biomedical field: From bench to bedside. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
28
|
Wang Y, Shi L, Ma D, Xu S, Wu W, Xu L, Panahandeh-Fard M, Zhu X, Wang B, Liu B. Tumor-Activated and Metal-Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS NANO 2020; 14:13056-13068. [PMID: 33016697 DOI: 10.1021/acsnano.0c04518] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor accumulation and intratumoral singlet oxygen (1O2) generation efficiency of photosensitizers (PSs) are two essential factors that determine their photodynamic therapy (PDT) efficacies. How to maximize the PS performance at the tumor site is of great research interest. Herein, we report a metal-organic framework (ZIF-8, ZIF = zeolitic imidazolate framework) assisted in vivo self-assembly nanoplatform, ZIF-8-PMMA-S-S-mPEG, as an effective tool for organic PS payloads to achieve efficient PDT. Using an organic PS with aggregation-induced emission as an example, under intratumoral bioreduction, PS-loaded ZIF-8-PMMA-S-S-mPEG (PS@ZIF-8-PMMA-S-S-mPEG) was self-assembled into large ordered hydrophobic clusters, which greatly enhance tumor retention and accumulation of the PS. Moreover, hydrophobic ZIF-8 assemblies greatly isolate the loaded PSs from water and improve O2 transport for the PSs to effectively produce 1O2 inside tumors under light irradiation. The organic PS is therefore endowed with optimal tumor accumulation and intratumoral 1O2 production, demonstrating the effectiveness of the developed self-assembly strategy in PDT application.
Collapse
Affiliation(s)
- Yuanbo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dou Ma
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Li Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Majid Panahandeh-Fard
- Nanoscience and Nanotechnology Initiative (NUSNNI)-Nanocore, National University of Singapore, Singapore 117576, Singapore
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Wang
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
29
|
Li X, Zha M, Li Y, Ni J, Min T, Kang T, Yang G, Tang H, Li K, Jiang X. Sub‐10 nm Aggregation‐Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor Targeting and Reduced Retention in the Liver. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuanyu Li
- National Center for Nanoscience and Technology The University of Chinese Academy of Sciences No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Menglei Zha
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Yaxi Li
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Jen‐Shyang Ni
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Tianliang Min
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Tianyi Kang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Guang Yang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Hao Tang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- National Center for Nanoscience and Technology The University of Chinese Academy of Sciences No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
30
|
Li X, Zha M, Li Y, Ni J, Min T, Kang T, Yang G, Tang H, Li K, Jiang X. Sub‐10 nm Aggregation‐Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor Targeting and Reduced Retention in the Liver. Angew Chem Int Ed Engl 2020; 59:21899-21903. [DOI: 10.1002/anie.202008564] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Xuanyu Li
- National Center for Nanoscience and Technology The University of Chinese Academy of Sciences No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Menglei Zha
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Yaxi Li
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Jen‐Shyang Ni
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Tianliang Min
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Tianyi Kang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Guang Yang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Hao Tang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- National Center for Nanoscience and Technology The University of Chinese Academy of Sciences No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
31
|
Min X, Fang T, Li L, Li C, Zhang ZP, Zhang XE, Li F. AIE nanodots scaffolded by mini-ferritin protein for cellular imaging and photodynamic therapy. NANOSCALE 2020; 12:2340-2344. [PMID: 31934693 DOI: 10.1039/c9nr09788k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) is one of the most elegant cancer treatment strategies that can be controlled by a beam of light with non-invasion, precise control, and high spatiotemporal accuracy. An ideal photosensitizer (PS) is the key to ensure the efficacy of PDT. Due to their hydrophobic and rigid planar structures, most traditional PSs are prone to aggregate under physiological conditions, which causes fluorescence quenching and significantly reduces reactive oxygen species (ROS) generation. Fortunately, the emergence of aggregation-induced emission (AIE) dyes offers a potential opportunity to overcome these limitations. When AIE PS molecules are in the aggregation state, the fluorescence intensity and ROS production can be increased. We herein use red AIE PS molecules to prepare stable AIE nanodots for cell imaging and PDT via a simple method with a highly negatively charged mini-ferritin protein as the scaffold. The as-prepared protein-AIE nanodots show strong fluorescence emission and efficient singlet oxygen generation, with good stability, relatively long wavelengths of absorption and emission, and negligible dark toxicity. The mini-ferritin-AIE system may be useful in developing novel functional probes for tumour nanotheranostics.
Collapse
Affiliation(s)
- Xuehong Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Ti Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Lingling Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Chaoqun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
32
|
Feng G, Zhang GQ, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev 2020; 49:8179-8234. [DOI: 10.1039/d0cs00671h] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes how Jablonski diagrams guide the design of advanced organic optical agents and improvement of disease phototheranostic efficacies.
Collapse
Affiliation(s)
- Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- AIE Institute
- School of Materials Science and Engineering
- South China University of Technology
| | - Guo-Qiang Zhang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education, and College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education, and College of Life Sciences
- Nankai University
- Tianjin 300071
| |
Collapse
|
33
|
Lin X, Zhao J, Huang W, Liu H, Feng P, Yang F, Chen T. Simple Aggregation-Induced Emission-Based Multifunctional Fluorescent Dots for Cancer Therapy In Vitro. Chem Asian J 2019; 14:4160-4163. [PMID: 31657112 DOI: 10.1002/asia.201901315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Multifunctional nanoparticles were simply synthesized by mixing a TICT+AIE featured molecule (TPAPP-CHO) with PBS solution. The fluorescent (FL) dots entered the cells via energy-related endocytosis and were located in lysosome emitting green FL. This indicated that the nanoparticles were dissociated in the lysosome. Moreover, the synthesized nanoparticles (NPs) demonstrate potent cytotoxicity against human U87 glioblastoma cells by inducing cell apoptosis via triggering intracellular ROS overproduction.
Collapse
Affiliation(s)
- Xueran Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Junhao Zhao
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fang Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
34
|
Fu H, Huang Y, Lu H, An J, Liu DE, Zhang Y, Chen Q, Gao H. A theranostic saponin nano-assembly based on FRET of an aggregation-induced emission photosensitizer and photon up-conversion nanoparticles. J Mater Chem B 2019; 7:5286-5290. [PMID: 31460561 DOI: 10.1039/c9tb01248f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A photodynamic aggregation-induced emissive (AIE) fluorophore, characterized by near-infrared (NIR) emission, was created based on a fluorescence resonance energy transfer (FRET) donor of appreciable NIR up-conversion nanoparticles (UCNPs) and acceptor of immense fluorescence emissive AIEgen. Hence, the entrapment of the FRET couple into an amphiphilic saponin-based nanoscaled self-assembly demonstrated appealing theranostic functions in producing immense fluorescence emission and cytotoxic reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hao Fu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Yongkang Huang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Hongguang Lu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Jinxia An
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - De-E Liu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Yongxin Zhang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Qixian Chen
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
35
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
36
|
Dadwal S, Deol H, Kumar M, Bhalla V. AIEE Active Nanoassemblies of Pyrazine Based Organic Photosensitizers as Efficient Metal-Free Supramolecular Photoredox Catalytic Systems. Sci Rep 2019; 9:11142. [PMID: 31366949 PMCID: PMC6668430 DOI: 10.1038/s41598-019-47588-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2019] [Indexed: 01/27/2023] Open
Abstract
Pyrazine derivatives DIPY, TETPY and CNDIPY have been designed and synthesized which form fluorescent supramolecular assemblies in mixed aqueous media due to their AIEE and ICT characteristics. Among all the derivatives, the assemblies of TETPY and CNDIPY show strong absorption in the visible region with high absorption coefficients, low HOMO-LUMO gap, and high photostability. Further, the supramolecular nanoassemblies of TETPY and CNDIPY show excellent potential to generate reactive oxygen species (ROS) under the visible light irradiation. Owing to their strong absorption in the visible region and ROS generation ability, the supramolecular nanoassemblies of TETPY and CNDIPY act as efficient photoredox catalytic systems for carrying out (a) oxidative amidation of aromatic aldehydes (b) hydroxylation of boronic acid and (c) oxidative homocoupling of benzylamines under mild conditions such as aqueous media, aerial environment, and natural sunlight as a source of irradiation. All the mechanistic investigations suggest the participation of in-situ generated ROS in the organic transformations upon light irradiation.
Collapse
Affiliation(s)
- Shruti Dadwal
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Harnimarta Deol
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
37
|
Yin F, Gu B, Li J, Panwar N, Liu Y, Li Z, Yong KT, Tang BZ. In vitro anticancer activity of AIEgens. Biomater Sci 2019; 7:3855-3865. [PMID: 31305807 DOI: 10.1039/c9bm00881k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorogens with aggregation-induced emission (AIE) characteristics (AIEgens) possess unique optical properties, design flexibility, and multi-functional capabilities and have established their niche as smart materials since their discovery in 2001. In recent years, AIEgens have found varied applications in sensing, imaging, and therapy in biomedical research. In this work, we systematically and comprehensively investigate the in vitro anticancer activity of AIEgens. We report the high cytotoxicity of AIEgens against cancer cells, especially against cancer stem cells (CSCs) which show high resistance to existing therapeutic drug regimens. Furthermore, we explore the role of AIEgens as novel image-guided chemotherapy agents that offer a new avenue for efficient cancer treatment.
Collapse
Affiliation(s)
- Feng Yin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jingxu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Yong Liu
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Ben Zhong Tang
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Wang Y, Wu W, Liu J, Manghnani PN, Hu F, Ma D, Teh C, Wang B, Liu B. Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal-Organic Framework. ACS NANO 2019; 13:6879-6890. [PMID: 31194910 DOI: 10.1021/acsnano.9b01665] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Activation of photosensitizers (PSs) in targeted lesion and minimization of reactive oxygen species (ROS) depletion by endogenous antioxidants constitute promising approaches to perform highly effective image-guided photodynamic therapy (PDT) with minimal non-specific phototoxicity. Traditional strategies to fabricate controllable PS platforms rely on molecular design, which requires specific modification of each PS before PDT. Therefore, construction of a general tumor-responsive PDT platform with minimum ROS loss from endogenous antioxidant, typically glutathione (GSH), is highly desirable. Herein, MOF-199, a Cu(II) carboxylate-based metal-organic framework (MOF), is selected to serve as an inert carrier to load PSs with prohibited photosensitization during delivery. After cellular uptake, Cu (II) in the MOFs effectively scavenges endogenous GSH, concomitantly induces decomposition of MOF-199 to release the encapsulated PSs, and recovers their ROS generation. In vitro and in vivo experiments demonstrate highly effective cancer cell ablation and anticancer PDT with diminished normal cell phototoxicity. This strategy is generally applicable to PSs with both aggregation-induced emission and aggregation-caused quenching to implement activatable and enhanced image-guided PDT.
Collapse
Affiliation(s)
- Yuanbo Wang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Jingjing Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Purnima Naresh Manghnani
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Dou Ma
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , P. R. China
| | - Cathleen Teh
- Institute of Molecular and Cell Biology , 61 Biopolis Drive , Singapore 138673 , Singapore
| | - Bo Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| |
Collapse
|
39
|
Zhao X, Chen Y, Niu G, Gu D, Wang J, Cao Y, Yin Y, Li X, Ding D, Xi R, Meng M. Photostable pH-Sensitive Near-Infrared Aggregation-Induced Emission Luminogen for Long-Term Mitochondrial Tracking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13134-13139. [PMID: 30901189 DOI: 10.1021/acsami.9b02228] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mitochondria are crucial in the process of oxidative metabolism and apoptosis. Their morphology is greatly associated with the development of certain diseases. For specific and long-term imaging of mitochondrial morphology, we synthesized a new mitochondria-targeted near-infrared (NIR) fluorescent probe (TPE-Xan-In) by incorporating TPE with a NIR merocyanine skeleton (Xan-In). TPE-Xan-In displayed both absorption (660 nm) and emission peaks (743 nm) in the NIR region. Moreover, it showed aggregation-induced emission properties at neutral pH and specifically illuminated mitochondria with good biocompatibility, superior photostability, and high tolerance to mitochondrial membrane potential changes. With a pH-responsive unit, hydroxyl xanthene (Xan), the probe exhibited a pH-sensitive fluorescence emission in the range of pH 4.0-7.0, which indicated its potential in long-term tracking of pH and morphology changes of mitochondria in the biomedical research studies.
Collapse
Affiliation(s)
- Xiujie Zhao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Yun Chen
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Guiyu Niu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Dening Gu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Jianning Wang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Yanmei Cao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Yongmei Yin
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Xiaogang Li
- Peking Union Medical College Hospital , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100730 , China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Rimo Xi
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Meng Meng
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| |
Collapse
|
40
|
Xia Q, Chen Z, Zhou Y, Liu R. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer. Nanotheranostics 2019; 3:156-165. [PMID: 31008024 PMCID: PMC6470342 DOI: 10.7150/ntno.33536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/21/2019] [Indexed: 01/24/2023] Open
Abstract
Photodynamic therapy (PDT), which utilizes reactive oxygen species to ablate tumor, has attracted much attention in recent years. Photosensitizers with near-infrared (NIR) fluorescence as well as efficient ROS generation ability have been used for precise diagnosis and simultaneous treatment of cancer. However, photosensitizers frequently suffer from low ROS generation ability and NIR fluorescence quenching in aqueous media due to the aggregation. Methods: We prepare an effective AIE active NIR emissive photosensitizer containing rhodanine as electron acceptor and triphenylvinylthiophene as electron donor is prepared, and encapsulate the corresponding photosensitizer into Pluronic F127 to fabricate NIR organic fluorescent nanoparticles. We then evaluate the NIR fluorescence bioimaging and photodynamic therapy ability of TPVTR dots in vitro and in vivo. Results: The yielded organic fluorescent nanoparticles exhibit effective ROS generation ability, bright NIR emission, high photostability, and good biocompatibility. Both in vitro and in vivo experiments confirm that NIR organic fluorescent nanoparticles demonstrate good performances in long-term tracing and photodynamic ablation of tumor. Conclusion: In summary, the synthesized organic fluorescent nanoparticles, TPVTR dots, showed great potentials in long-term cell tracing and photodynamic therapy of tumor. Our study highlights the efficient strategy for developing promising near-infrared organic fluorescent nanoparticles in advancing the field of bioimaging and further image-guide clinical applications.
Collapse
Affiliation(s)
- Qi Xia
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China.,School of pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zikang Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China.,School of pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yuping Zhou
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China.,School of pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
41
|
Wang D, Lee MMS, Xu W, Shan G, Zheng X, Kwok RTK, Lam JWY, Hu X, Tang BZ. Boosting Non‐Radiative Decay to Do Useful Work: Development of a Multi‐Modality Theranostic System from an AIEgen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900366] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dong Wang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Michelle M. S. Lee
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Wenhan Xu
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Guogang Shan
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology 100081 Beijing China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Xianglong Hu
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of BiophotonicsSouth China Normal University Guangzhou 510631 China
| | - Ben Zhong Tang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
42
|
Wang D, Lee MMS, Xu W, Shan G, Zheng X, Kwok RTK, Lam JWY, Hu X, Tang BZ. Boosting Non‐Radiative Decay to Do Useful Work: Development of a Multi‐Modality Theranostic System from an AIEgen. Angew Chem Int Ed Engl 2019; 58:5628-5632. [DOI: 10.1002/anie.201900366] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/03/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Wang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Michelle M. S. Lee
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Wenhan Xu
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Guogang Shan
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsKey Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology 100081 Beijing China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Xianglong Hu
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of BiophotonicsSouth China Normal University Guangzhou 510631 China
| | - Ben Zhong Tang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
43
|
Li K, Lin Y, Lu C. Aggregation-Induced Emission for Visualization in Materials Science. Chem Asian J 2019; 14:715-729. [PMID: 30629327 DOI: 10.1002/asia.201801760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation-caused quenching, which severely limits the visualization results. In contrast, aggregation-induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro-dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.
Collapse
Affiliation(s)
- Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| |
Collapse
|
44
|
Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat Commun 2019; 10:41. [PMID: 30604777 PMCID: PMC6318297 DOI: 10.1038/s41467-018-07835-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022] Open
Abstract
Transition metal dichalcogenide (TMD) quantum dots (QDs) are fundamentally interesting because of the stronger quantum size effect with decreased lateral dimensions relative to their larger 2D nanosheet counterparts. However, the preparation of a wide range of TMD QDs is still a continual challenge. Here we demonstrate a bottom-up strategy utilizing TM oxides or chlorides and chalcogen precursors to synthesize a small library of TMD QDs (MoS2, WS2, RuS2, MoTe2, MoSe2, WSe2 and RuSe2). The reaction reaches equilibrium almost instantaneously (~10–20 s) with mild aqueous and room temperature conditions. Tunable defect engineering can be achieved within the same reactions by deviating the precursors’ reaction stoichiometries from their fixed molecular stoichiometries. Using MoS2 QDs for proof-of-concept biomedical applications, we show that increasing sulfur defects enhanced oxidative stress generation, through the photodynamic effect, in cancer cells. This facile strategy will motivate future design of TMDs nanomaterials utilizing defect engineering for biomedical applications. Transition metal dichalcogenide (TMD) quantum dots (QDs) have promising electronic properties which might be further tailorable by defect engineering. Here the authors describe a room temperature aqueous based synthesis of TMD QDs with controlled defect concentration, and demonstrate the correlation between defect concentration and biomedical activity.
Collapse
|
45
|
Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019; 48:38-71. [DOI: 10.1039/c8cs00001h] [Citation(s) in RCA: 709] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in developing organic semiconducting materials (OSMs) for deep-tissue optical imaging, cancer phototherapy and biological photoactivation is summarized.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
46
|
Han C, Jiang S, Qiu J, Guo H, Yang F. A diphenylacrylonitrile conjugated porphyrin with near-infrared emission by AIE–FRET. NEW J CHEM 2019. [DOI: 10.1039/c8nj05785k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The strong aggregation induced emission–fluorescence resonance energy transfer (AIE–FRET) effect was observed for diphenylacrylonitrile units and porphyrin units.
Collapse
Affiliation(s)
- Chenyang Han
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Shengjie Jiang
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Jiabin Qiu
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Fafu Yang
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|
47
|
Fateminia SMA, Kacenauskaite L, Zhang CJ, Ma S, Manghnani PN, Chen J, Xu S, Hu F, Xu B, Laursen BW, Liu B. Simultaneous Increase in Brightness and Singlet Oxygen Generation of an Organic Photosensitizer by Nanocrystallization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803325. [PMID: 30480358 DOI: 10.1002/smll.201803325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Efficient organic photosensitizers are attractive for cancer cell ablation in photodynamic therapy. Bright fluorescent photosensitizers are highly desirable for simultaneous imaging and therapy. However, due to fundamental competition between emission and singlet oxygen generation, design attempts to increase singlet oxygen generation almost always leads to the loss of fluorescence. Herein, it is shown for the first time that nanocrystallization enables a simultaneous and significant increase in the brightness and singlet oxygen generation of an organic photosensitizer. Spectroscopic studies show simultaneous enhancement in the visible light absorption and fluorescence after nanocrystallization. The enhanced absorption of visible light in nanocrystals is found to translate directly to the enhanced singlet oxygen production, which shows a higher ability to kill HeLa cells as compared to their amorphous counterpart.
Collapse
Affiliation(s)
- S M Ali Fateminia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Laura Kacenauskaite
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Suqian Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Purnima N Manghnani
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Junsheng Chen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Bo W Laursen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
48
|
Precise design and synthesis of an AIE fluorophore with near-infrared emission for cellular bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:399-406. [DOI: 10.1016/j.msec.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/22/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
|
49
|
Hu F, Xu S, Liu B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801350. [PMID: 30066341 DOI: 10.1002/adma.201801350] [Citation(s) in RCA: 517] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.
Collapse
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
50
|
Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ. Theranostics based on AIEgens. Theranostics 2018; 8:4925-4956. [PMID: 30429878 PMCID: PMC6217064 DOI: 10.7150/thno.27787] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
The utilization of luminogens with aggregation-induced emission (AIE) characteristics has recently been developed at a tremendous pace in the area of theranostics, mainly because AIE luminogens (AIEgens) hold various distinct advantages, such as good biocompatibility, excellent fluorescence properties, simple preparation and modification, perfect size of nano-aggregation for enhanced permeability and retention effect, promoted efficiencies of photodynamic and photothermal therapies, efficient photoacoustic imaging, and ready constructions of multimodal imaging and therapy. Significant breakthroughs and developments of theranostics based on AIEgens have been achieved in the past few years, and great progress has been witnessed in many theranostic modalities, indicating that AIEgens remarkably complement conventional theranostic materials and promote the development of theranostics. This review provides theoretical insights into the advantages of AIEgens in theranostics, and systematically summarizes the basic concepts, seminal studies, recent trends and perspectives in theranostics based on AIEgens. We believe that AIEgens would be promising multifunctional theranostic platforms in clinical fields and facilitate significant advancements in this research-active area.
Collapse
Affiliation(s)
- Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Michelle Mei Suet Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky Wing Yip Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|